Introduction
In condensed matter the baric equation is relatively rimple to write: fundamental Homiltomion! $H=H_{e}+H_{i}+\mathrm{H}_{2 i}$
$H_{e}=\sum_{i} \frac{p_{i}^{2}}{2 m_{R}}+\sum_{i \neq j} \frac{1}{2} V_{R e}\left(\vec{r}_{i}-\vec{r}_{j}\right) \quad$ here $V_{R e}(\vec{r})=\frac{e_{0}^{2}}{4 \pi \xi_{0}|\vec{r}|} \quad \vec{r}_{i}$ electron coordinate $H_{i}=\sum_{\alpha} \frac{P_{\alpha}^{2}}{2 M_{\alpha}}+\sum_{\alpha \neq \beta} \frac{1}{2} V_{i i}\left(\vec{R}_{\alpha}-\vec{R}_{B}\right) \quad$ here $V_{i i}\left(\vec{R}_{\alpha}-\vec{R}_{B}\right)=\frac{z_{\alpha} z_{B} l_{0}^{2}}{4 \pi \varepsilon_{0}|\vec{R}|} ; R_{\alpha}$ ion coordinate $H_{i 2}=\sum_{i \alpha} V_{R i}\left(\vec{r}_{i}-\vec{R}_{\alpha}\right)$
here $V_{e i}\left(\vec{r}_{i}-\vec{R}_{\alpha}\right)=-\frac{Z_{\alpha} e_{0}^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{i}-\vec{B}_{\alpha}\right|}$
What is missing? spin (very easy to add)
Spim-orbit interaction and other relativistic corrections became electron

$$
H_{s O c}=\frac{\mu_{B}}{n_{m_{2}} l_{0} c^{2}} \sum_{i} \frac{1}{r_{i}} \frac{\partial V}{\partial r_{i}} \vec{l}_{i} \times \vec{د}_{i} \propto z^{4}
$$ travel foot near millions

Important for hoary ions
$\mathrm{Fe}: 20 \mathrm{meV}$
$\mathrm{Ce}: 0.3 \mathrm{eV}$
Pu: leV
Ir: 0.5 eV freedom differently because $M_{\alpha} \gg M_{e}$.
$\frac{M_{H}}{M_{e}}=1840 \quad \frac{M_{s i}}{M_{e}}=25760$ hence expansion in $\frac{M_{e}}{M_{\alpha}}$ is well justified.
Born-Oppenheimer approximation "almost" allays mores
Exceptions:-conventional superconductors

- resistivity due to phomons
- election-phonon coupling important

Because nuclei move much slower than electrons the nuclei positions con be frozen when computing the electron were function.
Born Oppenheimer ansatz for separable mare function $|\psi\rangle=\left|\psi_{\text {electron }}\right\rangle \otimes\left|\psi_{\text {ion }}\right\rangle$

Born-Oppenhaimer

$$
\left.\left(H_{e}+H_{i e}+H_{i}\right) / \psi_{\text {eecton }}\right\rangle \otimes\left|\psi_{i o n}\right\rangle
$$

Because $M_{\alpha} \gg M_{e}$ we finot neglect $\frac{P_{\alpha}{ }^{2}}{2 M_{\alpha}}$ term for the purpose of computing the electron were function, i.e.,

How lorga is neplected term < $\left.\psi_{\text {ecection }}\left|\sum_{i} \frac{P_{e}^{2}}{2 M_{e}}\right| \psi_{\text {cection }}\right\rangle$?

$$
\begin{gathered}
\vec{户}_{\text {ion }} \sim \vec{p}_{\text {eection }} \Rightarrow \\
\left\langle\psi_{\text {ecection }}\right| \sum_{i} \frac{P_{e}^{2}}{2 M_{e}}\left|\psi_{\text {ueltion }}\right\rangle \approx E_{\text {eledon }}^{\sin } \frac{m_{e}}{\frac{M_{i}}{10^{-4}}}
\end{gathered}
$$

shouled be muall correction in mast coses.
\vec{R}_{l} are now fieed to the lattice sites and are paranaters in electron sch. Ey. They ane not operetors or peysical obsemables.
We can still defermine best passible $\operatorname{lor} T$ atructuse by componing

$$
\begin{array}{cc}
\text { Eelection }\left[\{R\}_{1}\right], & E_{\text {electonn }}\left[\{R]_{2}\right]_{1} \cdots \\
b c c & f c c \\
c p h & \text { doved-peded bevegonel }
\end{array}
$$

Fimelly we con consider small vilcations around the grombs state latfice configuration

$$
\begin{aligned}
& H\left|\psi_{\text {electron }}\right\rangle \otimes\left|\psi_{\text {iom }}\right\rangle=\left[H_{\text {elatromic }}+\sum_{\alpha} \frac{P_{*}^{2}}{2 M_{k}}\right]\left|\psi_{\text {eecctorn }}\right\rangle \otimes\left|\psi_{\text {im }}\right\rangle \\
& \approx \underbrace{\left[E_{\text {vedotric }}[\{\vec{k}]]+\sum_{\alpha} \frac{P_{\alpha}^{2}}{2 M_{\alpha}}\right]\left|\psi_{\text {mectan }}\right\rangle \otimes\left|\psi_{\text {im }}\right\rangle} \\
& \text { Adiebatic approtimotion }
\end{aligned}
$$

gives phonon dispervion at the necond onder expontion as the muclei move, electorns ase elways in the ground state wreve function

How do we oftain phonon disperions?

We car expent $\vec{R}_{\alpha}=\vec{R}_{\alpha}$ equilicrimn $+\vec{\mu}_{\alpha}$
A small dioplacement
eigmilicon'on

Im pariodic solids we will ue more appropriate notation
 $\vec{R}_{m \alpha}=\vec{r}_{n}+\vec{r}_{\alpha}+\vec{\mu}_{m \alpha} \longleftarrow$ small milnotion $m_{1} \vec{Q}_{1}+m_{2} \vec{Q}_{2}+m_{3} \vec{Q}_{3} \quad$ Wickoff prition

Hermonic oscilators

Solve in Lagranges
fromulation:
Ynotead of $\sum_{\alpha} \frac{\vec{P}_{\alpha}^{2}}{2 M_{\alpha}} \Rightarrow \sum_{\alpha} \frac{1}{2} M_{\alpha} \dot{\vec{M}}_{m \alpha}^{2} \equiv T$

$$
H=T+V ; \mathscr{L}=T-V
$$

We ore solving clamical Lagrangion: $\mathscr{L}=\sum_{m_{1}, i} \frac{1}{2} M_{\alpha} \dot{\mu}_{m a i}^{2}-\sum_{\substack{m=m \\ i}} \frac{1}{2} \mu_{m \alpha i} \Phi_{m a i}^{m \beta j} \mu_{m \beta j}$
Eguation of mation $\frac{d}{d t}\left(\frac{\partial \mathcal{Z}}{\partial \dot{\mu}_{m \alpha i}}\right)=\frac{\partial y}{\partial \mu_{m \times i}}$ gives $\quad M_{\alpha} \ddot{\mu}_{m \alpha i}=-\sum_{m m j} \phi_{m \alpha i}^{m B j} \mu_{m \Delta j}$.

EOM: $M_{\alpha} \ddot{\mu}_{m \alpha i}=-\sum_{m a j} \phi_{m \alpha i}^{m \beta j} \mu_{m \beta j}$.
We search for the solution with onsotz: phomon preasization
$-\frac{1}{\sqrt{M}}:$
matrix of force content
differect atoms

Dymarical matrie
D is essentially the Founice transform of Φ.

$$
\left.\sum_{\beta j}\left[-\omega_{p}^{2} \delta_{\alpha \beta} \delta_{i j}+D_{\alpha i, \beta j}(\vec{g})\right] \varepsilon_{\beta j(\vec{g}}^{p}\right)=0
$$

Is eigensolve problem solved ly $\left.\operatorname{Det}[\underline{(})-\omega_{p}^{2} I\right]=0$
How many sulutions $\omega_{p}(\vec{g})^{2}$? Dirmension is $(\alpha, i)=$
\# atom in unn't ael $\times 3$

$3 \cdot(N-1)$ optical enouches 3 eanotic brencles
$\omega_{p}(\vec{j})$ ere eigenvalus of D. polarization $\varepsilon_{p s j}(\vec{g})$ are eijenvectors of D.

Direct method of calculating phonons

This reguires solution of Heachroic anol implementation of forces, mhech is unvally done onalytivally.

In proctice it is many times eavier to colculate force, i.e., fint deninative because:

$$
\begin{aligned}
\frac{\delta}{\delta \bar{R}}\langle\psi| H|\psi\rangle= & \left\langle\frac{\delta \psi}{\delta \bar{R}}\right| H|\psi\rangle+\langle\psi| H\left|\frac{\delta \psi}{\delta \vec{R}}\right\rangle+\langle\psi| \frac{\delta H}{\delta \vec{R}}|\psi\rangle \\
& E(\underbrace{\frac{\delta \psi}{\delta \vec{R}}|\psi\rangle+\left\langle\psi \left\lvert\, \frac{\delta \psi}{\delta \vec{R}}\right.\right\rangle})+\langle\psi| \frac{\delta H}{\delta \vec{R}}|\psi\rangle \\
& \frac{\delta}{\delta R}\langle\psi \mid \psi\rangle=0 \\
& \text { become }\langle\psi[\varepsilon R]] \mid \psi[\text { [R }\}]\rangle\rangle=1
\end{aligned}
$$

Hence in genernol force: $F_{m \alpha i}=-\frac{\delta E_{\text {electose }}[[R]]}{\delta R_{\text {nai }}}=-\left\langle\psi_{\text {eleat }}\right| \frac{\delta H_{\text {eadmuic }}}{\delta R_{m \times i}}\left|\psi_{\text {seadraic }}\right\rangle$ is resier to compunte.

