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We describe a simple and solvable model of a device that—Ilike the “‘neat-fingered being”” in Maxwell’s
famous thought experiment—transfers energy from a cold system to a hot system by rectifying thermal
fluctuations. In order to accomplish this task, our device requires a memory register to which it can

write information: the increase in the Shannon entropy of the memory compensates the decrease in the

thermodynamic entropy arising from the flow of heat against a thermal gradient. We construct the
nonequilibrium phase diagram for this device, and find that it can alternatively act as an eraser of
information. We discuss our model in the context of the second law of thermodynamics.
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In a thought experiment highlighting the statistical
nature of the second law of thermodynamics, Maxwell
imagined a tiny creature acting as a gatekeeper between
two chambers filled with gases at different temperatures.
By preferentially allowing fast-moving molecules to pass
from the cold to the hot chamber, and slow ones to pass
in the other direction, this creature achieves refrigeration
without expending energy. As Maxwell put it, “the hot
system has got hotter and the cold colder and yet no work
has been done, only the intelligence of a very observant
and neat-fingered being has been employed” [1].

In this Letter we propose a simple, solvable model of
a physical device that accomplishes the same result as
Maxwell’s intelligent and observant creature: it creates a
flow of energy against a thermal gradient, without the input
of external work. Our device is a classical two-state system
that interacts with a pair of thermal reservoirs and a mem-
ory register, which we model as a stream of bits [Fig. 1(a)].
The dynamics consist of stochastic transitions, by means
of which the device exchanges energy with the reservoirs
and modifies the states of the bits. For appropriate values
of the model parameters, these dynamics produce a steady
state in which there is a continual flow of energy from
the cold reservoir to the hot reservoir, and a record of the
system’s microscopic evolution is continually written to
the stream of bits. Our device is fully autonomous, requir-
ing no intervention by an external agent. Its ability to
control the flow of energy between the reservoirs emerges
entirely from the microscopic equations of motion.

The term “Maxwell’s demon” has come to refer not
only to the original setting described by Maxwell, but more
generally to any situation in which a rectification of micro-
scopic fluctuations produces a decrease of thermodynamic
entropy [2,3]. A consensus has emerged that a physical
device could achieve such a result, without violating the
second law, if it were simultaneously to write information
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to a memory register [4-8]. In this view, the act of writing
increases the information entropy of the memory register,
thereby compensating the decrease of thermodynamic
entropy produced by the device. If the information is later
erased from the memory register, then by Landauer’s prin-
ciple [4,9] there must be an increase in thermodynamic
entropy elsewhere. This tidy accounting places the
Shannon entropy of a sequence of bits on the same ther-
modynamic footing as the Clausius entropy, defined in
terms of heat and temperature. As long as the sum of these
entropies never decreases, the second law remains satis-
fied. See, however, Refs. [10-13] for dissenting perspec-
tives, which suggest that this consensus is at best an
appealing narrative based on the presupposition of the
second law, rather than an independent explanation.
Maxwell’s demon has recently enjoyed increased atten-
tion in a broad range of settings, including artificial mo-
lecular machines [14], single photon cooling of atoms [15],
biomolecular signal transduction [16], quantum informa-
tion theory [17] and the feedback control of microscopic
fluctuations [18-33]. Maxwell’s 19th-century thought
experiment has become a touchstone for discussing the
thermodynamic implications of information processing by
physical systems [34-37]. While the consensus described
above has identified and clarified these implications, far
less effort has been devoted to uncovering precisely how a
physical device, acting on its own, might accomplish
the same result as Maxwell’s hypothetical being [38—43].
To the best of our knowledge, the autonomous model we
introduce below is the first to generate a flow of energy
against a thermal gradient, effectively acting as a refrig-
erator without a power supply—just as in the setup
considered by Maxwell, but with the intelligent creature
replaced by a dumb device. This contrasts with an earlier
model of a device that acts as an engine, supplying work
by extracting heat from a single thermal reservoir [40].
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where y > 0 sets a characteristic rate for these transitions,
Ou lu and 0 <o <1.
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FIG. 1 (color online). (a) The device, or ‘“demon,” interacts
with a sequence of bits, one at a time, while exchanging energy
with two thermal reservoirs. (b) The demon makes intrinsic
transitions mediated by the hot reservoir (vertical arrows), and
the demon and nearest bit make cooperative transitions 0d < 1u
mediated by the cold reservoir (diagonal arrows).

