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I give a highly selective overview of the way statistical mechanics explains the microscopic origins of
the time-asymmetric evolution of macroscopic systems towards equilibrium and of first-order phase
transitions in equilibrium. These phenomena are emergent collective properties not discernible in the
behavior of individual atoms. They are given precise and elegant mathematical formulations when the
ratio between macroscopic and microscopic scales becomes very large. [S0034-6861(99)03402-9]
I. INTRODUCTION

Nature has a hierarchical structure, with time, length,
and energy scales ranging from the submicroscopic to
the supergalactic. Surprisingly, it is possible, and in
many cases essential, to discuss these levels
independently—quarks are irrelevant for understanding
protein folding and atoms are a distraction when study-
ing ocean currents. Nevertheless, it is a central lesson of
science, very successful in the past three-hundred years,
that there are no new fundamental laws, only new phe-
nomena, as one goes up the hierarchy. Thus arrows of
explanations between different levels always point from
smaller to larger scales, although the origin of higher-
level phenomena in the more fundamental lower-level
laws is often very far from transparent. (In addition
some of the dualities recently discovered in string theory
suggest possible arrows from the highest to the lowest
level, closing the loop.)

Statistical mechanics provides a framework for de-
scribing how well-defined higher-level patterns or be-
havior may result from the nondirected activity of a mul-
titude of interacting lower-level individual entities. The
subject was developed for, and has had its greatest suc-
cess so far in, relating mesoscopic and macroscopic ther-
mal phenomena to the microscopic world of atoms and
molecules. Fortunately, many important properties of
objects containing very many atoms—such as the boiling
and freezing of water—can be obtained from simplified
models of the structure of atoms and the laws governing
their interactions. Statistical mechanics therefore often
takes as its lowest-level starting point—and so will I in
this article—Feynman’s description of atoms (Feynman,
Leighton, and Sands, 1963) as ‘‘little particles that move
around in perpetual motion, attracting each other when
they are a little-distance apart, but repelling upon being
squeezed into one another.’’ Why this crude classical
picture (a refined version of that held by some ancient
Greek philosophers) gives predictions that are not only
qualitatively correct but in many cases also highly accu-
rate, is certainly far from clear to me—but that is an-
other story or article.

Statistical mechanics explains how macroscopic phe-
nomena originate in the cooperative behavior of these
‘‘little particles.’’ Some of the phenomena are simple ad-
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ditive effects of the actions of individual atoms, e.g., the
pressure exerted by a gas on the walls of its container,
while others are paradigms of emergent behavior, hav-
ing no direct counterpart in the properties or dynamics
of individual atoms. Particularly fascinating and impor-
tant examples of such emergent phenomena are the ir-
reversible approach to equilibrium and phase transitions
in equilibrium. Both of these would (or should) be as-
tonishing if they were not so familiar. Their microscopic
derivation and analysis forms the core of statistical me-
chanics. I will discuss the first of these in Sec. II and the
second in Sec. III.

For a more general survey of statistical mechanics in
the past hundred years, the reader is referred to the
other articles in this section as well as to my article in
the special volume celebrating the first-hundred years of
the Physical Review (Lebowitz, 1995a) where there are
also reprints of some of the original papers as well as
references to others. For some very recent reviews of
specific topics see Fisher (1998) and Brydges and Martin
(1999).

II. MICROSCOPIC ORIGINS OF IRREVERSIBLE
MACROSCOPIC BEHAVIOR

There are many conceptual and technical problems
encountered in going from a time-symmetric description
of the dynamics of atoms to a time-asymmetric descrip-
tion of the evolution of macroscopic systems. This in-
volves a change from Hamiltonian (or Schrödinger)
equations to hydrodynamical ones, e.g., the diffusion
equation. The problem of reconciling the latter with the
former became a central issue in physics during the last
part of the nineteenth century. It was also, in my opin-
ion, essentially resolved at that time, at least in the
framework of nonrelativistic classical mechanics. To
quote from Thomson’s (later Lord Kelvin) 1874 article
(Thomson, 1874), ‘‘The essence of Joule’s discovery is
the subjection of physical phenomena to dynamical law.
If, then, the motion of every particle of matter in the
universe were precisely reversed at any instant, the
course of nature would be simply reversed for ever after.
The bursting bubble of foam at the foot of a waterfall
would reunite and descend into the water... . Physical
processes, on the other hand, are irreversible: for ex-
ample, the friction of solids, conduction of heat, and dif-
fusion. Nevertheless, the principle of dissipation of [or-
4-6861/99/71(2)/346(12)/$17.40 ©1999 The American Physical Society
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ganized] energy is compatible with a molecular theory in
which each particle is subject to the laws of abstract dy-
namics.’’ Unfortunately there is still much confusion
about this issue among some scientists which is the rea-
son for my discussing it here.1

Formally the problem considered by Thomson is as
follows: The complete microscopic (or micro) state of an
isolated classical system of N particles is represented
by a point X in its phase space G , X
5(r1 ,p1 ,r2 ,p2 , . . . ,rN ,pN), ri and pi being the position
and momentum of the ith particle. The evolution is gov-
erned by Hamiltonian dynamics, which connects a mi-
crostate at some time t0, X(t0), to the microstate X(t)
at all other times t , 2`,t,` . Let X(t0) and X(t0
1t), with t positive, be two such microstates. Reversing
(physically or mathematically) all velocities at time t0
1t , we obtain a new microstate. If we now follow the
evolution for another interval t we find that the new
microstate at time t012t is just RX(t0), the microstate
X(t0) with all velocities reserved; RX5(r1 ,2p1 ,r2 ,
2p2 , . . . ,rN ,2pN). Hence, if there is an evolution [i.e.,
a trajectory X(t)] of a system in which some property of
the system described by some function f(X)5f(RX),
which increases as t increases, e.g., particle densities get
more uniform by diffusion, then there is also one in
which the density profile evolves in the opposite direc-
tion, since the density is the same for X and RX . So why
is one direction, identified with ‘‘entropy’’ increase by
the second ‘‘law,’’ common and the other never seen?

The explanation of this apparent paradox, due to
Thomson, Maxwell, and Boltzmann, which I will now
describe, shows that not only is there no conflict be-
tween reversible microscopic laws and irreversible mac-
roscopic behavior, but, as clearly pointed out by Boltz-
mann in his later writings,2 there are extremely strong,
albeit subtle, reasons to expect the latter from the

1This issue was the subject of a ‘‘round table’’ at the 20th
IUPAP International Conference on Statistical Physics held in
Paris, July 20–25, 1998. The panel consisted of M. Klein, who
gave a historical overview, myself, who presented the Boltz-
mannian point of view described in the text which follows, I.
Prigogine, who disagreed strongly with this point of view,
claiming that the explanation lies in some (to me abstruse) new
mathematical formalism developed by his group, and D.
Ruelle, who presented some recent developments in the dy-
namical systems approach to far from equilibrium stationary
states. The proceedings of that conference, which contain the
presentations of the panel as well as some of the latest devel-
opments in statistical mechanics, will appear in Physica A. (See
also Lebowitz, 1993a; 1993b; 1994; 1995b.) For a clear defense
of Boltzmann’s views against some recent attacks see Bricmont
(1996). This article first appeared in the publication of the Bel-
gian Physical Society, Physicalia Magazine 17, 159 in 1995,
where it is followed by an exchange between Prigogine and
Bricmont.