We con create suparcall ent displace ofom in different superalls and evaluate force $F_{\text {mai }}$

The matrix of fore contants $\phi_{m \times i}^{m i n j}=\lim _{\mu \rightarrow 0}\left(-\frac{F_{m \times i}\left[\mu_{m 0 j}\right]}{\mu_{m n j}}\right)$ when uring onall displocement

$$
\text { This is became }-F_{m \times i}=\frac{\delta E_{\text {madma }}\left[[R]+\mu_{m \times j j}\right]}{\delta \mu_{m \times i}} \approx \frac{\delta^{2} E_{\text {ehentmic }}}{\delta \mu_{m \alpha i} \delta \mu_{m \times j}} \mu_{m B j}
$$

Moot of this semester mil he devoted to solving

$$
H_{2}\left|\psi_{2}\right\rangle=E\left|\psi_{2}\right\rangle \text { with } 10^{23} \text { electrons. }
$$

We mill tory to

- look for universal behaviour of materials
- Fermi liguid concept
- Superconductivity \& serperfeniolity
- Collective low energy excitations such as plronom and mognons
- symmetries con greatly reduce the complexity
- good momentum $\stackrel{\rightharpoonup}{r}$ in solids due do tramlational invariance
- point group and span group rymmaty of the lattice
- SU(2) symmetry of the spin encoded in Panhi matrices

Simous 1.1.
Simple example of a field: ID phonons

$$
r=\left.\frac{\partial^{2} V}{\partial x^{2}}\right|_{\substack{x=m \cdot e \\ \min i n}}
$$

$$
\begin{array}{ll}
H=\sum_{i} \frac{P_{i}^{2}}{2 M}+\frac{2}{2}\left(x_{i+1}-x_{i}-a\right)^{2} & \text { Hamictonion } \\
L=\sum_{i} \frac{1}{2} M \dot{x}_{i}^{2}-\frac{2}{2}\left(x_{i+1}-x_{i}-a\right)^{2} & \text { Lagrangian }
\end{array}
$$

The low energy excitations mill be long wavelength waves. We do not need to care about the discretness of the problem, but con define the theory in contimumen.

Transition to continuum : $\left.\phi_{i} \rightarrow \sqrt{e} \underset{x=i a}{ }(x, t)\right|_{x=i a}$ has dimension of $\sqrt{\text { length }}$

$$
\begin{aligned}
& \phi_{i+1}-\left.\phi_{i} \rightarrow \sqrt{2} \cdot a \frac{\partial \phi}{\partial x}\right|_{x=i e} \\
& \sum_{i} \rightarrow \frac{1}{a} \int_{0}^{L} d x \\
&]= \\
& \int_{0}^{L} d x\left[\frac{1}{2} M \dot{D}^{2}-\frac{20^{2}}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}\right]
\end{aligned}
$$

$$
L=\frac{1}{a} \int_{0}^{L} d x\left[\frac{1}{2} M a \dot{\phi}-\frac{\pi}{2} a^{3}\left(\frac{\partial \phi}{\partial x}\right)^{2}\right]=\int_{0}^{L} d x\left[\frac{1}{2} M \dot{\phi}^{2}-\frac{r 0^{2}}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}\right]
$$

Define Lagraugion density $\mathscr{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]=\frac{1}{2} M \dot{\phi}^{2}-\frac{r e^{2}}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}$
Action is the functional of $\phi: \quad S[\phi]=\int d t \int_{0}^{L} d x \mathcal{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]$
S is classical action
ϕ is classical field $\phi(x, t)$

Eg of motion: EOM
The classical solution corresponds to the extremum of the action $\delta \delta=0$.

$$
S[\phi]=\int d t \int d x \mathcal{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]
$$

If we add a small correction $\phi \rightarrow \phi+y$ and y is small $s[\phi+y]=S[\phi]+O\left(y^{2}\right)$

$$
S[\phi+y]=\int \operatorname{dt} \int d y \mathcal{L}\left[\phi+y, \frac{\partial \phi}{\partial x}+\frac{\partial y}{\partial x}, \dot{\phi}+\dot{y}\right]=?
$$

Note: $f[\phi+y]=f[\phi]+\int \frac{D_{f}}{\partial \phi(x)} u(x) d x$
Follows from discrete analog : $f\left[\phi_{1}+y_{1}, \phi_{2}+y_{2}, \ldots\right]=f\left[\phi_{1}, \phi_{2} ..\right]+\sum_{i} \frac{\partial f}{\partial \phi_{1}} y_{i}+\cdots$
For dove case $\sum_{i} \mathscr{L}\left[\phi_{i}+\mu_{i}, \frac{\partial \phi_{i}}{\partial x_{i}}+\frac{\partial \mu_{i}}{\partial x_{i}}, \dot{\phi}_{i}+\dot{\varphi}_{i}\right]=\sum_{i} \mathscr{L}\left[\phi_{i}, \frac{\partial \phi_{i}}{\partial x_{i}}, \dot{\phi}_{i}\right]+$

$$
+\sum_{i} \frac{\partial \mathscr{L}[\ldots]}{\partial \phi_{i}} y_{i}+\sum_{i} \frac{\partial \mathscr{L}[\ldots]}{\partial \frac{\partial \phi_{i}}{\partial x_{i}}} \frac{\partial y_{i}}{\partial x_{i}}+\sum_{i} \frac{\partial \mathscr{L}[\ldots]}{\partial \phi_{i}^{0}} \dot{\mu}_{i}+O\left(\varphi^{2}\right)
$$

$$
S[\phi+y]=\int d t \int d \mathscr{L}\left[\phi+\mu, \left.\frac{\partial \phi}{\partial x}+\frac{\partial y}{\partial x} \right\rvert\, \dot{\phi}+\dot{y}\right]=S[\phi]+\int d t \int d x \frac{\partial \mathcal{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]}{\partial \phi} y(x)+
$$

$$
+\int d t \int d x \frac{\partial \mathscr{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]}{\partial \frac{\partial \phi}{\partial x}} \frac{\partial y}{\partial x}+\int d t \int d x \frac{\partial \mathscr{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]}{\partial \dot{\phi}} \dot{q}+\ldots
$$

by ports

The bounden condition are satisfied by ϕ and $\phi(\pm \infty)+y(\pm \infty)=\phi(\pm y)$ become ϕ ratify b.c.
It follows $\phi(\pm \infty)=0$

$$
S[\phi+y]=S[\phi]+\int d t \int d x y(x)\{\underbrace{\frac{\partial \mathscr{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathscr{L}}{\partial \frac{\partial \phi}{\partial x}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathscr{L}}{\partial \dot{\phi}}\right)}\}+O\left(y^{2}\right)
$$

Has do vanish for any $y(x)$ variation, has the following E_{g}. have to be ratified:
Lagrangian $\frac{\partial \mathcal{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \frac{\partial \phi}{\partial x}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)=0$
We sometimes mure $\partial_{x} \phi \equiv \frac{\partial \phi}{\partial x}$

Example of ID field: $\quad \mathscr{L}\left[\phi, \frac{\partial \phi}{\partial x}, \dot{\phi}\right]=\frac{1}{2} M \dot{\phi}^{2}-\frac{r e^{2}}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}$ stopped $9 / 8 / 2022$

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial \phi}=0 \quad \frac{\partial}{\partial t}\left(\frac{\partial \mathscr{L}}{\partial \dot{\phi}}\right)=M \ddot{\phi} \quad \frac{\partial}{\partial x} \frac{\partial \mathscr{L}}{\partial\left(\partial_{x} \phi\right)}=-2 a \frac{\partial^{2} \phi}{\partial x^{2}} \\
& \left.E O M: \frac{\partial \mathscr{L}}{\partial \phi}-\frac{2}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \partial^{\partial}}\right)-\frac{\partial t}{\partial t}\left(\frac{\partial \mathscr{L}}{\partial \dot{\phi}}\right)=0\right\}-M \ddot{\phi}+2 a^{2} \frac{\partial^{2} \phi}{\partial x^{2}}=0 \quad \text { or } \quad\left(\frac{\partial^{2}}{\partial t^{2}}-2 a^{2} \partial \partial^{2} \partial x^{2}\right) \phi=0
\end{aligned}
$$

Solution is propagating wave $\phi(x \pm v t)$ because $\ddot{\phi}=v^{2} \phi^{\prime \prime}$ and $\frac{\partial^{2} \phi}{\partial x^{2}}=\phi^{\prime \prime}$ $\left(-M v^{2}+r Q^{2}\right) \phi^{\prime \prime}(x \pm v t)=0$ and $v=\theta \sqrt{\frac{r}{M}}$ is the velocity of propagating wove.