Our autonomous framework also differs from that of
Refs. [18-33] (including the experimental realization
reported in Ref. [26]), in which external intervention in
the form of measurement and feedback is a key element.

In what follows we describe our model and analyze its
dynamics. We obtain a nonequilibrium phase diagram for
the steady state behavior (Fig. 2), which reveals that our
device can act either as a refrigerator, transferring energy
from a cold to a hot reservoir, or as an eraser, decreasing
the information content of the memory register. Finally, we
briefly discuss our model in the context of the second law
of thermodynamics.

Our model consists of four components, sketched in
Fig. 1(a): a memory register, two thermal reservoirs at
temperatures 7, and 7), > T,, and a device that plays the
role of Maxwell’s demon. The memory register is a
sequence of bits (two-state systems) spaced at equal inter-
vals along a tape that slides frictionlessly past the demon.
The demon interacts with the nearest bit and with the
reservoirs, as we describe in detail in the following
paragraphs.

The demon itself is a two-state system, with states u and
d characterized by an energy difference AE=E, — E;>0.
It can make random transitions between these two states
by exchanging energy with the hot reservoir, as illustrated
by the vertical arrows in Fig. 1(b). We will refer to these
as intrinsic transitions, to emphasize that they involve the
demon but not the bits. The corresponding transition rates
satisfy the requirement of detailed balance [44],

Ry

42U — o= ByAE (1)
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Rd<—u

where B, = 1/kT), and k is Boltzmann’s constant. We
parametrize these rates as

BLAE

= tanh———
o an 5
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Each bit has two states, 0 and 1, with equal energies. We
assume there are no intrinsic transitions between these
two states. That is, the state of the bit can change only
via interaction with the demon, as we now discuss.

At any instant in time, the demon interacts only with the
nearest bit. As aresult, it interacts sequentially with the bits
as they pass by. The duration of interaction with each bit is
7 = I/v, where [ is the spacing between bits and v is the
constant speed of the tape. During one such interaction
interval, the demon and the nearest bit can make coopera-
tive transitions: if the bit is in state O and the demon is in
state d, then they can simultaneously flip to states 1 and u,
and vice versa [Fig. 1(b), diagonal arrows]. We will use the
notation Od < lu to denote these transitions, which are
accompanied by an exchange of energy with the cold
reservoir. The corresponding transition rates again satisfy
detailed balance, Ryy_,/Rogeiy = ¢ P*E, where B, =
1/kT,, and we will parametrize them as follows [45]:

AE
ROd—>1u =1- w, R0d<—1u =1+ w, w = tanhﬁcT,
3)
with 0 < w < 1. For later convenience, we also define
- - AE
e= 2T _ yupBe T BAE @)
1l —wo 2

whose value, 0 < € < 1, quantifies the temperature differ-
ence between the two reservoirs.

Finally, we assume that the incoming bit stream contains
a mixture of 0’s and 1’s, with probabilities p, and py,
respectively, with no correlations between bits. Let

0=py—pi ®)