2Boltzmann’s early writings on the subject are sometimes un-
clear, wrong, and even contradictory. His later writings, how-
ever, are superbly clear and right on the money (even if a bit
verbose for Maxwell’s taste). I strongly recommend the refer-
ences cited at the end.
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former. These involve several interrelated ingredients
which together provide the sharp distinction between
microscopic and macroscopic variables required for the
emergence of definite time-asymmetric behavior in the
evolution of the latter despite the total absence of such
asymmetry in the dynamics of individual atoms. They
are: (a) the great disparity between microscopic and
macroscopic scales, (b) the fact that events are, as put by
Boltzmann, determined not only by differential equa-
tions, but also by initial conditions, and (c) the use of
probabilistic reasoning: it is not every microscopic state
of a macroscopic system that will evolve in accordance
with the second law, but only the ‘‘majority’’ of cases—a
majority which however becomes so overwhelming
when the number of atoms in the system becomes very
large that irreversible behavior becomes a near cer-
tainty. (The characterization of the set whose ‘‘major-
ity’’ we are describing will be discussed later.)

To see how the explanation works let us denote by M
the macrostate of a macroscopic system. For a system
containing N atoms in a box V , the microstate X is a
point in the 6N-dimensional phase space G while M is a
much cruder description, e.g., the specification, to within
a given accuracy, of the energy of the system and of the
number of particles in each half of the box. [A more
refined (hydrodynamical) description would divide V
into K cells, where K is large, but still K!N , and specify
the number of particles and energy in each cell, again
with some tolerance.] Thus, while M is determined by X,
there are many X which correspond to the same M . We
will call GM the region in G consisting of all microstates
X corresponding to a given macrostate M and take as a
measure of the ‘‘number’’ of microstates corresponding
to a subset A of GM to be equal to the 6N-dimensional
Liouville volume of A normalized by the volume of GM ,
denoted by uGMu: uGMu5*GM

P i51
N dridpi . (This corre-

sponds to the classical limit of ‘‘counting’’ states in quan-
tum mechanics.)

Consider now a situation in which there is initially a
wall confining a dilute gas of N atoms to the left half of
the box V . When the wall is removed at time ta , the
phase-space volume available to the system is fantasti-
cally enlarged, roughly by a factor of 2N. (If the system
contains one mole of gas in a container then the volume
ratio of the unconstrained region to the constrained re-
gion is of order 1010 20

.) This region will contain new
macrostates with phase-space volumes very large com-
pared to the initial phase-space volume available to the
system. We can then expect (in the absence of any ob-
struction, such as a hidden conservation law) that as the
phase point X evolves under the unconstrained dynam-
ics it will with very high ‘‘probability’’ enter the newly
available regions of phase space and thus find itself in a
succession of new macrostates M for which uGMu is in-
creasing. This will continue until the system reaches its
unconstrained macroscopic equilibrium state, Meq , that
is, until X(t) reaches GMeq

, corresponding to approxi-
mately half the particles in each half of the box, say
within an interval ( 1

2 2e , 1
2 1e), e!1, since in fact

uGMeq
u/uSEu.1, where uSEu is the total phase-space vol-
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ume available under the energy constraint. After that
time we can expect only small fluctuations about the
value 1

2, well within the precision e , typical fluctuations
being of the order of the square root of the number of
particles involved.

To extend the above observation to more general situ-
ations, Boltzmann associated with each microscopic
state X of a macroscopic system, be it gas, fluid, or solid,
a number SB , given, up to multiplicative and additive
constants (in particular we set Boltzmann’s constant,
kB , equal to unity), by

SB~X !5loguGM~X !u. (2.1)

A crucial observation made by Boltzmann was that
when XPMeq then SB(X) agrees (up to terms negli-
gible in the size of the system) with the thermodynamic
entropy of Clausius and thus provides a microscopic
definition of this macroscopically defined, operationally
measurable (à la Carnot), extensive property of macro-
scopic systems in equilibrium. Having made this connec-
tion Boltzmann found it natural also to use Eq. (2.1) to
define the entropy for a macroscopic system not in equi-
librium and thus to explain (in agreement with the ideas
of Maxwell and Thomson) the observation, embodied in
the second law of thermodynamics, that when a con-
straint is lifted, an isolated macroscopic system will
evolve toward a state with greater entropy,3 i.e., that SB
will typically increase in a way which explains and de-
scribes qualitatively the evolution towards equilibrium
of macroscopic systems.

Typical, as used here, means that the set of mi-
crostates corresponding to a given macrostate M for
which the evolution leads to a macroscopic decrease in
the Boltzmann entropy during some fixed time period t ,
occupies a subset of GM whose Liouville volume is a
fraction of uGMu which goes very rapidly (exponentially)
to zero as the number of atoms in the system increases.

It is this very large number of degrees of freedom
involved in the specification of macroscopic properties
that distinguishes macroscopic irreversibility from the
weak approach to equilibrium of ensembles for systems
with good ergodic properties (Lebowitz, 1993a, 1993b,
1994, 1995b). While the former is manifested in a typical
evolution of a single macroscopic system, the latter,
which is also present in chaotic systems with but a few
degrees of freedom, e.g., two hard spheres in a box, does
not correspond to any appearance of time asymmetry in
the evolution of an individual system. On the other
hand, because of the exponential increase of the phase-

3When M specifies a state of local equilibrium, SB(X) agrees
up to negligible terms, with the ‘‘hydrodynamic entropy.’’ For
systems far from equilibrium the appropriate definition of M
and thus of SB is more problematical. For a dilute gas in which
M is specified by the density f(r,v) of atoms in the six-
dimensional position and velocity space SB(X)
52*f(r,v)logf(r,v)drdv. This identification is, however, in-
valid when the potential energy is not negligible; cf., Jaynes
(1971). Following Penrose (1970), we shall call SB(X) the
Boltzmann entropy of the macrostate M5M(X).
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space volume, even a system with only a few hundred
particles (commonly used in molecular-dynamics com-
puter simulations) will, when started in a nonequilib-
rium ‘‘macrostate’’ M , with ‘‘random’’ XPGM , appear
to behave like a macroscopic system.4 This will be so
even when integer arithmetic is used in the simulations
so that the system behaves as a truly isolated one; when
its velocities are reversed the system retraces its steps
until it comes back to the initial state (with reversed
velocities), after which it again proceeds (up to very long
Poincare recurrence times) in the typical way (Levesque
and Verlet, 1993; see also Nadiga, Broadwell, and Stur-
tevant, 1989).