1.2. Hamiltomion formulation
generalized or canonical $\left.\pi(x, t)=\frac{D}{J \dot{\phi}} \phi, \partial_{x} \phi, \dot{\phi}\right]$
momentum :
$\pi(x, t)$ is a continuous function of x just like field $\phi(x, t)$ i
Homiltomion density: $\mathcal{H}\left[\phi, O_{x} \phi, \pi\right]=\pi \dot{\phi}-\mathcal{L}\left[\phi, \partial_{x} \phi, \dot{\phi}\right]$
our example: $\quad \pi(x, t)=M \dot{\phi}$ ant $M\left[\phi, \partial_{x} \phi, \pi\right]=\frac{1}{2} M \dot{\phi}^{2}+\frac{20^{2}}{2}\left(\partial_{x} \phi\right)^{2}=\frac{1}{2 M} \Pi^{2}+\frac{r 0^{2}}{2}\left(\partial_{x} \phi\right)^{2}$ total $H[\phi, \pi]=\int 44\left[\frac{1}{2 M} \pi^{2}+\frac{1}{2} 2 e^{2}\left(D_{x} \phi\right)^{2}\right]$
What is energy contained in a sound wave? $\dot{\phi}= \pm v \phi^{\prime}(x-v t)$ and $\Pi= \pm \mu v \phi^{\prime}(x-v t)$

$$
\text { Hence } H[\phi, \pi]=\int_{-\infty}^{\infty} d x\left(\frac{1}{2} M v^{2}+\frac{1}{2} r a^{2}\right)\left[\phi^{\prime}(x-v t)\right]^{2}=\underbrace{\left.\frac{1}{2} M 0^{2} \frac{r}{M}+\frac{1}{2} r a^{2}\right)}_{r a^{2}} \int_{-\infty}^{\infty}\left[\phi_{-\infty}^{\prime}(x)\right]^{2} d x
$$

Exarcine: Compute sperific heat (for clasical ID chaim of phonons)
We med energy deming: $\mu=\frac{1}{L} \frac{\int d \Gamma e^{-B H} H}{\int d \Gamma e^{-B H}}=-\frac{1}{L} \frac{\partial}{\partial B} \ln \int d \Gamma e^{-B H}$
for diserete aystems $d \Gamma=\prod_{i} d x_{i} d p i$
this mytem con be disaretized: $d \Gamma=\prod_{i} d \phi_{i} d \pi_{i}$
We will we the trick for geradratic 'Ylamictomions $\phi=\frac{1}{\sqrt{B}} \Phi$

$$
\pi=\frac{1}{\sqrt{13}} \widetilde{\widetilde{ }}
$$

then $\mu=-\frac{1}{L} \frac{\partial}{\partial \beta} \ln (\left(\frac{1}{\beta}\right)^{N} \underbrace{\left.\int d \tilde{\Gamma} e^{-\tilde{H}}\right)}_{\text {Not } B \text { s dependent }}$ then $B H=\frac{1}{2 M}$

$$
\begin{aligned}
& \mu=\frac{N}{L} \frac{\partial}{\partial B}(\ln B)=\frac{N}{L} \frac{1}{B}=\frac{N}{L} \cdot T \\
& c_{V}=\frac{\partial \mu}{\partial T}=\frac{N}{L}=M \quad \text { demity of phomons }
\end{aligned}
$$

Eguivalent to egenipartition thoorem $\mu=\frac{1}{2} k_{B} T+\frac{1}{2} k_{B} T$ $\underbrace{\substack{\text { rinetic }}}_{\text {energy f ocilator }}{ }_{\text {pritentiol }}^{1}$
But solids hase $c_{v} \alpha T^{3}$

Quanturn chain of atoms
 areicable of low T.
In Q.H. We here disanete stotes of hammonic osaicator enailable $E=\hbar \omega\left(m+\frac{1}{2}\right)$

In guantum mechanics $\left[\hat{p}_{i}, \hat{x}_{i}\right]=-i t \delta_{i j}$ when Clarrical conjugate variabers rotify $\left[p_{i}, x_{i}\right]=\delta_{i j}$ poisson bracats

Since π and ϕ are conomically congugate veridbles they unot ratisfy

$$
\left\{\pi(x), \phi\left(x^{\prime}\right)\right\}=\delta\left(x-x^{\prime}\right)
$$

In Quantum formulation we quentize the fields, hence $\left[\hat{\Pi}(x), \hat{\phi}\left(x^{\prime}\right)\right]=-$ it $\delta\left(x-x^{\prime}\right)$
$\hat{\phi}(x)$ and $\hat{\Pi}(x)$ are now guoutun fields
They are not just feunctions of x and t but Hemition operators.
Chasrical hamiltomion $H[\phi, \pi] \rightarrow$ is grantized to $\hat{H}[\hat{\phi}, \hat{\pi}]$

$$
\hat{H}\left[\hat{\Phi}_{1} \hat{\Pi}\right]=\int d u\left[\frac{1}{2 M} \hat{\pi}^{2}+\frac{1}{2} r e^{2}\left(\partial_{x} \hat{\phi}\right)^{2}\right]
$$

How to solve guadretic Hlamiltomion?
Deringtives con he ovvided in Fomier opoce.

$$
\tilde{\phi}(x)=\frac{1}{\sqrt{L}} \sum_{\mathcal{L}} e^{i g x} \hat{\phi}_{2} \text { hnex } \hat{\phi}_{g}=\frac{1}{\sqrt{L}} \int_{0}^{x} d x \hat{\phi}(x) e^{-i g x}
$$

Fint Brillonime sone only: $g=\frac{2 \pi}{L} m=\frac{2 \pi}{2} \frac{m}{N} \quad \hat{\pi}(x)=\frac{1}{\sqrt{L}} \sum_{\rho}^{\infty} e^{i g x} \frac{\pi}{/ /}$

$$
\begin{aligned}
& \int \frac{d u}{L} e^{i\left(\frac{1}{y}+q_{0}\right) x}=\delta_{y_{1}=-g_{2}} \int \frac{\alpha u}{L}=\delta_{\delta_{1}=-g_{2}}
\end{aligned}
$$

Define $\omega_{f}=v|g|=0 \sqrt{\frac{3}{M}}|g|$ hence $\frac{1}{2} r 0^{2} g^{2}=\frac{1}{2} \omega_{f}^{2} M$
Finally $\hat{H}\left[\phi_{\rho}, \hat{\pi}_{f}\right]=\sum_{f} \frac{1}{2 H} \hat{\pi}_{f} \hat{\Pi}_{f}+\frac{1}{2} M \omega_{f}^{2} \hat{\phi}_{f} \phi_{f}$ lỉe guontun harmonic oxcilator

Recall alpabre of guentum harmonic osalator:
$H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \quad$ with spectrum $\quad E_{m}=\omega\left(m+\frac{1}{2}\right)$ here $\hbar \rightarrow 1$
egmidistent energies
con be interpreted as μ-particles in a adore with energy ω.
There particles ore bosons became the state can be oceupied by many particles
trenfornation to ladiler operators

$$
\begin{array}{ll}
e=\sqrt{\frac{m \omega}{2}}\left(\hat{x}+\frac{i}{m \omega}\right. & \hat{p} \\
e^{+}=\sqrt{\frac{m \omega}{2}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \quad\left[\hat{p}_{i}, \hat{x}_{i}\right]=-i \delta_{i j}
\end{array}
$$

hence $\left[a, Q^{+}\right]=\frac{m \omega}{2}\left[\hat{x}+\frac{i}{m \omega} \hat{p}, \hat{x}-\frac{i}{m \omega} \hat{p}\right]=1$ as needed for bosons and $e^{+} Q=\frac{m \omega}{2}\left(\hat{x}^{2}+\frac{1}{m^{2} \omega^{2}} \hat{p}^{2}-\frac{1}{m \omega}\right)=\frac{m \omega}{2} \hat{x}+\frac{1}{2} \frac{1}{m \omega} \hat{p}^{2}-\frac{1}{2}$
hence $H=\omega\left(a^{+} a+\frac{1}{2}\right)$

Boer to solving phonon problem $\quad \hat{H}\left[\phi_{\rho}, \hat{\pi}_{f}\right]=\sum_{f} \frac{1}{2 H} \hat{\pi}_{f} \hat{\Pi}_{\rho}+\frac{1}{2} M \omega_{f}^{2} \hat{\phi}_{f} \hat{\phi}_{f}$
Define larder openetors

$$
\begin{aligned}
& Q_{f}=\sqrt{\frac{M \omega_{q}}{2}}\left(\hat{\phi}_{f}+\frac{i}{M \omega_{g}} \hat{\Pi}_{-g}\right) \\
& Q_{f}^{+}=\sqrt{\frac{M \omega_{f}}{2}}\left(\hat{\phi}_{-g}-\frac{i}{M \omega_{f}} \Pi_{q}\right)
\end{aligned}
$$

$\hat{\phi}_{j}^{+}=\bar{\phi}_{-j}$ became ${ }_{\text {real }}(x)$ is
cher

$$
\left[Q_{f}, Q_{f}^{+}\right]=\frac{M \omega_{f}}{2}\left[\phi_{f}+\frac{i}{M \omega_{f}} \pi_{-j}, \phi_{-f}-\frac{i}{M \omega_{j}} \pi_{f}\right]=\frac{M \omega_{f}}{2} \frac{i}{M \omega_{j}}(\underbrace{\left[\pi_{-j_{1}} \phi_{j f}\right.}_{-i}]-\underbrace{\left[\phi_{f}, \pi_{f}\right.}_{i}])=1
$$

$$
\begin{aligned}
& Q_{f}^{+} Q_{j}=\frac{M \omega_{f}}{2}\left(\hat{\phi}_{-j}-\frac{i}{M \omega_{j}} \hat{\Pi}_{f}\right)\left(\hat{\phi}_{f}+\frac{i}{M \omega_{j}} \hat{\Pi}_{-j}\right)=\frac{M \omega_{f}}{2}\left(\hat{\phi}_{-j} \hat{\phi}_{f}+\frac{1}{M^{2} \omega_{j}^{2}} \hat{\Pi}_{f} \hat{\Pi}_{-g}+\frac{i}{M \omega_{\rho}}\left(\phi_{j} \Pi_{j}-\pi_{\rho} \phi_{\alpha}\right)\right) \\
& \omega_{j}\left(Q_{g}^{+} Q_{f}+\frac{1}{2}\right)=\sum \perp M \omega^{2} \hat{h} \hat{\phi}+1 \hat{\Pi} \hat{\pi}
\end{aligned}
$$

$$
\hat{H}\left[\hat{\phi}_{f}, \pi_{f}\right]=\sum_{f \in 13 Z} \frac{1}{2 H} \pi_{f} \hat{\Pi}_{-f}+\frac{1}{2} M \omega_{f}^{2} \hat{\phi}_{f} \phi_{f}
$$