denote the proportional excess of 0’s among incoming bits.
We thus have the following dynamics. When a fresh
bit arrives to interact with the demon, its state is O or 1.
The demon and bit subsequently interact for a time 7,
making the transitions shown in Fig. 1(b), thereby
exchanging energy with the reservoirs. The state of the
bit at the end of the interaction interval is then preserved as
the bit joins the outgoing stream, and the next bit in the
sequence moves in to have its turn with the demon. The
parameters vy, o, and o define the intrinsic and cooperative
transition rates [Eqs. (2) and (3)], 7 gives the duration of
interaction with each bit, and o specifies the statistics of the
incoming bits. Under these dynamics, the demon evolves
to a periodic steady state, in which its behavior is statisti-
cally the same from one interaction interval to the next.
Before proceeding to the solution of these dynamics, we
discuss heuristically how our model can achieve the sys-
tematic transfer of heat from the cold to the hot reservoir.
For this purpose let us assume that each incoming bit is in
state 0, hence 6 = 1. At the start of a particular interaction
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interval, the joint state of the demon and newly arrived bit
is either Ou or Od. The demon and bit then evolve together
for a time 7, according to the transitions shown in Fig. 1(b).
If the joint state at the end of the interaction interval is
Ou or Od, then it must be the case that every transition
0d — 1u was balanced by a transition Od < lu; hence, no
net energy was absorbed from the cold reservoir. If the final
state is 1u or 1d, then we can infer that there was one net
transition from Od to 1u, and a quantity of energy AE was
absorbed from the cold reservoir. This amounts to thermal
rectification: over the course of one interaction interval,
energy can be withdrawn from the cold reservoir but not
delivered to it. Moreover, a record of this process
is imprinted in the bit stream, as every outgoing bit in state
1 indicates the absorption of energy AE from the cold
reservoir. Since the demon also exchanges energy with
the hot reservoir, and since energy cannot accumulate
indefinitely within the demon, in the long run we get a
net flux of energy from the cold to the hot reservoir,
proportional to the rate at which 1’s appear in the outgoing
bit stream.

More generally, if the incoming bit stream contains a
mixture of 0’s and 1’s, then an excess of 0’s (that is, § > 0)
produces a statistical bias that favors the flow of heat from
the cold to the hot reservoir, while an excess of 1’s (6 < 0)
produces the opposite bias. This bias either competes with
or enhances the normal thermodynamic bias due to the
temperature difference between the two reservoirs. The
demon thus affects the flow of energy between the reser-
voirs, and modifies the states of the bits in the memory
register. We now investigate quantitatively the interplay
between these two effects.

Once the demon has reached its periodic steady state, let
P and p' denote the fractions of 0’s and 1’s in the outgoing
bit stream, and let 6’ = p{ — p| denote the excess of
outgoing 0’s. Then

6—48

P
2

pPr—pi = (6)

represents the average production of 1’s per interac-
tion interval in the outgoing bit stream, relative to the
incoming bit stream. Since each transition 0 — 1 is accom-
panied by the absorption of energy AE from the cold
reservoir [Fig. 1(b)], the average transfer of energy from
the cold to the hot reservoir, per interaction interval, is
given by

Q.. = PAE. 7

A positive value of Q._,;, indicates that our device pumps
energy against a thermal gradient, like the creature imag-
ined by Maxwell.

To quantify the information-processing capability of the
demon, let

1
S(8) = — Zpilnpi
i=0

__1—511—8_1—1-611—1-6 ®
2 T2 2 2
denote the information content, per bit, of the incoming
bit stream, and define S(8’) by the same equation, for the
outgoing bit stream. Then

ASp = 8(8') — S(8) = S(6 —2®) — S(8) )

provides a measure of the extent to which the demon
increases the information content of the memory register.
We will interpret a positive value of ASp to indicate that
the demon writes information to the bit stream, while a
negative value indicates erasure. (More precisely, since
S(8') neglects the small correlations that arise between
the outgoing bits, AS reflects the change in the Shannon
information of the marginal probability distribution of each
outgoing bit).

From Egs. (7) and (9) we see that @ determines both
Q.- and ASp. In the Supplemental Material [46], we
show that under the dynamics we have described, the
demon reaches a periodic steady state, determined by the
model parameters A = (6, o, y, w, 7), in which

S — €

D(A) = n(A), n>0 (10)

and

OBy — B:) + ASp = 0. (11)

Equation (11) is a strict inequality when 6 # €. An explicit
expression for n(A) is given in the Supplemental Material
[46], but for our present purposes the crucial point is that
the sign of @ is the same as that of 6 — €. We can think
of two effective forces: the bias induced by the incoming
bit stream, which favors ® > 0 when 6 > 0 (as discussed
above), and the temperature gradient, quantified by e,
which favors ® <0 [Eq. (7)]. When these compete, the
winner is determined by the difference 6 — e.

