
Homework 4, 620 Many body

December 12, 2022

1) The excitations spectra of the superconductor: Calculate the excitations spectra of
quasiparticles as well as the real electrons in the BCS state wave function.
In class we derived the BCS Hamiltonian

HBCS =
∑
k

Ψ†k

(
εk −∆
−∆ −ε−k

)
Ψk + ε−k (1)

in which the Ψk spinor is

Ψk =

(
ck,↑
c†−k,↓.

)
(2)

The Hamiltonian is diagonalized with a unitary transformation in the form

Ûk =

(
cos(θk) sin(θk)
sin(θk) − cos(θk)

)
(3)

where

cos(θk) =

√
1

2
(1 +

εk√
εk + ∆2

) (4)

sin(θk) = −

√
1

2
(1− εk√

εk + ∆2
) (5)

and the quasiparticle spinors are(
Φk,↑

Φ†−k,↓

)
= Ûk

(
ck,↑
c†−k,↓.

)
(6)

The diagonal BCS Hamiltonian has the form

HBCS =
∑
k

λkΦ†k,sΦk,s − E0 (7)

with E0 =
∑

k λk − εk and λk =
√
ε2
k + ∆2
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– Show that the quasiparticle Green’s function G̃k = −〈TτΦk,s(τ)Φ†k,s(0)〉 has a
gap with the size ∆. What is the spectral function corresponding to this Green’s
function? Show that the corresponding densities of states has the form D(ω) ≈
D0 ω/

√
ω2 −∆2, where D0 is density of states at the Fermi level of the normal

state.

– Compute the physical Green’s function (measured in ARPES)

Gk,s = −〈Tτck,s(τ)c†k,s(0)〉 (8)

and its density of states. Show that the corresponding spectral function has the
form

Ak,s(ω) = cos2 θk δ(ω − λk) + sin2 θk δ(ω + λk) (9)

Sketch the bands and their weight, and sketch the density of states.

2) In class we derived the BCS action, which takes the form

S =

∫ β

0

dτ

∫
d3rΨ†(r)

(
∂
∂τ
− µ+ (i∇+e ~A)2

2m
+ ieφ −∆

−∆† ∂
∂τ

+ µ− (i∇−e ~A)2

2m
− ieφ

)
Ψ(r) + s0(10)

where s0 =
∫ β

0
dτ
∫
d3r |∆|

2

g

Show that the action can also be expressed by

S = s0 + Tr log(−G) (11)

where

G−1 =

(
iωn + µ− (p−eA)2

2m
− ieφ,∆

∆† iω − µ+ (p+eA)2

2m
+ ieφ

)
(12)

Show that the transformation UG−1U †, where U is

U =

(
e−iθ 0

0 eiθ

)
(13)

leads to the following change of the quantities

∆ → e−2iθ∆ (14)

A → A +
1

e
∇θ (15)

φ → φ− 1

e
θ̇ (16)

and otherwise the same form of the action. Argue that since this corresponds to the
change of the EM gauge, the phase of ∆ is arbitrary in BCS theory, and can always
be changed. Moreover, the phase can not be experimentally measurable quantity.
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In the absence of the EM field, derive the saddle point equations in field ∆, which are
often written as ∆ = gG12, and cam be expressed as

1

g
= − 1

V β

∑
k,n

1

(iωn)2 − λ2
k

. (17)

Show that the same equation can also be expressed as

1

g
=

1

V

∑
k

1− 2f(λk)

2λk
(18)

and with D0 being the density of the normal state at the Fermi level, it can also be
expressed as

1

g
≈ D0

∫ ωD
2T

0

dx
tanh(

√
x2 + κ2)√

x2 + κ2
(19)

where x = ε/(2T ) and κ = ∆/(2T ).

Next, derive the critical temperature by taking the limit ∆ → 0 (κ → 0). Assuming
that ωD/(2T ) � 1, break the integral into two parts [0,Λ], and [Λ, ω

2T
]. Here Λ � 1.