Finally $H=\sum_{f^{\in \mid B Z} f} \omega_{f}\left(Q_{f}^{+} Q_{f}+\frac{1}{2}\right)$ with $\omega_{f}=\sqrt{\frac{2}{M}}(1 g \mid c)$ Stopped 9/13/2022

What is specific heat of a quantum chain?

$$
z=\operatorname{Tr}\left(e^{-\beta H}\right)=\sum_{m}\langle m| e^{-\beta \sum_{\alpha} \omega_{\alpha}\left(o_{j}^{+} o_{\alpha}+\frac{1}{2}\right)}|m\rangle \quad \text { where }|m\rangle=\left|m_{q^{\prime}}\right\rangle \otimes\left|m_{g_{1}}\right\rangle \otimes \ldots\left|m_{g_{n}}\right\rangle
$$

con he 10>

$$
|1\rangle=Q_{f}^{+}|0\rangle
$$

$$
|1\rangle=\left(a_{f}^{+}\right)^{+}|0\rangle
$$

$$
Z=\prod_{\alpha} \sum_{m_{\rho}=0}^{\infty}\left\langle m_{\alpha}\right| e^{-\beta \omega_{\alpha}\left(m_{\dot{\sigma}}+\frac{1}{2}\right)}\left|m_{\alpha}\right\rangle=\prod_{\alpha} \sum_{M_{j}=0}^{\infty}\left(e^{\left.-\beta \omega_{\alpha}\right)^{m}} e^{-\frac{1}{2} \beta \omega_{\rho}}=\overline{/} \frac{e^{-\frac{1}{2} \beta \omega_{\rho}}}{1-e^{-\beta \omega_{j}}}\right.
$$

$$
\begin{aligned}
& \mu=-\frac{1}{L} \frac{2}{\partial \beta} \ln z=-\frac{1}{L} \frac{\partial}{\partial \beta} \sum_{f}\left(-\frac{1}{2} \beta \omega_{\rho}-\ln \left(1-e^{-\beta \omega_{j}}\right)\right)=-\frac{1}{L} \sum_{f}\left(-\frac{1}{2} \omega_{f}-\frac{e^{-\beta \omega_{j}} \omega_{\alpha}}{1-e^{-\beta \omega_{j}} \alpha}\right) \\
& =\sum_{f}\left(\frac{1}{2} \omega_{j}+\frac{\omega_{f}}{e^{\beta \omega_{j}}}\right)
\end{aligned}
$$

$N \neq \mathbb{R} \sum_{f \in 1 B z} \rightarrow V\left(\frac{d^{p} f}{\left(2 \pi \pi^{s}\right)}\right.$
At low T :

$$
\begin{aligned}
& \mu \approx \mu_{0}+T^{D+1} \cdot \frac{1}{v^{D}} \int_{0}^{\infty} \frac{d^{D} x}{(2 \pi)^{D}} \frac{x}{e^{x}-1} \\
& c_{v}=\frac{d M}{d T}=c \cdot T^{D}
\end{aligned}
$$

 hence this is orly order of magnitude estimation.

Second quantization Athondg Simmons Chptz

- Let's start with the strangle particle wave function $\Psi_{\lambda}(\vec{r}): \quad H^{\prime \prime} \Psi_{\lambda}=\varepsilon_{\lambda} \psi_{\lambda}$

$$
\underset{\underset{x}{\|}}{\langle\vec{r}}|\lambda\rangle=\psi_{\lambda}(\vec{r})
$$

- For 2 pastides, the two possible wave functions are

$$
\psi\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{\lambda_{1}}\left(x_{1}\right) \psi_{\lambda_{2}}\left(x_{2}\right) \mp \psi_{\lambda_{2}}\left(x_{1}\right) \psi_{\lambda_{1}}\left(x_{2}\right)\right) \text { fermions - }
$$

$$
\text { browns }+
$$

symmetric wane function for bosoms antisymmetric - II- forfernions
In Dirac motivation we would write

$$
\left|\lambda_{1} \lambda_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\lambda_{1}\right\rangle \otimes\left|\lambda_{2}\right\rangle \mp\left|\lambda_{2}\right\rangle \otimes\left|\lambda_{1}\right\rangle\right)
$$

- For IV-particles we con write:

Here $\varphi=+1$ or -1 for boons or fermions ξ^{p} is (-1) or (+1) for odd or even permutations for fermions $(+1)$ for lions

$$
C=\frac{1}{\sqrt{N_{i}^{\prime} \prod_{\lambda=0}^{0}\left(M_{\lambda}!\right)}}
$$

N - number of all particles
M_{λ}-occupation of each singe particle state
Example 3 particles permutations

$$
\begin{array}{llll}
P_{1} P_{2} P_{3} & \frac{(-1)^{?}}{1} \begin{array}{lll}
1 & 2 & 3
\end{array} & +1 \\
1 & 3 & 2 & -1 \\
2 & 1 & 3 & -1 \\
2 & 3 & 1 & +1 \\
3 & 2 & 1 & -1 \\
3 & 1 & 2 & +1
\end{array}
$$

For fermions the same mavefunction is conveniently represented with the slater defermiment:

$$
\left.\begin{array}{l}
\text { Slater determinant: } \\
\left\langle x_{1}, x_{2}, \ldots x_{N} \mid \lambda_{1}, \lambda_{2} \ldots \lambda_{N}\right\rangle=C \cdot \operatorname{Det}\left(\begin{array}{l}
\psi_{N}\left(x_{1}\right), \psi_{\lambda_{1}}\left(x_{N}\right), \ldots \\
\psi_{\lambda_{2}}\left(x_{N}\right), \psi_{\lambda_{1}}\left(\psi_{N}\right), \ldots . \psi_{\lambda_{2}}\left(x_{N}\right) \\
\vdots \\
\psi_{\lambda_{N}}\left(x_{1}\right) \\
\end{array}\right) \ldots \\
\psi_{\lambda_{N}}\left(x_{N}\right)
\end{array}\right)
$$

These wave function ore often cumbersome to deal with, in particular when the number of particles is not fixed, i.e., superposition of states with different N.

1) Any quantum state can be witter as a linear superposition of some product states written in occupation representation (in a chosen single particle basis) ii..)

$$
|\psi\rangle=\sum_{m} \alpha_{m}|n\rangle \text { where }|m\rangle=\left|m_{1} m_{2} \ldots m_{N}\right\rangle \alpha \pm\left|m_{1}\right\rangle \otimes\left|m_{2}\right\rangle \otimes \ldots\left|m_{N}\right\rangle
$$

how many times a state is occupied for fermions $M_{\text {; con be } 0 \text { or l } 11010}$

These product states are forming the many -body estrin, which spans the Fork space.
2) Instead of working with 2^{N} mans) many body. ot oates we mould t rather more with $2 N$ operators.

We introduce roising/lanvering ladder operators $Q_{i}^{+} / Q_{\text {; }}$ which increase / decrease the number of particles in a given state:

$$
\begin{align*}
& Q_{i}^{+}\left|m_{1} m_{2}, \ldots, m_{i}, . .\right\rangle=\sqrt{m_{i}+1} \xi^{s_{i}}\left|m_{1}, m_{2}, \ldots, m_{i}+1, \ldots\right\rangle \tag{2}\\
& e_{i}\left|m_{1} m_{2}, \ldots, m_{i}, . .\right\rangle=\sqrt{m_{i}} \xi^{s_{i}}\left|m_{1}, m_{2}, \ldots, m_{i-1}, \ldots\right\rangle
\end{align*}
$$

here $s_{i}=\sum_{j=1}^{i-1} m_{j}$
For boons $\xi=1$ hence ripen is always positive, lent we have $\sqrt{ }$ prefoctor For fermions there is no prefactor $Q_{i}^{+}|0\rangle=|1\rangle$ and $Q_{i}^{+}|1\rangle=0 \quad Q_{i}|1\rangle=|0\rangle \quad Q_{i}|0\rangle=0$ however me have to account for the sign. The nigh counts all fermions which come in Fork apace before the isth state. We coned also choose the ones that come offer the i-th stake, knt me have to be consistent once we make a choice.

- By repeated application of e_{1}^{+}it is easy to pee that:

$$
\left|m_{1} m_{2}, \ldots\right\rangle=\prod_{i} \frac{1}{\sqrt{m_{i}!}}\left(Q_{i}^{+}\right)^{m_{i}}|0\rangle
$$

No extra sign because the product is ordered and stands for: $\left(Q_{1}^{+}\right)^{M_{1}} \ldots\left(Q_{N-1}^{+}\right)^{M_{N-1}}\left(Q_{N}^{+}\right)^{M_{N}}|0\rangle$

- From adefintion (2) it also follow that $a_{i}^{+} Q_{i}\left|m_{1} \ldots m_{i} \ldots\right\rangle=m_{i}\left|m_{1} \ldots m_{i} \ldots\right\rangle$ hence $O_{i}^{+} O_{i}=\hat{M}_{i}$ is muller operator.
- Note that comuntation relations for operators $\mathcal{Q}_{i}, Q_{i}^{+}$take care of the sign of the were function. The state is completely ondioymmetric because

$$
\left[a_{i}^{+}, o_{j}^{+}\right]_{-}=0 \text { and hence }\left(Q_{i}^{+} Q_{j}^{+}+Q_{j}^{+} Q_{i}^{+}\right)\left(m_{1} \mu_{2}, \ldots\right)=0
$$

The fact that femiomia state cen not be occupied more than once is taken core of by the fact that $Q_{i}^{+} Q_{i}^{+}=O$, which follars from the fort that $\left[a_{i}^{+}, Q_{i}^{+}\right]_{-}=0$

- What did we achieve: Thatead of working with $2 N$ states we can work with $2 N$ operator with a simple algebra.