Maxwell makes clear the importance of the scale
separation when he writes (Maxwell, 1878): ‘‘the second
law is drawn from our experience of bodies consisting of
an immense number of molecules. . . . it is continually
being violated, . . . , in any sufficiently small group of
molecules . . . . As the number . . . is increased . . . the
probability of a measurable variation . . . may be re-
garded as practically an impossibility.’’ We might take as
a summary of the discussions in the late part of the last
century the statement by Gibbs (Gibbs, 1875), quoted
by Boltzmann (in a German translation) on the cover of
his book Lectures on Gas Theory II: ‘‘In other words,
the impossibility of an uncompensated decrease of en-
tropy seems to be reduced to an improbability.’’

As already noted, typical here refers to a measure
which assigns (at least approximately) equal weights to
the different microstates consistent with the ‘‘initial’’
macrostate M . (This is also what was meant earlier by
the ‘‘random’’ choice of an initial XPGM in the com-
puter simulations.) In fact, any meaningful statement
about probable or improbable behavior of a physical
system has to refer to some agreed upon measure (prob-
ability distribution). It is, however, this use of probabili-
ties (whose justification is beyond the reach of math-
ematical theorems) and particularly of the notion of
typicality for explaining the origin of the apparently de-
terministic second law which was most difficult for many
of Boltzmann’s contemporaries, and even for some
people today, to accept (Lebowtiz, 1993a, 1993b, 1994,
1995b; Bricmont, 1996). This was clearly faced by Bolt-
zmann when he wrote, in his second reply to Zermelo in
1897 (Boltzmann, 1897) ‘‘The applicability of probability
theory to a particular case cannot of course be proved
rigorously. . . . Despite this, every insurance company
relies on probability theory. . . . It is even more valid
[here], on account of the huge number of molecules in a
cubic millimetre . . . . The assumption that these rare
cases are not observed in nature is not strictly provable
(nor is the entire mechanical picture itself) but in view
of what has been said it is so natural and obvious, and so
much in agreement with all experience with probabilities

4After all the likelihood of hitting, in the course of say one-
thousand tries, on something which has probability of order
22N is, for all practical purposes, the same, whether N is a
hundred or 1023.
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. . . [that] . . . It is completely incomprehensible to me
how anyone can see a refutation of the applicability of
probability theory in the fact that some other argument
shows that exceptions must occur now and then over a
period of eons of time; for probability theory itself
teaches just the same thing.’’

It should be noted here that an important ingredient
in the above analysis is the constancy in time, of the
Liouville volume of sets in the phase space G as they
evolve under the Hamiltonian dynamics (Liouville’s
Theorem). Without this invariance the connection be-
tween phase-space volume and probability would be im-
possible or at least very problematic. We also note that,
in contrast to SB(X), the Gibbs entropy SG(m),

SG~m!52E mlogmdX , (2.2)

is defined not for individual microstates but for statisti-
cal ensembles or probability distributions m . For equilib-
rium ensembles SG(meq);loguSEu;SB(X), for XPMeq ,
up to terms negligible in the size of the system. How-
ever, unlike SB , SG does not change in time even for
time-dependent ensembles describing (isolated) systems
not in equilibrium. Hence the relevant entropy for un-
derstanding the time evolution of macroscopic systems is
SB and not SG .

A. Initial conditions

Once we accept the statistical explanation of why
macroscopic systems evolve in a manner that makes SB
increase with time, there remains the nagging problem
(of which Boltzmann was well aware) of what we mean
by ‘‘with time’’: since the microscopic dynamical laws
are symmetric, the two directions of the time variable
are a priori equivalent and thus must remain so a poste-
riori.

Put another way: why can we use phase-space argu-
ments (or time-asymmetric diffusion-type equations) to
predict the behavior of an isolated system in a nonequi-
librium macrostate Mb at some time tb , e.g., a metal bar
with a nonuniform temperature, in the future, i.e., for t
.tb , but not in the past, i.e. for t,tb? After all, if the
macrostate M is invariant under velocity reversal of all
the atoms, then the analysis would appear to apply
equally to tb1t and tb2t . A plausible answer to this
question is to assume that the nonequilibrium state of
the metal bar Mb had its origin in an even more nonuni-
form macrostate Ma , prepared by some experimentalist
at some earlier time ta,tb and that for states thus pre-
pared we can apply our (approximately) equal a priori
probability of microstates argument, i.e., we can assume
its validity at time ta . But what about events on the sun
or in a supernova explosion where there are no experi-
mentalists? And what, for that matter, is so special
about the status of the experimentalist? Isn’t he or she
part of the physical universe?

Before trying to answer the last set of ‘‘big’’ questions
let us consider whether the assignment of equal prob-
abilities for XPGMa

at ta permits the use of an equal
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
probability distribution of XPGMb
at time tb for predict-

ing future macrostates: in a situation where the system is
isolated for t.ta . Note that the microstates in GMb

,
which have come from GMa

through the time evolution
during the time interval from ta to tb , make up only a
very small fraction of the volume of GMb

, call it Gab .
Thus we have to show that the overwhelming majority
of points in Gab (with respect to Liouville measure on
Gab , which is the same as Liouville measure on GMa

)
have future macrostates like those typical of Gb—while
still being very special and unrepresentative of GMb

as
far as their past macrostates are concerned.5 This prop-
erty is explicitly proven by Lanford (1981) in his deriva-
tion of the Boltzmann equation (for short times), and is
part of the derivation of hydrodynamic equations (Leb-
owitz, Presutti, and Spohn, 1988; De Masi and Presutti,
1991; Spohn, 1991; Esposito and Marra, 1994; Landim
and Kipnis, 1998; see also Lebowitz and Spohn, 1983.)

To see intuitively the origin of this property we note
that for systems with realistic interactions the domain
Gab will be so convoluted as to appear uniformly
smeared out in GMb

. It is therefore reasonable that the
future behavior of the system, as far as macrostates go,
will be unaffected by their past history. It would of
course be nice to prove this in all cases, e.g., justifying
(for practical purposes) the factorization or ‘‘Stosszahl-
ansatz’’ assumed by Boltzmann in deriving his dilute-gas
kinetic equation for all times t.ta , not only for the
short times proven by Lanford. Our mathematical abili-
ties are, however, equal to this task only in very simple
situations as we shall see below. This should, however,
be enough to convince a ‘‘reasonable’’ person.