In the second part set tanh(x) = 1, as x is large. Using numerical integration (in
Mathematica or similar tool) verify that

lim
Λ→∞

∫ Λ

0

dx
tanh(x)

x
− log(Λ) ≈ log(2× 1.13) (20)

Next, show that Tc is determined by

1

gD0

≈ log(2× 1.13) + log(
ωD
2Tc

) (21)

and consequently
Tc ≈ 1.13ωDe

−1/(gD0)

Using Eq. 19 compute the size of the gap at T = 0. Show that to the leading order in
∆/ωD the gap size is

∆(T = 0) = 2ωDe
−1/(gD0) (22)

Finally, show that within BCS there is universal ration ∆(T = 0)/(2Tc) ≈ 1/1.13 ≈
0.88.

3) Starting from action Eq. 10 derive the effective action for small EM field A, φ. Show
that for a constant and time independent phase, the action takes the form

Seff = Tr log(−GA=0,φ=0) + Tr(
|∆|2

g
) + e2

∫ β

0

dτ

∫
d3r
[
D0(φ(r, τ))2 +

ns
2m

[A(r, τ)]2
]
(23)

Note that using EM gauge transformation, we arrive at an equivalent action

Seff = S0 + e2

∫ β

0

dτ

∫
d3r
[
D0(φ(r, τ) + θ̇)2 +

ns
2m

[A(r, τ)−∇θ]2
]

(24)
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Below we summarize the steps to derive this effective action.

We start by splitting G−1 in Eq.12 into GA=0,φ=0 ≡ G0 and terms linear and quadratic
in EM-fields, i.e,

G−1 =
(
G0
)−1 −X1 −X2

where

X1 = ieφ σ3 +
ie

2m
[∇, A]+I (25)

X2 =
e2

2m
A2 σ3 (26)

and σ3, σ1 are Pauli matrices. Show that action 11 can then be expressed as

S = s0 + Tr log(−G0)− Tr log(I −G0(X1 +X2)) (27)

≈ S0 + Tr(G0X1) + Tr(G0X2) +
1

2
Tr(G0X1G

0X1) +O(X3) (28)

where S0 = s0 + Tr log(−G0) (which vanishes at Tc), and the second term, which is
linear in fields, while third and fourth are quadratic.

Next show that the form of G0 is

G0
pn,p′n′ = δp,p′δnn′

(
iωnI −

(
p2

2m
− µ

)
σ3 + ∆ σ1

)−1

(29)

where the inverse is in the 2 × 2 space only, while G0 is diagonal in frequency& mo-
mentum space. We will use (p, n) = p for short notation. Similarly, show that X1

is

(X1)p1,p2 = (ieφ σ3 +
ie

2m
[∇, A]+I)p1,p2 = ieφp2−p1σ3 −

e

2m
(p1 + p2)Ap2−p1 (30)

Show that

Tr(G0X1) =
1

β

∑
ωn,p

Tr2×2(G0
p(iωn)[ieφq=0σ3 −

e

m
pAq=0]).

Argue that the second term vanishes when inversion symmetry is present, as it is odd
in p (with G0

p even function). The first term than becomes nieφq=0,ω=0 (n is total
density), which describes the electron density in uniform electric field, which should
cancel with the action between negative ions and the external field.

Next show that

Tr(G0X2) =
e2

2m

1

β

∑
ωn,p

Tr2×2(G0
p(iωn)A2

q=0σ3) =
e2

2m
n
∑
q

AqA−q

is standard diamagnetic term, which will be used later.
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Finally, we address the term 1
2
Tr(G0X1G

0X1). We find

1

2
Tr(G0X1G

0X1) =
1

2

∑
p1,p2

Tr2×2

(
G0
p1

(X1)p1,p2G
0
p2

(X1)p2,p1
)

(31)

1

2

∑
p,q

Tr2×2

(
G0
p−q/2(X1)p−q/2,p+q/2G

0
p+q/2(X1)p+q/2,p−q/2

)
(32)

=
1

2

∑
p,q

Tr2×2

(
G0
p−q/2

(
ieφqσ3 −

e

m
pAq

)
G0
p+q/2

(
ieφ−qσ3 −

e

m
pA−q

))
(33)

=
1

2

∑
p,q

(
−e2φqφ−qTr2×2

(
G0
p−q/2σ3G

0
p+q/2σ3

)
+

e2

m2
(pAq)(pA−q)Tr2×2

(
G0
p−q/2G

0
p+q/2

))
(34)

In the last line we dropped the cross-terms, which are odd in p and vanish.