Simple example: Suppose we hare 3 sites with electrons with 1 pin

We choose the the order of Angle particle stales!

1	2	3	4	5	6
$1 \uparrow$	$1 \downarrow$	$2 \uparrow$	$2 \downarrow$	$3 \uparrow$	$3 \downarrow$

Identify Forks pau: For sou is 2^{6} large, ie, $2^{\text {Nites } x \text { Nopins }}$

$$
\begin{aligned}
& |000000\rangle \equiv|0\rangle \\
& |100000\rangle \equiv 1 \uparrow 00\rangle \\
& 1010000\rangle \equiv|\downarrow 00\rangle \\
& 1001000\rangle \equiv|0 \uparrow 0\rangle \\
& \begin{array}{l}
101000\rangle=| \downarrow 0 \downarrow\rangle=a_{2}^{+} O_{6}^{+}|0\rangle=-Q_{6}^{+} 0^{+}|0\rangle
\end{array} \\
& \vdots .2|\lambda| \\
& |1||1| 1\rangle \equiv|\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow\rangle=O_{1}^{+} o_{2}^{+} \cdots O_{6}^{+}|0\rangle \\
& \text { mil } T \text { liter rite } \underbrace{}_{\text {only in this order no rigi }}
\end{aligned}
$$

Yaotead of dealing with 2^{6} stoles me will me 12 openatos $Q_{1}^{+}, \ldots \theta_{6}^{+}, Q_{1}, \ldots \theta_{6}$
a) WC need to learn how to change the single particle basis

$$
\begin{array}{ll}
|\lambda\rangle=a_{\lambda}^{+}|0\rangle & \text { we knows }|\lambda\rangle \text { peris is comp } \\
\left.\left|\sum_{\lambda}\right| \lambda\right\rangle\langle\lambda|=1 \\
|\tilde{\lambda}\rangle=a_{\tilde{\lambda}}^{+}|0\rangle &
\end{array}
$$

We know $|x\rangle$ vars is complete, hence
\tilde{x} con be expanded
in λ complect e hers
Hence $Q_{\tilde{\lambda}}^{+}=\sum_{\lambda} Q_{\lambda}^{+}\langle\lambda \mid \tilde{\lambda}\rangle$
example: $|\lambda\rangle=|x\rangle$

$$
\begin{aligned}
& |\tilde{\lambda}\rangle=|r\rangle \\
& Q_{z}^{+}=\int d Q^{+}(x)\left\langle x(r\rangle=\int d Q^{+}(x) \frac{1}{\sqrt{v}} e^{i r x}\right.
\end{aligned}
$$

stopped here 9/15/2022

Repeat from previous lecture:

- From odefintion $e_{i}^{+}\left|m_{1} m_{2}, \ldots, m_{i}, ..\right\rangle=\sqrt{m_{i}+1} \varphi^{s_{i}}\left|m_{1}, m_{2}, \ldots, m_{i}+1, \ldots\right\rangle$

$$
e_{i}\left|M_{1} M_{2}, \ldots, M_{i}, . .\right\rangle=\sqrt{M_{i}} \xi^{s_{i}}\left|M_{1}, m_{2}, \ldots, M_{i}-1, \ldots\right\rangle
$$

it follow that $Q_{i}^{+} Q_{i}\left|m_{1} \ldots M_{i} \ldots\right\rangle=M_{i}\left|M_{1} \ldots M_{i} \ldots\right\rangle$ hence $Q_{i}^{+} Q_{i}=\hat{M}_{i}$ is mumbler operator.

- By repeated application of e_{i}^{+}it is easy to pee that:

$$
\left|m_{1} m_{2}, \ldots\right\rangle=\prod_{i} \frac{1}{\sqrt{m_{i}!}}\left(Q_{i}^{+}\right)^{m_{i}}|0\rangle
$$

No extra ign because the product is ordered and stands for: $\left.\left(Q_{1}^{+}\right)^{M_{1}} \ldots\left(Q_{N-1}^{+}\right)^{M_{N-1}}\left(Q_{N}^{+}\right)^{M_{N}} \mid 0\right)$

- Change of basis $Q_{\tilde{\lambda}}^{+}=\sum_{\lambda} Q_{x}^{+}\langle\lambda \mid \tilde{\lambda}\rangle$
b) Ore body operators:
examples $T=\sum_{i} \frac{p_{i}^{2}}{2 m}=\int d p \frac{p^{2}}{2 m} \sum_{i} \delta\left(p-p_{i}\right)=\int d p \frac{p^{2}}{2 m} M_{p}$

$$
V=\sum_{i} V\left(x_{i}\right)=\int d x V(x) \sum_{i} \delta\left(x-x_{i}\right)=\int d V V(x) M(x)
$$

How does the IB operator act on a stalk? In dia-gond representation it is simple

$$
\hat{O}\left|m_{1} m_{2}, \ldots m_{N}\right\rangle=\sum_{\lambda} O_{\lambda} m_{\lambda}\left|m_{1} m_{2} \ldots m_{\mu}\right\rangle=\sum_{\lambda} O_{\lambda} O_{\lambda}^{+} \theta_{\lambda}\left|m_{1} m_{2}, \ldots M_{\mu}\right\rangle
$$

sigenosolve

$$
\text { Example: } \sum_{p_{i}} \frac{p^{2}}{2 m_{n}} \cdot m_{p}\left|m_{p}, m_{p 2} \cdots m_{p \nu}\right\rangle
$$

To got general result we change the basis:

$$
\begin{aligned}
\hat{O}=\sum_{\lambda_{1} \lambda_{2} \lambda} 0_{\left.\right|_{\lambda}} Q_{\lambda_{1}}^{+}\left\langle\lambda_{1} \mid \lambda\right\rangle\langle\lambda n v o l n e & \left\langle\lambda \mid \lambda_{2}\right\rangle Q_{\lambda_{2}}
\end{aligned}=\sum_{\lambda_{1} \lambda_{2}} Q_{\lambda_{1}}^{+} \mathbb{O}_{\lambda_{2}}\left\langle\lambda_{1}\right| \hat{O}\left|\lambda_{2}\right\rangle
$$

Example: $T=\int d p \frac{p^{2}}{2 m} Q_{p}^{+} Q_{p}=\int d x Q^{+}(x)\left(-\frac{\nabla^{2}}{2 m}\right) Q(x) \quad$ berceuse $\quad\langle x| \frac{p^{2}}{2 m}\left|x^{\prime}\right\rangle=-\delta\left(x-x^{\prime}\right) \frac{\nabla^{2}}{2 m}$
Reminumen $\hat{p}=-i \hat{\nabla} \Rightarrow\langle x| \hat{p}\left|x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)|-i \nabla\rangle$

$$
\langle x| \frac{p^{2}}{2 m}\left|x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)\left(-\frac{p^{2}}{2 m}\right)
$$

c) Two body operator (Coulomb repulsion) in position representation $\hat{V}\left|m_{1}, m_{2}, \ldots m_{N}\right\rangle=\frac{1}{2} \sum_{i \neq j} V\left(\vec{r}_{i}-\vec{r}_{j}\right) \underline{\left|m_{1} m_{2} \ldots m_{N}\right\rangle} \quad$ where $\left|m_{1}, m_{2} \ldots m_{N}\right\rangle=Q^{+}\left(r_{1}\right) Q^{+}\left(r_{2}\right) \ldots e^{+}\left(r_{N}\right)|\phi\rangle$ guess: $\hat{V}=\frac{1}{2} \int d \vec{r} \int d \vec{r}^{\prime} Q^{+}(\vec{r}) Q^{+}\left(\vec{r}^{\prime}\right) V\left(\vec{r}-\vec{r}^{\prime}\right) Q\left(\vec{r}^{\prime}\right) Q(\vec{r})$
con odd s, s^{\prime} by $\vec{r} \rightarrow \vec{r}_{1}$, and $\vec{r}^{\prime} \rightarrow \vec{r}^{\prime}, s^{\prime}$
Notice that this is not $M(\vec{r}) M(\vec{r})$: check:

$$
\begin{aligned}
& Q^{+}(\vec{r}) Q^{+}\left(\vec{r}^{\prime}\right) Q\left(\vec{r}^{\prime}\right) Q(\vec{r})=-Q^{+}(\vec{r}) Q^{+}\left(\vec{r}^{\prime}\right) Q(\vec{r}) Q\left(\vec{r}^{\prime}\right) \\
&=-Q^{+}(\vec{r})\left[\delta\left(\vec{r}^{\prime} \vec{r}^{\prime}\right)-Q(\vec{r}) Q^{+}\left(\vec{r}^{\prime}\right)\right] Q\left(\vec{r}^{\prime}\right) \\
&=-\delta\left(\vec{r}^{-} \vec{r}^{\prime}\right) M\left(\vec{r}^{\prime}\right)-Q(\vec{r}) Q^{+}\left(\vec{r}^{\prime}\right) \\
& M(\vec{r}) M\left(\vec{r}^{\prime}\right)
\end{aligned}
$$

proof for fermions:

$$
\begin{aligned}
& \hat{V}\left|m_{1} m_{2} \ldots m_{N}\right\rangle=\frac{1}{2} \iint d^{3} d^{3} d^{\prime} V\left(\vec{r}-\vec{r}^{\prime}\right) \underbrace{Q^{+}(r) Q^{+}\left(\vec{r}^{\prime}\right) Q\left(\overrightarrow{r^{\prime}}\right) Q(\vec{r})} \underbrace{Q^{+}\left(\vec{r}_{1}\right) Q^{+}\left(\vec{r}_{2}\right) \ldots Q^{+}\left(\vec{r}_{\mu_{N}}\right)|0\rangle} \\
& Q^{+}(r) Q^{+}\left(\vec{r}^{\prime}\right) Q\left(\vec{r}^{\prime}\right) Q(\vec{r}) \underbrace{Q^{+}\left(\vec{r}_{1}\right) \theta^{+}\left(\vec{r}_{2}\right) \ldots Q^{+}\left(\vec{r}_{1 \mu}\right)|0\rangle}_{\left|m_{1} m_{2} \ldots m_{11}\right\rangle} \\
& Q^{+}(r) Q^{+}\left(\vec{r}^{\prime}\right) Q\left(\vec{r}^{\prime}\right)\left[\delta\left(r-r_{1}\right)-Q^{+}\left(\vec{r}_{1}\right) Q(\vec{r})\right] Q^{+}\left(\vec{r}_{2}\right) \ldots Q^{+}\left(\vec{r}_{\mu}\right)|0\rangle
\end{aligned}
$$

finest exchange on $Q^{t}\left(\vec{r}_{1}\right)$ is mining in this term.