The large number of atoms present in a macroscopic
system plus the chaotic nature of the dynamics also ex-
plains why it is so difficult, essentially impossible (except
in some special cases such as experiments of the spin-
echo type, and then only for a limited time), for a clever
experimentalist to deliberately put such a system in a
microstate which will lead it to evolve contrary to the
second law. Such microstates certainly exist—just start
with a nonuniform temperature, let it evolve for a while,
then reverse all velocities. In fact, they are readily cre-
ated in the computer simulations with no roundoff er-
rors as discussed earlier (Levesque and Verlet, 1993; see
also Nadiga, Broadwell, and Sturtevant, 1989). To quote
again from Thomson’s article (Thomson, 1984): ‘‘If we
allowed this equalization to proceed for a certain time,
and then reversed the motions of all the molecules, we
would observe a disequalization. However, if the num-
ber of molecules is very large, as it is in a gas, any slight
deviation from absolute precision in the reversal will
greatly shorten the time during which disequalization

5We are considering here the case where the macrostate
M(t), at time t , determines M(t8) for t8.t . There are of
course situations where M(t8) depends also (weakly or even
strongly) on the history of M(t) in some time interval prior to
t8, e.g., in materials with memory.
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occurs.’’ In addition, the effect of unavoidable small out-
side influences, which are unimportant for the evolution
of macrostates in which uGMu is increasing, will greatly
destabilize evolution in the opposite direction when the
trajectory has to be aimed at a very small region of the
phase space (Lebowitz, 1993a, 1993b, 1994, 1995b).

Let us return now to the big question posed earlier:
what is special about ta compared to tb in a world with
symmetric laws? Put differently, where ultimately do ini-
tial conditions such as those assumed at ta come from?
In thinking about this we are led more or less inevitably
to cosmological considerations and to postulate an initial
‘‘macrostate of the universe’’ having a very small Boltz-
mann entropy at some time t0. To again quote Boltz-
mann (1896): ‘‘That in nature the transition from a prob-
able to an improbable state does not take place as often
as the converse, can be explained by assuming a very
improbable [small SB] initial [macro]state of the entire
universe surrounding us. This is a reasonable assump-
tion to make, since it enables us to explain the facts of
experience, and one should not expect to be able to de-
duce it from anything more fundamental.’’ We do not,
however, have to assume a very special initial microstate
X , and this is a very important aspect of our consider-
ations. As Boltzmann further writes: ‘‘we do not have to
assume a special type of initial condition in order to give
a mechanical proof of the second law, if we are willing to
accept a statistical viewpoint . . . if the initial state is
chosen at random . . . entropy is almost certain to in-
crease.’’ All that is necessary to assume is a far from
equilibrium initial macrostate and this is in accord with
all cosmological and other independent evidence.

Feynman (1967) clearly agrees with this when he says,
‘‘it is necessary to add to the physical laws the hypoth-
esis that in the past the universe was more ordered, in
the technical sense, than it is today . . . to make an un-
derstanding of the irreversibility.’’ More recently the
same point was made very clearly by Penrose (1990) in
connection with the ‘‘big-bang’’ cosmology. Penrose, un-
like Boltzmann, believes that we should search for a
more fundamental theory that will also account for the
initial conditions. Meanwhile he takes for the initial
macrostate of the universe the smooth energy-density
state prevalent soon after the big bang. Whether this is
the appropriate initial state or not, it captures an essen-
tial fact about our universe. Gravity, being purely attrac-
tive and long range, is unlike any of the other natural
forces. When there is enough matter/energy around, it
completely overcomes the tendency towards uniformiza-
tion observed in ordinary objects at high energy densi-
ties or temperatures. Hence, in a universe dominated,
like ours, by gravity, a uniform density corresponds to a
state of very low entropy, or phase-space volume, for a
given total energy.

The local ‘‘order’’ or low entropy we see around us
(and elsewhere)—from complex molecules to trees to
the brains of experimentalists preparing macrostates—is
perfectly consistent with (and possibly even a conse-
quence of) the initial macrostate of the universe. The
value of SB of the present clumpy macrostate of the
Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999
universe, consisting of planets, stars, galaxies, and black
holes, is much much larger than what it was in the initial
state and also quite far away from its equilibrium value.
The ‘‘natural’’ or ‘‘equilibrium’’ state of the universe is,
according to Penrose, one with all matter and energy
collapsed into one big black hole which would have a
phase-space volume some 1010120

times that of the initial
macrostate. (So we may still have a long way to go.)

B. Quantitative considerations

Let me now describe briefly the very interesting work,
still in progress, in which one rigorously derives time-
asymmetric hydrodynamic equations from reversible mi-
croscopic laws (Lebowitz, Presutti, and Spohn, 1988; De
Masi and Presutti, 1991; Spohn, 1991; Esposito and
Marra, 1994; Landim and Kipnis, 1998). While many
qualitative features of irreversible macroscopic behavior
depend very little on the positivity of Lyapunov expo-
nents, ergodicity, or mixing properties of the micro-
scopic dynamics, such properties are important for the
quantitative description of the macroscopic evolution,
i.e., for the derivation of time-asymmetric autonomous
equations of hydrodynamic type. The existence and
form of such equations depend on the instabilities of
microscopic trajectories induced by chaotic dynamics.
When the chaoticity can be proven to be strong enough
(and of the right form) such equations can be derived
rigorously from the reversible microscopic dynamics by
taking limits in which the ratio of macroscopic to micro-
scopic scales goes to infinity. Using the law of large num-
bers one shows that these equations describe the behav-
ior of almost all individual systems in the ensemble, not
just that of ensemble averages, i.e., that the dispersion
goes to zero in the scaling limit. The equations also hold,
to a high accuracy, when the macro/micro ratio is finite
but very large.

A simple example in which this can be worked out in
detail is the periodic Lorentz gas (or Sinai billiard). This
consists of a macroscopic number of noninteracting par-
ticles moving among a periodic array of fixed convex
scatterers, arranged in the plane in such a way that there
is a maximum distance a particle can travel between col-
lisions. The chaotic nature of the microscopic dynamics,
which leads to an approximately isotropic local distribu-
tion of velocities, is directly responsible for the existence
of a simple autonomous deterministic description, via a
diffusion equation, for the macroscopic particle profiles
of this system. A second example is a system of hard
spheres at very low densities for which the Boltzmann
equation has been shown to describe the evolution of
the density in the six-dimensional position and velocity
space (at least for short times) (Lanford, 1981). I use
these examples, despite their highly idealized nature, be-
cause here all the mathematical i’s have been dotted.
They thus show ipso facto, in a way that should convince
even (as Mark Kac put it) an ‘‘unreasonable’’ person,
not only that there is no conflict between reversible mi-
croscopic and irreversible macroscopic behavior but also
that, for essentially all initial microscopic states consistent
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with a given nonequilibrium macroscopic state, the latter
follows from the former—in complete accord with Bolt-
zmann’s ideas. Yet the debate goes on.

III. PHASE TRANSITIONS IN EQUILIBRIUM TRANSITIONS
IN EQUILIBRIUM SYSTEMS

Information about the equilibrium phases of a homo-
geneous macroscopic system is conveniently encoded in
its phase diagram. Phase diagrams can be very compli-
cated but their essence is already present in the familiar,
simplified two-dimensional diagram for a one-
component system like water or argon. This has axes
marked by the temperature T and pressure p , and gives
the decomposition of this thermodynamic parameter
space into different regions: the blank regions generally
correspond to parameter values in which there is a
unique pure phase, gas, liquid, or solid, while the lines
between these regions represent values of the param-
eters at which two pure phases can exist. At the triple
point, the system can exist in any of three pure phases.