Equation (10) is obtained by solving for the periodic
steady state of the demon, using a linear-algebraic
approach. Equation (11) is obtained by constructing a
Lyapunov function for the demon and interacting bit.
The details of these derivations are provided in the
Supplemental Material [46]. Here, we instead use these
results to investigate the behavior of our model in the
periodic steady state. To that end, we fix y and @ and
construct a phase diagram that illustrates the dependence
on 6 and e, for various values of 7, shown in Fig. 2. Let us
consider the different regions of this diagram, working our
way from right to left.

From Egs. (7) and (10) it follows that Q._,, > 0 when
6 > €, shown as the most darkly shaded region in Fig. 2.
Here, a surplus of incoming 0’s prevails over the tempera-
ture difference and our demon generates a flow of energy
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FIG. 2 (color online). Phase diagram of our model at fixed
v = 1 and @ = 1/2. The parameter § specifies the incoming bit
statistics, and € is a rescaled temperature difference [Eq. (4)].
In the most darkly shaded region the demon acts as a refrigerator
(Q._, > 0), while in the lightly shaded regions it acts as an
eraser (ASp <0). The left boundary of the eraser region is
shown for 7 = 0.1, 1.0, 2.0, and 0. In the blank region at the
lower left, our model exhibits neither behavior (see text).

from the cold to the hot reservoir. Moreover, Eq. (11)
reveals that AS; > 0 in this region (since 8, < B.). This
agrees with the consensus described earlier: in order for a
physical device to act in the manner of Maxwell’s demon,
it must write information to a physical memory register.
In this sense, a bit stream with a low information content
can be viewed as a thermodynamic resource, which can be
expended (by writing to the available memory) in order to
achieve refrigeration.

Now consider the region € > 6 > 0, in which the surplus
of 0’s in the incoming bit stream is not sufficient to over-
come the temperature gradient, and energy flows from the
hot to the cold reservoir. Since ® <0 we get 6’ > 6 >0
[Eq. (6)]. This in turn implies ASz <0, as S(J) is a
concave function with a maximum at § = 0. In this region
the demon acts as an eraser, lowering the information
content of the bit stream, but the price paid for this erasure
is the passage of heat from the hot to the cold reservoir.

In the region § < 0, energy flows from the hot to the cold
reservoir [Egs. (7) and (10)], but the value of ASy depends
on all the model parameters. In Fig. 2, for four different
values of 7, we show the line corresponding to AS; = 0.
To the right of this line we have ASp < 0 and to the left we
have ASy > 0. In the limit 7 — oo, the boundary between
these two behaviors approaches the line € = — 4.

Examining the phase diagram as a whole, we see that
in the shaded regions our model reaches a steady state in
which one thermodynamic resource is replenished at the
expense of another. Either energy is pumped against a
thermal gradient at the cost of writing information to
memory (the refrigerator regime), or else memory is
made available, by erasure, at the expense of allowing

energy to flow from the hot to the cold reservoir (the eraser
regime). The boundary between these two behaviors is the
line 6 = €. In the unshaded region at the far left, both
resources are consumed, as energy flows down the thermal
gradient and information is written to the bit stream.

Finally, to place our model within the context of the
second law of thermodynamics, note that the first term
on the left side of Eq. (11) is the steady-state change in
thermodynamic entropy due to the flow of heat, and the
second term is the change in information entropy, per
interaction interval. Equation (11) can be viewed as a
modified Clausius inequality, in which the information
entropy of a random sequence of data is explicitly assigned
the same thermodynamic status as the physical entropy
associated with the transfer of heat. (More precisely,
Eq. (11) is a weak version of this inequality, as we neglect
correlations among the outgoing bits; see Supplemental
Material [46]). Thus our model provides support for the
consensus mentioned earlier [4—6], and Eq. (11) is consis-
tent with Landauer’s principle [4], which states that a
thermodynamic cost must be paid for the erasure of mem-
ory. However, in Ref. [4] this cost appears as the dissipa-
tion of energy into a single thermal reservoir, whereas in
our model it is the transfer of energy from a hot to a cold
IEeServoir.