$$
\begin{aligned}
Q^{+}(\vec{r}) Q^{+}\left(\vec{r}^{\prime}\right) Q\left(\vec{r}^{\prime}\right) & {[\sum_{i} \delta\left(\vec{r}-\vec{r}_{i}\right)(-1)^{s_{i-1}} Q^{+}\left(\vec{r}_{1}\right) \ldots Q^{+}\left(\vec{r}_{N}\right)-\underbrace{11} \underbrace{e^{+}\left(\vec{r}_{2}\right) \ldots Q^{+}\left(\vec{r}_{1 r}\right) Q(\vec{r})}]|0\rangle } \\
& \text { exchange with eng } 0^{+} \text {is mistime }
\end{aligned}
$$

exchange with any \mathcal{O}_{i}^{+}is missing for lessons the same except $(-1) \rightarrow(+1)$

$$
Q^{+}(\vec{r}) \underbrace{巳^{+}\left(\vec{r}^{\prime}\right) O\left(\vec{r}^{\prime}\right)}_{M\left(\vec{r}^{\prime}\right)} \sum_{i} \delta\left(\vec{r}-\vec{r}_{:}\right)(-1)^{S_{i-1}} Q^{+}\left(\vec{r}_{1}\right) \ldots Q^{+}\left(\vec{r}_{N}\right) \quad|0\rangle
$$

will be moved together, hence no extra sign

$$
Q^{+}(\vec{r}) \underbrace{\left.\sum_{i \neq j} \delta\left(\vec{r}-\vec{r}_{i}\right) \delta\left(\vec{r}^{-}-\vec{r}_{j}\right)(-1)^{s_{i-1}} Q^{+}\left(\vec{r}_{1}\right) \ldots Q^{+}\left(\vec{r}_{N}\right) 10\right\rangle}_{\text {comes from the teat that } 0^{+}}
$$

comes from the fact that Q_{i}^{+}was

$$
\sum_{i \neq j} \delta\left(\vec{r}-\vec{r}_{i}\right) \delta\left(\vec{r}-\vec{r}_{j}\right) e^{+}\left(\vec{r}_{1}\right) \ldots Q^{+}\left(\vec{r}_{N}\right)
$$

Conclusion: $\frac{1}{2} \iint d \vec{r} d \vec{r}^{\prime} V\left(\vec{r}-\vec{r}^{\prime}\right) Q^{+}(r) Q^{+}\left(\vec{r}^{\prime}\right) Q\left(\vec{r}^{\prime}\right) Q(\vec{r})|M \ldots\rangle=\frac{1}{2} \sum_{i \neq j} V\left(\vec{r}_{i}-\vec{r}_{j}\right)|M \ldots\rangle$ which conducts the proof.
2.2. Applications of $2^{\text {nd }}$ onantizotion

Election Hem. in $2^{\text {mid }}$ grantization
Q) Nearlyfoee electrons $V_{e e} \ll \frac{p^{2}}{2 m}$

$$
\begin{aligned}
& O_{s}^{+}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{z} e^{i \vec{z} \vec{r}} O_{2 s}^{+} \\
& V(\vec{r})=\sum_{\alpha} V_{g} e^{i \vec{\rho} \vec{r}} \quad \text { note that for parrodic } V(\vec{r}) \Rightarrow g \in G \text { recipural } \\
& H=\sum_{s} \int d^{3} \frac{1}{V} \sum_{r x^{\prime}} e^{i\left(\vec{k}-\vec{r}^{\prime}\right) \vec{r}}\left[\theta_{r s}^{+} \frac{r^{2}}{2 m} \theta_{r s}+\sum_{f} V_{\alpha} e^{i \dot{q} \cdot \vec{r}}\right] \text { stopped here 9/20/022 }
\end{aligned}
$$

Exact diagonalization of o motrix $T_{2 r^{\prime}}=\frac{r^{2}}{2 M} \delta_{r-r^{\prime}}+V_{r^{\prime}-r}$; only $r, r+G$ mix

$$
\begin{array}{lll}
u^{+} T u=E= \\
T=u E u^{+}
\end{array}
$$

$$
H=\sum_{s j} \xi_{\alpha} \hat{\alpha}_{j s}^{+} \hat{\alpha}_{\alpha s}
$$

whene $\alpha_{f}^{+}=\sum_{2} Q_{2}^{+} u_{z g}$
ground state: $|\Omega\rangle=N \prod_{\xi_{s}\left\langle E_{F}\right.} \alpha_{j S}^{+}|0\rangle$
If V_{ρ} is comstant then fern sunfoer is splase
In peneral Femi surfoce is compliceted
 $2 \triangleright$ inffere in $3>$ rpace.
Remen ler

$$
\begin{aligned}
& \sum_{2} \rightarrow V\left(\frac{33}{(2 \pi)^{3}}\right. \\
& \left.\left\langle g_{i}\right\rangle-\frac{1}{N} \sum_{2} g_{2}=\frac{V}{N} \int \frac{b^{3}(2 \pi}{(2 \pi}\right)^{3} g(t)=V_{c e l} \int \frac{p^{3} r}{(2 \pi)^{3}} g(t)
\end{aligned}
$$

If priodic $\vec{r}-\vec{g}=\vec{\epsilon}_{0}$

Bloch's theorem
If Coulomb repulsion con be neglected
(token into oecorout in a moon-fild way) the solution satisfies Bloch's theorem

$$
\psi_{m \vec{k}}(\vec{r})=e^{i \overrightarrow{\vec{z}} \cdot \vec{r}} \mu_{m z}(\vec{r}) \quad \text { where } \quad \mu_{m \in}(\vec{r}+\hat{R})=\mu_{m r_{c}}(\vec{r})
$$

entice vector
alterative form: $u_{m k}$ is periodic

$$
\psi_{m z}(\vec{r}+\vec{R})=e^{i \vec{k} \vec{R}} \psi_{m 2}(\vec{r})
$$

Single particle potentid $V(\vec{r})$ is periotic in the solid, ie., $V(\vec{r}+\vec{R})=V(\vec{r})$ It's fourier tronfforn contains only reciprocal vectors,i.e.) $V_{g}=\delta_{g G} V_{G}$

$$
\begin{aligned}
& \text { proof: } V_{\vec{f}}=\frac{1}{N_{\text {ac }}} \int e^{-i \vec{q} \vec{r}} V(\vec{r}) d^{3} r=\frac{1}{N_{\text {act }}} \sum_{\vec{\Sigma}} \int_{V_{\text {rel }}} e^{-i \vec{q}(\vec{r}+\vec{l})} V(\vec{r}) d^{3} r
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note that here } V(\vec{r})=\frac{1}{V_{\text {all }}} \sum_{\overline{\hat{a}}} e^{i \vec{i} \vec{r} \vec{r}} V_{\overrightarrow{\bar{c}}}
\end{aligned}
$$

It then follows that $H=\sum_{\xi}\left(\frac{2^{2}}{2 m_{2}} \delta_{G=0}+V_{G}\right) Q_{2}^{+} Q_{2+G}$ ant the matrix $T_{z n^{\prime}}=\frac{r^{2}}{2 m} \delta_{z z^{\prime}}+V_{G} \delta_{2-2^{\prime}=G}$ mixes only momenta that differ by reciprocal vector G.
Solution mount wei the form $\psi_{n}(\vec{r})=\sum_{\vec{G}} e^{i(\vec{r}+\vec{G}) \vec{r}} u_{\vec{k}_{1}, \vec{a}}$

this mast be periodic in lattice
be vern it only hes \vec{G} component in
Fourier expansion

Wamnier functions of tight bimating opprotimation
two simple regimes: - nearly free electrons in Bloch banols (A \&p orbitals)

- nearly bacized atomic states (for Mott inmmeating od ore')

For narrow valence sands the plane mares are not a good starting point (meed tor many). The atomic orbitals are not a gored starting paint either (they are not orthogonal ar complete.)

Better starting point in this situations are wanner orbitals.

- They cen be made exponentially localized provided they are made of lands with a gap in energy, and with total chen number $C=0$.

States in a solid

in this regime Wohminorlitels for 301 or $3 d+3 \mathrm{~s}$ might be good.