In general, a macroscopic system with a given Hamil-
tonian is said to undergo or be at a first-order phase
transition when the temperature and pressure or, more
generally, the temperature and chemical potentials do
not uniquely specify its homogeneous equilibrium state.
The different properties of the pure phases coexisting at
such a transition manifest themselves as discontinuities
in certain observables, e.g., a discontinuity in the density
as a function of temperature at the boiling point. On the
other hand, when one moves between two points in the
thermodynamic parameter space along a path which
does not intersect any coexistence line the properties of
the system change smoothly.

I will now sketch a mathematically precise formula-
tion of what is meant by coexistence of phases, and give
some rigorous results about phase diagrams. This is a
beautiful part of the developments in statistical mechan-
ics during this century, it is also one which is essential to
a full understanding of the singular behavior of macro-
scopic systems at phase transitions, e.g., the discontinu-
ity in the density mentioned earlier. These singularities
can only be captured precisely through the infinite vol-
ume or thermodynamic limit; a formal mathematical
procedure in which the size of the system becomes infi-
nite while the number of particles and energy per unit
volume (or the chemical potential and temperature) stay
fixed. While at first sight entirely unrealistic, such a limit
represents an idealization of a macroscopic physical sys-
tem whose spatial extension, although finite, is very
large on the microscopic scale of interparticle distances
or interactions. The advantage of this idealization is that
boundary and finite-size effects present in real systems,
which are frequently irrelevant to the phenomena of in-
terest, are eliminated in the thermodynamic limit. As
Robert Griffiths once put it, every experimentalist im-
plicitly takes such a limit when he or she reports the
results of a measurement, like the magnetic susceptibil-
ity, without giving the size and shape of the sample.
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My starting point here is the Gibbs formalism for cal-
culating equilibrium properties of macroscopic systems
as ensemble averages of functions of the microscopic
state of the system. While the use of ensembles was an-
ticipated by Boltzmann (Boltzmann, 1884; Broda, 1973;
Klein, 1973; Flamn, 1973) and independently discovered
by Einstein, it was Gibbs who, by his brilliant systematic
treatment of statistical ensembles, i.e., probability mea-
sures on the phase space, developed statistical mechan-
ics into a useful elegant tool for relating, not only typical
but also fluctuating behavior in equilibrium systems, to
microscopic Hamiltonians. In a really remarkable way
the formalism has survived essentially intact the transi-
tion to quantum mechanics. Here, however, I restrict
myself to classical mechanics.6

As in Sec. II, the microscopic state of a system of N
particles in a spatial domain V is given by a point X in
the phase space, X5(r1 ,p1 , . . . ,rN ,pN). We are gener-
ally interested in the values of suitable sum functions
of X : those which can be written as a sum of terms in-
volving only a fixed finite number of particles, e.g.,
F(1)(X)5(f1(ri ,pi), F(2)(X)5( i ,jf2(ri ,pi ,rj ,pj) (with
f2(ri ,pi ,rj ,pj)→0 when uri2rju→`), etc. (Familiar ex-
amples are the kinetic and potential energies of the sys-
tem.) Typical macroscopic properties then correspond to
sum functions which, when divided by the volume uVu,
are essentially constant on the energy surface SE of a
macroscopic system. Consequently, if we take the ther-
modynamic limit, defined by letting N→` , E→` , and
uVu→` in such a way that N/uVu→r and E/uVu→e , then
these properties assume deterministic values, i.e., their
variances go to zero. They also become (within limits)
independent of the shape of V and the nature of the
boundaries of V . (As a less familiar concrete example,
let f1(ri ,pi)5@(1/2m)pi

2#2, the square of the kinetic en-
ergy of the ith particle. Then, in the thermodynamic
limit, uVu21F1(X)→ 9

4 rT2(e ,r) for typical X , with T the
temperature of the system given by @(]/]e)s(e ,r)#21,
with s(e ,r) the thermodynamic limit of uVu21loguSEu.)

It is this property of sum functions which makes
meaningful the use of ensembles to describe the behav-
ior of individual macroscopic systems as in Sec. II. In
particular it assures the ‘‘equivalence’’ of ensembles: mi-
crocanonical, canonical, grand canonical, pressure, etc.
for computing equilibrium properties. The use of the
thermodynamic limit actually extends this equivalence,
in that part of the phase diagram where the system has a
unique phase, to the probability distribution of fluctuat-

6It is clearly impossible to cite here all or even a significant
fraction of all the good reviews and textbooks on the subject.
The reader would do well however to browse among the origi-
nal works (Thomson, 1874; Penrose, 1970) and in particular
read Gibbs (1960) beautiful book. A partial list of books and
reviews with a mathematical treatment of Gibbs measures and
phase transitions which contain the results presented follows:
Fisher (1964); Ruelle (1969); Griffiths (1972); Baxter (1982);
Sinai (1982); Georgii (1988); Fernández, Fröhlich, and Sokal
(1992); Simon (1993).
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ing quantities, e.g., the correlation functions. These are
translation invariant and independent of boundary con-
ditions in the thermodynamic limit. (See later for what
happens on coexistence lines.)

To actually obtain the phase diagram of a system with
a given Hamiltonian is a formidable mathematical task.
It has still not been solved even for such simple con-
tinuum systems as particles interacting via a Lennard-
Jones pair potential. I will therefore postpone further
discussion of continuum systems until later and switch
now to lattice systems for which such results are avail-
able. These come from a variety of techniques some of
which, I shall not be able to discuss here at all.

A. Lattice systems

Lattice systems can be considered approximations to
the continuum particle systems (the cell theory of fluids)
or as representations of spins in magnetic systems (Lee
and Yang, 1952; Yang and Lee, 1952). They also arise as
models of a variety of nonthermal physical phenomena
(Liggett, 1985; Vicsek, 1989; Meakin, 1998). I shall con-
sider for simplicity the simple cubic lattice Zd, in d di-
mensions. At each site xPZd there is a spin variable
S(x) which can take k discrete values, S(x)
5j1 , . . . ,jk . The configuration of the system in a region
V,Zd containing uVu sites, is denoted by SV , it is one of
the k uVu points in the set V5$j1 , . . . ,jk%V. There is an
interaction energy U which is a sum of internal interac-
tions assumed to be translation invariant and boundary
terms.

To be specific, consider the Ising model, S(x)561,
with uniform magnetic field h and pair interactions u(r).
The energy of a configuration SV is given by

U~SVuS̄Vc!52h (
xPV

S~x!

2
1
2 (

x,yPV
( u~x2y!S~x!S~y!