In summary, we have constructed a simple, solvable
model of an autonomous physical system that mimics
the behavior of the ‘“‘neat-fingered being” in Maxwell’s
thought experiment, generating a systematic flow of energy
against a thermal gradient without the input of external
work. While Maxwell’s creature accomplishes this with
intelligence, our inanimate device requires only a memory
register to which information can be written. Alternatively,
it can harness the flow of energy from hot to cold in order
to erase information from the register.

We thank Andy Ballard, Shaon Chakrabarti, Sebastian
Deffner, and Zhiyue Lu for useful discussions, and grate-
fully acknowledge financial support from the National
Science Foundation (USA) under Grants No. DMR-
0906601, No. ECCS-0925365, and No. DMR-1206971,
the University of Maryland, College Park, and Peking
University.

[1] Maxwell’s Demon 2: Entropy, Classical and Quantum
Information, Computing, edited by H.S. Leff and A.F.
Rex (Institute of Physics Publishing, Bristol, 2003), p. 4.

[2] J.C.Maxwell, Theory of Heat (Longmans, London, 1871).

[3] L. Szilard, Z. Phys. 53, 840 (1929).

[4] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).

[5] O. Penrose, Foundations of Statistical Mechanics: A
Deductive Treatment (Pergamon Press, Oxford, 1970).

[6] C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).

[7] C.H. Bennett and R. Landauer, Sci. Am. 253, 48 (1985).

[8] O. Maroney, “Information Processing and Thermo-
dynamic Entropy,” in The Stanford Encyclopedia of

030602-4


http://dx.doi.org/10.1007/BF01341281
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1038/scientificamerican0785-48

PRL 111, 030602 (2013)

PHYSICAL REVIEW LETTERS

week ending
19 JULY 2013

Philosophy, edited by E.N. Zelta, http://plato.stanford
.edu/archives/fall2009/entries/information-entropy/, Fall
2009 ed.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.
Dillenschneider, and E. Lutz, Nature (London) 483, 187
(2012).

J. Earman and J. D. Norton, Stud. Hist. Phil. Mod. Phys.
29, 435 (1998).

J. Earman and J. D. Norton, Stud. Hist. Phil. Mod. Phys.
30, 1 (1999).

M. Hemmo and O. Shenker, J. Philos. 107, 389 (2010).
J.D. Norton, Stud. Hist. Phil. Mod. Phys. 42, 184 (2011).
E.R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem.,
Int. Ed. Engl. 46, 72 (2007), and references therein.

M. G. Raizen, Sci. Am. 304, 54 (2011).

Y. Tu, Proc. Natl. Acad. Sci. U.S.A. 105, 11737 (2008).
L. del Rio, J. Aberg, R. Renner, O. Dahlsten, and V.
Vedral, Nature (London) 474, 61 (2011).

K. H. Kim and H. Qian, Phys. Rev. E 75, 022102 (2007).
T. Sagawa and M. Ueda, Phys. Rev. Lett. 100, 080403
(2008).

T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602
(2009).

K. Jacobs, Phys. Rev. A 80, 012322 (2009).
F.J. Cao, M. Feito, and H. Touchette,
(Amsterdam) 388A, 113 (2009).

T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602
(2010).

M. Ponmurugan, Phys. Rev. E 82, 031129 (2010).

J.M. Horowitz and S. Vaikuntanathan, Phys. Rev. E 82,
061120 (2010).

S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M.
Sano, Nat. Phys. 6, 988 (2010).