Wannier orbitals

$$
\phi_{m}(\vec{r}-\vec{E})=\sqrt{\frac{V_{\text {ele }}}{(2 \pi)^{3}}} \int_{1 k r} d^{3} r e^{-i \overrightarrow{2 r}} \sum_{m} \underbrace{\psi}_{m r}(\vec{r}) u_{m m}(\hat{k})
$$

can go beer

$$
\psi_{m \varepsilon}(\vec{r})=\sum_{\vec{k}_{m}} e^{i \vec{k} \vec{R}} u_{m m}^{*} \phi_{m}(\vec{r}-\vec{R})
$$

$\left|\phi_{M R}(\vec{r})\right| \rightarrow 0$ as $|\vec{r}-\vec{k}|$ is lange
a) approach atomic orbitals in the linn't $a \rightarrow \infty$ and are lovaliced

$$
\left|\phi_{m}(\vec{n}-\vec{k})\right|^{2} \rightarrow 0 \text { as }|\vec{r}-\vec{r}| \gg e
$$

b) constitute complete and orthoganal ringle electron hasis provided by Bloch weves. (The same Hicbert spoce that is sponned by Bloch woves is sponned by Wonmier)

$$
\sum_{m \curvearrowright}\left|\psi_{m n}\right\rangle\left\langle\psi_{m s}\right|=\sum_{m \vec{E}}\left|\phi_{m}(\vec{r}-\vec{k})\right\rangle\left\langle\phi_{m}(\hat{r}-\vec{k})\right| \quad \text { (jurt iment iofirution } \psi_{m n} \text { in) } \begin{gathered}
\text { to prove }
\end{gathered}
$$

Proofs: a) Functional dependence

$$
\begin{aligned}
& \phi_{m}(\vec{r}-\vec{r})=\sqrt{\frac{V_{\text {cer }}}{(2 \pi)^{3}}} \int d^{3} \overrightarrow{2} \sum_{m} e^{-i \vec{k} \vec{k}} e^{i \vec{k} \cdot \vec{r}} \mu_{m}(\vec{r}-\vec{k}) \mu_{m m}(\vec{k})= \\
& \sqrt{\frac{V_{\text {oer }}}{(2 \pi)^{3}}} \int d^{3} r \sum_{m}^{m} e^{\vec{k}(\vec{r}-\vec{R})} \mu_{m}(\vec{r}-\vec{k}) M_{m m}(\vec{r}) \text { depents on } \vec{r}-\vec{R}
\end{aligned}
$$

b) Orthogonality
we ranow: $\int \psi_{m z_{1}}^{*}(\vec{r}) \psi_{m z_{2}}(\vec{r}) d^{3} r=\delta_{m m} \delta_{r_{1} r_{2}}$ hence

Wonnic orlitals are like Founier transform of Bloch wores, ent with adhted flevititity of $K_{m m}(\vec{r})$ that dows loralization.

Simple excarcix: In the limit of vanishing external potential, determine the Wamnier orbitals for 3D Ignore lattice
This is had example became it does not ham a gap, hance not exponentially localized. In real materials with gap, better behaviour can be expected.

$$
\begin{aligned}
& \psi_{M z}(\vec{r})=\frac{1}{\sqrt{V_{k L}}} e^{i \vec{z} \vec{r}} \\
& \phi_{M}(\vec{r}-\vec{R})=\sqrt{\frac{V_{a m}}{(2 \pi)^{3}}} \int_{1 B t} d^{3} z e^{-i \vec{k} \vec{R}+i \vec{r} \cdot \vec{r}} \frac{1}{\sqrt{V}}=\frac{Q^{3 / 2}}{(2 \pi)^{3 / 2}} \int_{-\pi / 2}^{\pi / 2} d R_{x} e^{i R_{x}\left(x-R_{x}\right)} \times \cdots x \cdots \\
& \phi_{M}(\vec{r}-\vec{R})=\frac{8 e^{3 / 2}}{(2 \pi)^{3 / 2}} \frac{\sin \left(\pi \frac{x-R_{x}}{2}\right)}{\left(x-R_{x}\right)} \frac{\sin \left(\pi \frac{y-R_{y}}{2}\right)}{\left(y-R_{y}\right)} \frac{\sin \left(\pi \frac{z-R_{z}}{2}\right)}{\left(z-R_{z}\right)}
\end{aligned}
$$

 band with gap. $\varepsilon_{2}=\frac{r^{2}}{2 m}$!

Wey not constucting Nennier orhitel ly Founier tranforn each band reporrately, i.e, set $U_{\text {m }}(s)=\delta_{m}$?

Sighly degenereste porint creates kiuks in $\psi_{m s}(\vec{r})$ gange suppore we soot bends eccros this s-poth so that

$$
\left\langle\mu_{m k}(\vec{r}) \mid \mu_{m^{\prime} r t s k}\right\rangle=\delta_{m m^{\prime}}-O(\Delta r)
$$

This meass smoth gange in momentem Apace, which grorantees losaliced wonnce functions. Anry jump in or probucs osaladung slow foll-rff in R.

If me try to moke the gange mooth eccrors dyensete points we cone beck to the same
polnt and hore differect band \Rightarrow We can not treat every lond separadely, lut only the entire set of bands that overlap as a set.
Then we try to asrange the phore between mighblonig s-points such that the spread of Wanmer functions is mimimal, i.e.,

$$
\Omega=\left\langle r^{2}\right\rangle-\langle r\rangle^{2}=\min \text { where }\left\langle r^{m}\right\rangle=\int \phi_{m}^{*}(\vec{r}) r^{m} \phi_{m}(\vec{r}) d^{2} r
$$

It tums out we need to minmimie gangedependent part (the ow that debpentson u)
\vec{A} is Berry connection
Finating smooth gauge acrors the firm B.Z. is deeply connectud inth topology. Neunly nonzerv shem mumber, which chorecterives topological gap, cames obstruction for smooth gange, ond hence loralized Wanmier functions an not he foumd.

Arsume $C \neq 0$
We cen not masa womber out of
these banis
Con soy $C=f(\vec{A})$ Berry connation
If we have completely flat band with $C \neq 0$ and flathers dhe do doppolopy (not interaction)

Whot is Chern number?
for $2 D$ is stampler $C_{1}=\frac{1}{2 \pi} \oint \Omega^{12}\left(s_{2}\right) d^{3} g \quad C$ chem number
2DBZ
$\Omega^{\alpha \beta}(\stackrel{\rightharpoonup}{\xi})=\operatorname{Tr}\left(\frac{\partial A^{\beta}}{\partial k_{\alpha}}-\frac{\partial A^{\alpha}}{\partial r_{\beta}}+\left[A^{\alpha}, A^{\beta}\right]\right) \quad$ Berng curvature
 nicasures smorothness of the phase

If we have imversion nymmety, we con deteminm charn munber by parity chack TRIM's exprened in $\vec{b}_{11} \vec{l}_{2}, \vec{b}_{3}$

$$
\begin{aligned}
& \psi_{\bar{F}_{1}}(-\vec{r})= \pm \psi_{z_{i}}(\vec{r}) \text { for point TRIMS } \\
& \begin{array}{lll}
\| & \left(\frac{1}{2}, 0,0\right) \\
(-1)^{P_{k}, i} & \underline{I} \vec{r}=\vec{r}+\vec{G} & \left(0, \frac{1}{2}, 0\right)
\end{array} \\
& \vec{r}_{2}=0 \\
& \text { 站 } \vec{r}=-\vec{r} \sim \vec{r} \\
& \left(0,0, \frac{1}{2}\right) \\
& \left(\frac{1}{2}, \frac{1}{2}, 0\right) \\
& \left(\frac{1}{2}, 0, \frac{1}{2}\right) \\
& \text { (0, } \frac{1}{2}, \frac{1}{2} \text {) } \\
& \text { (} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \text {) } \\
& \text { if } t \Rightarrow \text { trinval } \\
& \text { if }-\Rightarrow \text { top-logical }
\end{aligned}
$$

If localized Namer function are found, we can mite tight limiting Hemiltonion to the low energy lands, ie.,
we mill show that:

$$
t_{i j}^{m m}=-\left\langle\phi_{m, R_{i}}\right| H^{0}\left|\phi_{m_{2} B_{j}}\right\rangle=-F T\left[u_{(e)}^{+} \in \epsilon_{e} U_{(0)}\right]
$$

Creation/tield operator:
from contimons model do discrete model

Original Hamictorion is

$$
\begin{aligned}
& H=\sum_{s} \int d^{3} r^{3} Q_{s}^{+}(\vec{r})\left[\frac{\hat{E}^{2}}{\frac{2}{m}}+V(\vec{r})\right] Q_{s}(\vec{r})+\frac{1}{2} \sum_{s s^{\prime}} \int d^{3} r^{\prime} \theta^{3} r^{\prime} V_{R e}\left(\vec{r}-r^{\prime}\right) Q_{s}^{+}(\vec{r}) Q_{s^{\prime}}^{+}\left(r^{\prime}\right) Q_{s^{\prime}}\left(\vec{r}^{\prime}\right) Q_{S}(\vec{r}) \\
& \underbrace{\frac{-\frac{\nabla^{2}}{2 m}}{}}_{H_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{U_{m m_{1}}^{*}(k) \varepsilon_{m}(k) U_{m m_{m}}(k) \quad \text { which proves }}_{\left(U^{+} \varepsilon_{n} U\right)_{m_{1} m_{2}}} \begin{aligned}
\text { that } t_{i j}^{m m}=-F T\left[U_{i(t)}^{+} \varepsilon U_{(0)}\right]
\end{aligned}
\end{aligned}
$$

Because $\phi\left(\vec{r}-\vec{k}_{i}\right)$ ere covalicat we respect $\left\langle\phi_{m_{1} R_{i}}\right| H_{0}\left|\phi_{m_{2} p_{j}}\right\rangle$ to foll off rapidly with $\left|R_{i}-e_{j}\right|$. Usually we comider min. t and nastm.n. t '.