2 (
xPV H (

yPVc
u~x2y!S̄~y!J S~x!. (3.1)

In Eq. (3.1) S̄(y) denotes the preassigned value of the
spin variables at sites y in Vc, the complement (or out-
side) of V , which act as boundary conditions (BC). They
contribute, through the last sum in Eq. (3.1), an energy
term which is proportional to the surface area of V
whenever the interactions have finite range or decay fast
enough to be summable, e.g., u(r) decays faster than
uru2(d1e), e.0. We can also consider periodic or free
BC: the latter corresponds to dropping the last term in
Eq. (3.1). We will indicate all possible boundary condi-
tions by the letter b ; sometimes setting b5p or b5f for
periodic or free BC.

When the system is in equilibrium at temperature T ,
the probability of finding the configuration SV is given
by the Gibbs formula (see footnote 6)
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mV~SVub !5
1

Z~J;b ,V !
exp@2bU~SVub !# , (3.2)

where b215T , and Z is the partition function,

Z~J;b ,V !5(
SV

exp@2bU~SVub !# . (3.3)

The sum in Eq. (3.3) is over all possible microscopic
configurations of the system in V and we have used J to
refer to all the parameters entering Z through the inter-
actions (including b) while b represents the BC specified
by S̄Vc, p , or f . The Gibbs free-energy density of the
finite system is given by

C~J;b ,V ![uVu21logZ~J;b ,V !. (3.4)

To get an intrinsic free energy, which determines the
bulk properties of a macroscopic system, one needs to
let the size of V become infinite while keeping J fixed in
such a way that the ratio of surface area to volume goes
to zero, i.e., to take the thermodynamic limit, V↗Zd, in
Eq. (3.4).

It is one of the most important rigorous results of sta-
tistical mechanics, to whose proof many have contrib-
uted (see Fisher, 1964; Ruelle, 1969; Griffiths, 1972) that
when the interactions decay in a summable way, the
limit V↗Zd of Eq. (3.5) in fact exists and is independent
of the boundary condition b:

C~J;b ,V !→C~J!. (3.5)

We shall call C(J) the thermodynamic free-energy den-
sity. It has all the convexity properties of the free energy
postulated by macroscopic thermodynamics as a stability
requirement on the equilibrium state. (For Coulomb in-
teractions see below and Brydges and Martin, 1998.)

We now note that as long as V is finite, Z(J;b ,V) is a
finite sum of positive terms and so C(J;b ,V) is a
smooth function of the parameters J (including b and h)
entering the interaction. This is also true for the prob-
abilities of the spin configuration in a set A,V ,
mV(SAub) obtained from the Gibbs measure Eq. (3.2) or
equivalently the correlation functions. In other words,
once b is specified, all equilibrium properties of the fi-
nite system vary smoothly with the parameters J. The
only way to get nonsmooth behavior of the free energy
or nonuniqueness of the measure is to take the thermo-
dynamic limit. In that limit the b-independent C(J) can
indeed have singularities. Similarly, the measure defined
by a specification of the probabilities in all fixed regions
A,Zd, m̂(SAub̂), can depend on the way in which the
thermodynamic limit was taken and in particular on the
boundary conditions at ‘‘infinity,’’ here denoted sym-
bolically by b̂ (Fisher, 1964; Ruelle, 1969; Griffiths, 1972;
Baxter, 1982; Sinai, 1982; Georgii, 1988; Fernández,
Fröhlich, and Sokal, 1992; Simon, 1993).

To see this explicitly, let us specialize even further and
consider isotropic nearest neighbor (NN) interactions:

u~r!5H J , for uru 5 1

0, otherwise (3.6)
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with J constant. For this model the effect of the spins
outside V , S̄Vc, is just to produce an additional magnetic
fields hb(x), for x on the inner boundary of V . The
finite-volume free energy C(J1 ,J2 ;b ,V), where bh5J1
and bJ5J2, is then clearly real analytic for all J1 ,J2P
(2` ,`). The phase diagram of this system after taking
the thermodynamic limit is given in Fig. 1 where we
have used axes labeled by h/uJu and J2

21. Note that J2
.0 (J2,0) corresponds to ferromagnetic (antiferro-
magnetic) interactions.

For the ferromagnetic Ising model, corresponding to
the upper half of this figure, almost everything is known
rigorously. In the region where the magnetic field h is
not zero, both C(J1 ,J2) and the infinite-volume Gibbs
measure, i.e., the m̂(SAub̂), are independent of the BC
and are real analytic in J1 and J2. The analyticity results
follow from the remarkable Lee-Yang theorem (Lee
and Yang, 1952; Yang and Lee, 1952) which states that
for J2>0 fixed, and b5p or f , the only singularities of
C(J1 ,J2 :b ,V) (corresponding to zeros of the partition
function) in the complex J1 plane occur on the line
ReJ150. Uniqueness of m̂ follows (Lebowitz and
Martin-Löf, 1972) from an argument combining the Lee-
Yang theorem with the equally remarkable Fortuin,
Kasteleyn, and Ginibre inequalities (Fortuin, Kasteleyn,
and Ginibre, 1971).

Furthermore, for small values of uJ2u, C is analytic in
both J1 and J2 and the measure m̂ is unique. This fact,
which holds for general interactions at high tempera-
tures, follows either from the existence of a convergent
high-temperature expansion for C and for the correla-
tion functions in powers of b or from the Dobrushin-
Shlosman uniqueness criterion (Dobrushin and Shlos-
man, 1985a, 1985b). On the other hand, for J150 and J2
large enough there is the ingenious argument due to
Peierls (1936), made fully rigorous by Dobrushin and by
Griffiths (Dobrushin, 1968; Griffiths, 1972), which

FIG. 1. Schematic phase diagram of the nearest-neighbor Ising
model on a simple cubic lattice in dimensions d>2. The
ground states of the antiferromagnetic system are degenerate
for uhu<2uJud . For d51, Tc50.
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proves that in dimension d>2, the probability that the
spin S(x) has value 11 is different for ‘‘b51’’ and ‘‘b
52 ,’’ corresponding to BC for which S̄(y)511, or
S̄(y)521, respectively, for all y outside V . The crucial
point of the Peierls argument is that this difference per-
sists no matter how large V is: the probability being
greater (less) than 1

2 for 1 (2) BC. This implies that the
average value of the magnetization is positive at low
temperatures for 1 BC, even when h50, independent
of V . By symmetry the opposite is true for 2 BC. Thus
for J150 and J2 large, the limiting Gibbs measures m̂1

and m̂2 (obtained with 1 or 2 BC), which can be shown
to exist, are different. It is this nonuniqueness of the
Gibbs measure m̂ , for specified J, which corresponds to
the coexistence of phases in macroscopic systems.

The expected value of S(x) in the ‘‘1 state,’’ denoted
by m* (b), is independent of x and is equal to the value
of the average of the magnetization in all of V obtained
when one lets h→0 from the positive side after taking
the thermodynamic limit. (Remember that m̂ and hence
the magnetization, m(b ,h), is independent of BC for h
Þ0). It can be further shown, using the second Griffiths
inequality that m* (b) is monotone increasing in b
(Griffiths, 1967; Kelley and Sherman, 1969). Hence
there is, for a given J2.0, a unique critical temperature
Tc , such that for h50 and T,Tc , m* (b).0 while for
T.Tc , m* (b)50. Tc depends on the dimension d ,
Tc(d).0 for d>2, Tc(1)50.

