Homework 1, 620 Many body

September 27, 2022

1) Using canonical transformation show that at half-filling and large interaction U the Hubbard model is approximately mapped to the Heisenberg model with the form

$$
\begin{equation*}
H=J \sum_{<i j>} \vec{S}_{i} \vec{S}_{j}-1 / 4 \tag{1}
\end{equation*}
$$

where $J=4 t^{2} / U$. Solution is in A\&S page 63 .
2) Obtain energy spectrum and the ground state wave function for water molecule in the tight-binding approximation. You can use the following tight-binding values $\varepsilon_{s}=-1.5$ Ry, $\varepsilon_{p}=-1.2$ Ry $\varepsilon_{H}=-1$ Ry $t_{s}=-0.4$ Ry $t_{p}=-0.3$ Ry $\alpha=52^{\circ}$

- Determine eigenvalue spectrum from tight-binding Hamiltonian
- The oxygen configuration is $2 s^{2} 2 p^{4}$ and hydrogen is $1 s^{1}$, hence we have 8 electrons in the system. Which states are occupied in this model?
- What is the ground state wave function?

3) Obtain the band structure of graphene and plot it in the path $\Gamma-K-M-\Gamma$. The hooping integral is t.
Show that expansion around the K point in momentum space leads to the following Hamiltonian

$$
\begin{equation*}
H_{\mathbf{k}}=\frac{\sqrt{3}}{2} t(\mathbf{k}-\mathbf{K}) \cdot \vec{\sigma} \tag{2}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma^{x}, \sigma^{y}\right)$ and σ^{α} are Pauli matrices. From that argue that the energy spectrum around the K point has Dirac form.

Let's use the standard notation

$$
\begin{align*}
\vec{a}_{1} & =a(1,0) \tag{3}\\
\vec{a}_{2} & =a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \tag{4}\\
\vec{b}_{1} & =\frac{2 \pi}{a}\left(1,-\frac{1}{\sqrt{3}}\right) \tag{5}\\
\vec{b}_{2} & =\frac{2 \pi}{a}\left(0, \frac{2}{\sqrt{3}}\right) \tag{6}
\end{align*}
$$

Here $r_{1}=\frac{1}{3} \vec{a}_{1}+\frac{1}{3} \vec{a}_{2}$ and $r_{2}=\frac{2}{3} \vec{a}_{1}+\frac{2}{3} \vec{a}_{2}$. The K point is at $\mathbf{K}=\frac{1}{3} \vec{b}_{2}+\frac{2}{3} \vec{b}_{1}$ and M point is at $\vec{M}=\frac{1}{2}\left(\vec{b}_{1}+\vec{b}_{2}\right)$.