For any rotationally invariant function R(p2), the following identity is satisfied∑
p

(pAq)(pA−q)R(p2) = AqA−q
∑
p

p2

3
R(p2). (35)

We are interested in slowly varying fields (small q), hence p ± q/2 ≈ p. We therefore
arrive at

1

2
Tr(G0X1G

0X1) =
e2

2

∑
p,q

(
−φqφ−qTr2×2

(
G0
pσ3G

0
pσ3

)
+ AqA−q

p2

3m2
Tr2×2

(
G0
pG

0
p

))
(36)

Next, show that

Tr2×2

(
G0
pσ3G

0
pσ3

)
= 2

(iωn)2 + λ2
p − 2∆2(

(iωn)2 − λ2
p

)2 (37)

Tr2×2

(
G0
pG

0
p

)
= 2

(iωn)2 + λ2
p(

(iωn)2 − λ2
p

)2 (38)

Next, carry out the frequency summations, and show that

1

β

∑
ωn

(iωn)2 + λ2
p − 2∆2(

(iωn)2 − λ2
p

)2 = f ′(λp)(1− ∆2

λ2
p

) + (2 f(λp)− 1)
∆2

2λ3
p

≈ − ∆2

2λ3
p

(39)

1

β

∑
ωn

(iωn)2 + λ2
p(

(iωn)2 − λ2
p

)2 = f ′(λp) (40)

Here f ′(λp) = df(λp)/dλp and we took only the leading terms at low temperature.

Combining all we learned so far, we get

1

2
Tr(G0X1G

0X1) = e2
∑
q,p

(
φqφ−q

(
∆2

2λ3
p

)
+ AqA−q

p2

3m2
f ′(λp)

)
(41)
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Next we combine this result with the diamagnetic term, derived before, and we obtain

Tr(G0X2) +
1

2
Tr(G0X1G

0X1) = e2
∑
q,p

φqφ−q

(
∆2

2λ3
p

)
+ AqA−q

(
n

2m
+

p2

3m2
f ′(λp)

)
(42)

Next we show that ∑
p

∆2

2λ3
p

=

∫
dεD(ε)

∆2

2(ε2 + ∆2)3/2
≈ D0 (43)

f ′(λp) = −βf(λp)f(−λp) (44)

hence Seff ≡ Tr(G0X2) + 1
2
Tr(G0X1G

0X1) becomes

Seff = e2
∑
q

φqφ−qD0 + AqA−q

(
n

2m
− β

∑
p

p2

3m2
f(λp)f(−λp)

)
(45)

Finally, we will prove that(
n

2m
− β

∑
p

p2

3m2
f(λp)f(−λp)

)
≡ ns

2m
(46)

where ns is superfluid density.

We see that

ns
2m

=
n

2m
− β

∑
p

2

3m
(εp + µ)f(λp)f(−λp) (47)

=
n

2m
− β 1

2

∫
dεD(ε)

2

3m
(ε+ µ)f(λε)f(−λε) (48)

≈ n

2m
− D0µ

3m

∫
dεβf(λε)f(−λε) (49)

Note that here we used D(ω) = 2
∑

p δ(ω − εp), where 2 is due to spin. This is
essential because n contains the spin degeneracy as well. It is straightforward to prove
that µD0 = 3

2
n in our approximation, because

D0 = 2
∑
p

δ(µ− p2

2m
) = c

√
µ (50)

n = 2
∑
p

θ(µ− p2

2m
) = c(2/3)µ3/2. (51)

We thus conclude that

ns
2m

=
n

2m

(
1−

∫
dεβf(

√
ε2 + ∆2)f(−

√
ε2 + ∆2)

)
(52)
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At low temperature f(
√
ε2 + ∆2) ≈ 0, hence ns = n and all electrons contribute to the

superfluid density. Above Tc we have∫
dεβf(ε)f(−ε) = 1

and therefore ns = 0 as expected. We interpret that ns is the fraction of electrons that
are parred up in superfluid, i.e., superfluid density, as promised.

We just proved that

Seff = e2
∑
q

φqφ−qD0 + AqA−q
ns
2m

, (53)

which is equivalent to Eq. 23.
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