There is a unique infinite-volume Gibbs measure for
T>Tc and (essentially) only two, m̂1 ands m̂2 , extremal,
translation-invariant Gibbs measures for T,Tc . The lat-
ter statement means that every infinite-volume
translation-invariant Gibbs measure m̂b is a convex com-
bination of m̂1 and m̂2 , i.e.,

m̂~SAub̂ !5am̂1~SA!1~12a!m̂2~SA!, (3.7)

for some a , 0<a<1. For periodic or free BC a5 1
2 by

symmetry, so that m̂p5m̂ f5
1
2 (m̂11m̂2). This means

physically that when V is large the system with ‘‘sym-
metric’’ BC will, with equal probability, be found in ei-
ther the ‘‘1 state’’ or in the opposite ‘‘2 state.’’ Of
course as long as the system is finite it will ‘‘fluctuate’’
between these two pure phases, but the ‘‘relaxation
times’’ for such fluctuations grows (for any reasonable
dynamics) exponentially in uVu, so the either/or descrip-
tion correctly captures the behavior of macroscopic sys-
tems. This phenomena is the paradigm of spontaneous
symmetry breaking which occurs in many physical situa-
tions.

The fact that free bc lead to translation-invariant mea-
sures is a consequence of the Griffiths inequalities (Grif-
fiths, 1967; Kelley and Sherman, 1969). There also exist
nontranslation-invariant m̂ for temperatures below the
‘‘roughening’’ temperature TR<Tc . These are obtained
as the thermodynamic limit of systems with ‘‘Dobrushin
BC’’ favoring an interface between the 1 and 2 phase.
Dobrushin (1972) proved that TR.0 in d>3 while
Aizenman (1979; 1980) showed that long-wavelength
fluctuations destroy these states in two dimensions at all
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T.0, i.e., TR50 in d52. Using inequalities van
Beijeren (1975; 1977) showed that TR(d)>Tc(d21).

We also know that at Tc , m* (bc)50 in d52 and for
d>4; the former from Onsager’s (1944) exact solution
(see also Fröhlich and Spencer, 1981) and the latter
from general results about mean field-like behavior for
d.4 (Aizenman, 1981) (with logarithmic corrections for
d54). Of course one expects continuity of m* (b) for
this system also in d53, but this is not yet proven. As
the temperature is lowered, the 1 and 2 states come to
resemble the two ground states corresponding to all
spins up or all spins down, and there is a convergent
low-temperature ‘‘cluster expansion,’’ in which the low-
order terms correspond to excitations consisting of small
isolated domains of down (up) spins in the 1 (2)
phase.

The absence of any homogeneous pure phases other
than m̂1 and m̂2 , i.e., the validity of Eq. (3.7) for all
translation-invariant m̂, is only proven subject to the
condition that the average energy is a continuous func-
tion of the temperature (Lebowitz, 1976). This is known
in d52 from Onsager’s solution which also gives the
exact value of Tc . In d.2 the continuity of the energy is
known to hold at low temperatures (where the cluster
expansion is valid) and at almost all temperatures other-
wise. There is, however, much numerical and analytic
evidence that C(J150,J2) is real analytic in J2 every-
where away from the critical temperature. The story is
similar for the decay of correlations. This is known to be
exponential for hÞ0 at high temperatures and at low
temperatures in the 1 and 2 phases. Similar behavior is
expected at all TÞTc , but this is only proven for d52
(and in d51 where Tc50). Note that for mixed states,
when aÞ0 or 1 in Eq. (3.7), there is no decay of corre-
lations.

Essentially everything said above for the ferromag-
netic Ising model with NN interactions holds also for
more general ferromagnetic pair interactions, u(r)>0 in
Eq. (3.1) with u(r) of finite range or decaying faster
than r2(d111e). (An exception is the decay of correla-
tions, which is never faster than the decay of the inter-
actions.) It follows in fact from the Griffiths-Kelley-
Sherman inequalities (Griffiths, 1967; Kelley and
Sherman, 1969) that adding ferromagnetic pair or mul-
tispin interactions to an already ferromagnetic Ising sys-
tem (with h>0) can only increase the magnetization. A
particular consequence of this is that the critical tem-
perature for the nearest-neighbor Ising model cannot
decrease with dimension: going from d to d11 can be
viewed of as adding ferromagnetic couplings. This argu-
ment works also when we increase the ‘‘thickness’’ of a
d-dimensional system, e.g., adding layers to a d52 Ising
model. To show that Tc actually increases, not just stays
fixed, is more difficult. In fact, going from d51 to a strip
of finite width (and infinite length) does not increase Tc
from zero, its value for d51.

An interesting situation occurs in d51 when the fer-
romagnetic pair interaction decays like r2g, 1,g<2, so
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the thermodynamic limit of C still exists. The d51 sys-
tem then has a Tc.0 with the spontaneous magnetiza-
tion discontinuous at Tc (coexistence of phases) for the
borderline case J(r);r22. A result of this type was first
found by Anderson and Yuval (1969; 1971), then proven
for the hierarchical model by Dyson (1969; 1971) and for
the Ising model by Aizenman et al. (1988).

For general lattice systems we still have the existence
of the thermodynamic limit of the free energy, indepen-
dent of the BC as well as the general connection be-
tween pure phases and extremal translation-invariant or
periodic Gibbs states. (Any periodic Gibbs state can be
made translation invariant by enlarging the ‘‘unit cell’’
of the lattice.) We know, however, much less about the
phase diagram, except at very low temperatures. Here
the Pirogov-Sinai theory and its extensions (Pirogov and
Sinai, 1975a-1975b; Dobrushin and Zahradnik, 1986;
Kotecky and Preiss, 1986; Dinaburg and Sinai, 1988)
show how the existence of different periodic ground
states, corresponding to a ‘‘ground-states’’ diagram in
the space of interactions J, at T50, gives rise to a simi-
lar phase diagram of the pure phases at sufficiently low
temperatures. The great advantage of this theory, com-
pared to arguments of the Peierls type, is that there is no
requirement of symmetry between the phases—the exis-
tence of which was of crucial importance for the ferro-
magnetic examples discussed earlier.