D. Abreu and U. Seifert, Europhys. Lett. 94, 10001
(2011).

Physica

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]
[40]

[41]
[42]
[43]
[44]

[45]

[46]

030602-5

S. Vaikuntanathan and C. Jarzynski, Phys. Rev. E 83,
061120 (2011).

H. Dong, D.Z. Xu, C. Y. Cai, and C.P. Sun, Phys. Rev. E
83, 061108 (2011).

T. Sagawa, http://ptp.ipap.jp/link?PTP/127/1/.

K. Jacobs, Phys. Rev. E 86, 040106(R) (2012).

D. Abreu and U. Seifert, Phys. Rev. Lett. 108, 030601
(2012).

T. Sagawa and M. Ueda, Phys. Rev. Lett. 109, 180602
(2012).

W. H. Zurek, Nature (London) 341, 119 (1989).

J. Bub, Stud. Hist. Phil. Mod. Phys. 32, 569 (2001).

K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81,
1 (2009).

A. Hosoya, K. Maruyama, and Y. Shikano, Phys. Rev. E
84, 061117 (2011).

H.T. Quan, Y.D. Wang, Y.-X. Liu, C.P. Sun, and F. Nori,
Phys. Rev. Lett. 97, 180402 (2006).

M. Bier and F.J. Cao, Acta Phys. Pol. B 43, 889 (2012).
D. Mandal and C. Jarzynski, Proc. Natl. Acad. Sci. U.S.A.
109, 11641 (2012).

P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Phys. Rev. Lett. 110, 040601 (2013).

J.M. Horowitz, T. Sagawa, and J.M.R. Parrondo,
arXiv:1210.6448vl1.

A.C. Barato and U. Seifert, Europhys. Lett. 101, 60001
(2013).

N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (Elsevier, Amsterdam, 2007), Chap. V, 3rd ed.
Note the lack of a rate parameter analogous to vy in Eq. (2).
For the cooperative transition rates, we set this parameter
to unity by appropriately choosing the unit of time.

See Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.111.030602 for
detailed derivations of Eqgs. (10) and (11).


http://plato.stanford.edu/archives/fall2009/entries/information-entropy/
http://plato.stanford.edu/archives/fall2009/entries/information-entropy/
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1016/S1355-2198(98)00023-9
http://dx.doi.org/10.1016/S1355-2198(98)00023-9
http://dx.doi.org/10.1016/S1355-2198(98)00026-4
http://dx.doi.org/10.1016/S1355-2198(98)00026-4
http://dx.doi.org/10.1016/j.shpsb.2011.05.002
http://dx.doi.org/10.1002/anie.200504313
http://dx.doi.org/10.1002/anie.200504313
http://dx.doi.org/10.1038/scientificamerican0311-54
http://dx.doi.org/10.1073/pnas.0804641105
http://dx.doi.org/10.1038/nature10123
http://dx.doi.org/10.1103/PhysRevE.75.022102
http://dx.doi.org/10.1103/PhysRevLett.100.080403
http://dx.doi.org/10.1103/PhysRevLett.100.080403
http://dx.doi.org/10.1103/PhysRevLett.102.250602
http://dx.doi.org/10.1103/PhysRevLett.102.250602
http://dx.doi.org/10.1103/PhysRevA.80.012322
http://dx.doi.org/10.1016/j.physa.2008.10.006
http://dx.doi.org/10.1016/j.physa.2008.10.006
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevE.82.031129
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1209/0295-5075/94/10001
http://dx.doi.org/10.1209/0295-5075/94/10001
http://dx.doi.org/10.1103/PhysRevE.83.061120
http://dx.doi.org/10.1103/PhysRevE.83.061120
http://dx.doi.org/10.1103/PhysRevE.83.061108
http://dx.doi.org/10.1103/PhysRevE.83.061108
http://ptp.ipap.jp/link?PTP/127/1/
http://dx.doi.org/10.1103/PhysRevE.86.040106
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1038/341119a0
http://dx.doi.org/10.1016/S1355-2198(01)00023-5
http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1103/PhysRevE.84.061117
http://dx.doi.org/10.1103/PhysRevE.84.061117
http://dx.doi.org/10.1103/PhysRevLett.97.180402
http://dx.doi.org/10.5506/APhysPolB.43.889
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://arXiv.org/abs/1210.6448v1
http://dx.doi.org/10.1209/0295-5075/101/60001
http://dx.doi.org/10.1209/0295-5075/101/60001
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.030602
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.030602