This can be seen already for the NN Ising model with
antiferromagnetic interaction, J,0 Eq. in (3.6). For h
50 this system can be mapped into the ferromagnetic
one by changing S(x) into 2S(x) on the odd
sublattice—but what about hÞ0? If we look at this sys-
tem at T50 we find two periodic ground states for uhu
,2duJu corresponding to S(x)521 on the even (odd)
and S(x)51 on the odd (even) sublattice. For uhu
.2duJu there is a unique ground state: all up for h
.2duJu, all down for h,22duJu. At uhu52duJu there
are an infinite number of ground states with positive
entropy per site (in violation of the third law). The ex-
istence of two periodic phases for sufficiently low tem-
peratures at uhu,2duJu, and of a unique translation-
invariant phase for uhu.2duJu then follows from
Pirogov-Sinai theory. Of course for h50 we know, from
the isomorphism with the ferromagnetic system, that
there are two periodic states for all T,Tc . This, how-
ever, doesn’t strictly (i.e., rigorously) tell us anything
about hÞ0. I am not aware of any argument which
proves that the boundary of the curve enclosing the co-
existence region in the antiferromagnetic part of Fig. 1
has to touch the point corresponding to h50, T5Tc .
There is also for this system, a generalization of the
Peierls argument, due to Dobrushin (1968), which ex-
ploits the symmetry of this system and is therefore sim-
pler than Pirogov-Sinai theory. This proves the existence
of the two periodic states in a portion of the phase dia-
gram (indicated by the solid curve in Fig. 1).

Unfortunately Pirogov-Sinai theory does not say any-
thing about the immediate neighborhood of the points
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uhu52duJu where the system has such a high degeneracy.
It does follow, however, from the general Dobrushin-
Shlosman uniqueness criteria (Dobrushin, Kolafa, and
Shlosman, 1985; Dobrushin and Shlosman, 1985a–
1985b; Radulescu and Styer, 1987), implemented by
computer enumerations, that, for d52, the boundary of
the coexistence region at 4uJu has to curve to the left,
hence we expect that for uhu54uJu there is a unique
phase for all T.0.

B. Continuum systems

The existence of the thermodynamic limit of the free
energy, independent of b as in Eq. (3.5), also holds for
continuum systems (classical or quantum) with Hamilto-
nians, having the form

H~X !5~2m !21( pi
21(

iÞj
u~ri2rj!, (3.8)

and satisfying certain conditions (Fisher, 1964; Ruelle,
1969; Griffiths, 1972; Sinai, 1982. These conditions are
readily shown to hold for systems with Lennard-Jones
type potentials. For Coulomb systems, where u contains
explicitly terms of the form ea i

ea j
uri2rju21 in d53 (loga-

rithmic ones in d52, etc.) it is required that the system
be overall charge neutral. For classical systems it is fur-
ther required that there be some cutoff preventing arbi-
trarily large negative ‘‘binding’’ energies between posi-
tive and negative charges, e.g., a hard-core exclusion.
For quantum systems it is sufficient if either the positive
or negative charges obey Fermi statistics—as electrons
indeed do, (see Dyson and Lenard, 1967; Lenard and
Dyson, 1968; Lebowitz and Lieb, 1969; Lieb and Lebow-
itz, 1972; Lieb, 1976; Brydges and Martin, 1998; and ref-
erences therein).

Remarkably enough it is possible to prove (subject to
some assumptions) that a system of protons and elec-
trons will, in certain regimes of sufficiently low tempera-
tures and densities, consist mostly of a gas of atoms or
molecules in their ground states (Brydges and Martin,
1998). This may be the beginning of a theory which
would justify, from first principles, the use of effective
potentials, e.g., Feynman’s ‘‘little particles’’ (Feynman,
Leighton, and Sands, 1963) for obtaining properties,
such as phase transitions, of macroscopic systems
(Fisher, 1988).

I return now to the theme of this section with a dis-
cussion of first-order phase transitions in continuum sys-
tems, a subject of much curent interest to me. While the
general theory concerning infinite-volume Gibbs mea-
sures readily extends to such systems, the techniques
used for proving existence of phase transitions in lattice
systems are harder to generalize. The ground states of
even the simplest model continuum systems are difficult
to characterize; they are presumed to be periodic or
quasiperiodic configurations which depend in some com-
plicated way on the interparticle forces. This is however
far from proven, and hence the analysis of the fluctua-
tions that appear when we increase the temperature
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above zero is correspondingly harder, indeed very much
harder, to study than in lattice systems. Moreover, key
inequalities are no longer available. These problems
have been overcome for some multicomponent systems
with special features. In particular Ruelle (1971) proved
that the symmetric two-component Widom-Rowlinson
(1970) model has a demixing phase transition in d>2.
There are also later proofs of phase transitions in d>2
for generalizations of this model as well as for d51 con-
tinuum systems with interactions which decay very
slowly (Felderhof and Fisher, 1970; Johansson, 1995).

The first proof of a liquid-vapor transition in a one-
component continuum systems with finite-range interac-
tions and no symmetries was given only very recently
(Lebowtz, Mazel, and Presutti; 1998a; 1998b). The basic
idea there is to study perturbations not of the ground
state but of the mean field state which describes systems
with infinite-range interactions. These interactions are
parametrized by their range g21 and the perturbation is
about g50. The proof of mean-field behavior, in the
limit g→0, was first given by Kac, Uhlenbeck, and Hem-
mer (1963a; 1963b, 1964) for d51. These results were
later generalized (Lebowitz and Penrose, 1966) to
d-dimensional systems with suitable short-range repul-
sive interactions and general Kac potentials of the form

fg~qi ,qj!52agdJ~guqi2qju!, (3.9)

with *RdJ(r)dr51,J(r).0. In the thermodynamic limit,
followed by the limit g→0, the Helmholtz free energy a
takes a mean-field form:

lim
g→0

a~r ,g!5CEH a0~r!2
1
2

ar2J . (3.10)

Here r is the particle density and a0 is the free-energy
density of the reference system, i.e., the system with no
Kac potential. a0 is convex in r (by general theorems)
and CE$f(x)% is the largest convex lower bound of f .
For a large enough the term in the curly brackets in Eq.
(3.10) has a double-well shape and the CE corresponds
to the Gibbs double-tangent construction. This is
equivalent to Maxwell’s equal-area rule applied to a van
der Waals’–type equation of state where it gives the co-
existence of liquid and vapor phases. In this limit, g
→0, the correlation functions in the pure phases are
those of the reference system at the corresponding den-
sities.

The assumption of strongly repulsive short-range in-
teractions by Kac, Uhlenbeck, and Hemmer (1963a;
1963b; 1964) and Lebowitz and Penrose (1966) in addi-
tion to the long-range attractive Kac-type interactions,
was dictated not only by realism but also by the need to
insure stabilization against collapse, which would be in-
duced by a purely attractive pair potential. The ap-
proach by Lebowitz, Mazel, and Presutti (1998a, 1998b),
however, which proves a liquid-vapor phase coexistence
for g.0, needs a cluster expansion for the unperturbed
reference system (i.e., without the Kac interaction) at
values of the chemical potential or density for which it is
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not proven to hold in systems with strong short-range
interactions. Stability is therefore produced by a positive
four-body potential of the same range as the attractive
two-body one. The reference system is then the free,
ideal gas for which the cluster expansion holds trivially.
The proof of the existence of phase transitions in fluids
with Lennard-Jones-type potentials is therefore still an
open problem. Hopefully we will not have to wait an-
other century for its resolution.
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