Nest, the form of the Conlomit repulsion:

$$
\hat{V}=\frac{1}{2} \sum_{s s^{\prime}} \int d^{3} r d \vec{l}^{\prime} r^{\prime} V_{R R}\left(\vec{r}-r^{\prime}\right) Q_{s}^{+}(\vec{r}) Q_{s^{\prime}}^{+}\left(r^{\prime}\right) Q_{s^{\prime}}\left(\vec{r}^{\prime}\right) Q_{S}(\vec{r})
$$

with $Q_{2}(\vec{r})=\sum_{m_{1} i} \phi_{m}\left(\vec{r}-\vec{R}_{i}\right) Q_{\text {mir }}$ we hare

$$
\begin{aligned}
& \hat{V}=\frac{1}{2} \sum_{\substack{s s^{\prime} \\
i j \ell m}} U_{i j, m m}^{m_{2}, m_{2} m_{3} m_{n}} \quad O_{m_{1} i s}^{+} Q_{m_{2} j s^{\prime}}^{+} Q_{m_{3} \ell s^{\prime}} O_{m_{m} m s} \\
& \text { with } \bigcup_{i j e m}^{m_{1} m_{2} m_{3} m_{1}}=\iint d^{3} r^{3} d^{3} r^{\prime} \phi_{m_{1}}^{*}\left(\vec{r}-\vec{R}_{i}\right) \phi_{m_{2}}^{*}\left(\vec{r}-\vec{k}_{j}\right) V_{l e}\left(\vec{r}-\vec{r}^{\prime}\right) \phi_{m_{3}}\left(\vec{r}-\overrightarrow{R_{e}}\right) \phi_{m_{1}}\left(\vec{r}-R_{m}\right) \\
& \equiv\left\langle\phi_{m_{1} R_{i}} \phi_{m_{2} p_{j}}\right| V_{e_{e}}\left|\phi_{m_{3} R_{e}} \phi_{m_{1} R_{m}}\right\rangle
\end{aligned}
$$

The interaction in this representation tents to be short-ronged became of screaming in solids,i.e, in metals V is mot really $\frac{1}{r}$ but $\vec{R}_{i}=\vec{R}_{i}=\vec{R}_{c}=\vec{R}_{m n} \quad$ cover to $\frac{e^{-x r}}{r}$.

- For mingle vans me con anise $\hat{V}=\frac{1}{2} \sum_{s s^{\prime}} U_{i i i} Q_{i s}^{+} Q_{i s^{\prime}}^{+} Q_{i s} Q_{i s}$

$$
\begin{aligned}
& \frac{1}{2} \sum_{s} U_{i i i j} \theta_{i 5}^{+} \theta_{i 5}^{+} \theta_{i 5} \theta_{i s} \\
& \hat{V}=\sum_{i} U_{i=i} m_{i r} m_{i v}
\end{aligned}
$$

- For 50 orbitals end ty s shell it con be approximately unitten as:

$$
\hat{V} \approx(U-3 y) \frac{\hat{N}(\hat{N}-1)}{2}-2 y \vec{S}^{2}-\frac{1}{2} y \vec{L}^{2}+\frac{5}{2} y \hat{N}
$$

enact for $t_{z y} d$ orbitals
where $\hat{N}=\sum_{m s} Q_{m s}^{+} Q_{m s}$

$$
\begin{aligned}
& \vec{S}=\sum_{m s s^{\prime}} Q_{m s} \frac{1}{2} \vec{U}_{s s^{\prime}} Q_{m s^{\prime}} \\
& L_{m}=\sum_{m^{\prime \prime} m^{\prime \prime} s} i \varepsilon_{m m^{\prime \prime \prime} m^{\prime \prime}} Q_{m^{\prime} s}^{+} Q_{m^{\prime \prime} s}
\end{aligned}
$$

lovely this forces 1) maximal \vec{S}
2) maximal \vec{L} ot m. \vec{s}

The biggest term is charging energy $\frac{\hat{N}(\tilde{N}-1)}{2}$ mummer of peris

Hubbard model of Mott-Hubbard tiomition
If we have a simple bant and only on-site interaction,
A is single band thebaid model

$$
H=-\sum_{i j} t_{i j} \omega_{i s}^{+} \theta_{j s}+U \sum_{i} M_{i \uparrow} M_{i \downarrow}
$$

Exact solution exists for ID and ∞D.

- In ID the low energy excitations are CDW and SDW with different velocities

$$
v_{c}
$$

$N_{c} \neq N_{s}$ Apim-charges reparation

$$
v_{s}
$$

The system is alweys for from non-interocting Fermi' gas, ie., electron is dissentongled into charge + spin wore for org $U>0$.
The spectral function has no poles that mould correspond to the free electrons

- In ∞ D we have several phases
- Fermi liguial at small U (similar to Fermigas)
- Mot insulator of large U (disentangled atoms)

- Various magnetic phases at low T that are semn'ture to the precise form of $F_{i,}$

T1 vosomer between metal ant insulator
PM AFM state when N. N only
coexistence of metal and insulator $1^{\text {st }}$ order transition

- In 2D we do not hare exact solution.

It is beliered that the uniform phases roughly resemble cuprote's phase diagram. Numerical low T studies seem to suggest that various stope phones win ot low T.

No consensus of prendopap mechomirns oud conditions for SC.

- IS QCP of $T=0$, or first order Mott tramition with vary lon T ?
- Are there two phases of com T moth different sizes of the fermi surface?
- Is SC state moor stable than stripe phases? for whic t, t^{\prime} parameters?

Homework 1, 620 Many body

September 27, 2022

1) Using canonical transformation show that at half-filling and large interaction U the Hubbard model is approximately mapped to the Heisenberg model with the form

$$
\begin{equation*}
H=J \sum_{<i j>} \vec{S}_{i} \vec{S}_{j}-1 / 4 \tag{1}
\end{equation*}
$$

where $J=4 t^{2} / U$. Solution is in A\&S page 63 .
2) Obtain energy spectrum and the ground state wave function for water molecule in the tight-binding approximation. You can use the following tight-binding values $\varepsilon_{s}=-1.5$ Ry, $\varepsilon_{p}=-1.2$ Ry $\varepsilon_{H}=-1$ Ry $t_{s}=-0.4$ Ry $t_{p}=-0.3$ Ry $\alpha=52^{\circ}$

- Determine eigenvalue spectrum from tight-binding Hamiltonian
- The oxygen configuration is $2 s^{2} 2 p^{4}$ and hydrogen is $1 s^{1}$, hence we have 8 electrons in the system. Which states are occupied in this model?
- What is the ground state wave function?

3) Obtain the band structure of graphene and plot it in the path $\Gamma-K-M-\Gamma$. The hooping integral is t.
Show that expansion around the K point in momentum space leads to the following Hamiltonian

$$
\begin{equation*}
H_{\mathbf{k}}=\frac{\sqrt{3}}{2} t(\mathbf{k}-\mathbf{K}) \cdot \vec{\sigma} \tag{2}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma^{x}, \sigma^{y}\right)$ and σ^{α} are Pauli matrices. From that argue that the energy spectrum around the K point has Dirac form.

Let's use the standard notation

$$
\begin{align*}
\vec{a}_{1} & =a(1,0) \tag{3}\\
\vec{a}_{2} & =a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \tag{4}\\
\vec{b}_{1} & =\frac{2 \pi}{a}\left(1,-\frac{1}{\sqrt{3}}\right) \tag{5}\\
\vec{b}_{2} & =\frac{2 \pi}{a}\left(0, \frac{2}{\sqrt{3}}\right) \tag{6}
\end{align*}
$$

Here $r_{1}=\frac{1}{3} \vec{a}_{1}+\frac{1}{3} \vec{a}_{2}$ and $r_{2}=\frac{2}{3} \vec{a}_{1}+\frac{2}{3} \vec{a}_{2}$. The K point is at $\mathbf{K}=\frac{1}{3} \vec{b}_{2}+\frac{2}{3} \vec{b}_{1}$ and M point is at $\vec{M}=\frac{1}{2}\left(\vec{b}_{1}+\vec{b}_{2}\right)$.

Homamore 1

1) Using cannamical transformation show that at half filling and large U the Hlubbarol model is mapped to the

Heiissentery model

$$
\begin{array}{r}
H_{H M}=y \sum_{\langle i j\rangle}\left(s_{i} s_{j}-\frac{1}{4}\right) \\
y=\frac{4 t^{2}}{v}
\end{array}
$$

Solution page 63

Uncial idea is to use similarity transformation in the many body Hilbert space to transform Haviltorion

$$
\tilde{H} \rightarrow H^{\prime} \equiv e^{-t \hat{O}} H e^{t \hat{O}}=H-t[0, H]+\frac{t^{2}}{2!}[0,[0, H]]+\cdots
$$

\hat{O} is Hemition O will be of the order $\frac{1}{U}$ so that $40 \ll 1$
H^{\prime} master same mary-boty spectrum.
We revel: $H \equiv H_{u}+t H_{t}$ and $H_{v} \gg t H_{t}$
then:

$$
\begin{aligned}
& H^{\prime}= H-t\left[0, H_{0}+t H_{t}\right]+\frac{t^{2}}{2}\left[0,\left[0, H_{0}+t H_{t}\right]\right]+\cdots \\
& \underbrace{H_{0}}_{\text {!! }}+\underbrace{t H_{t}-t\left[0, H_{0}\right]}_{0}-t^{2}\left[0, H_{t}\right]+\frac{t^{2}}{2}\left[0,\left[0, H_{0}\right]\right]+O\left(\frac{t^{2}}{v}\right) \\
&
\end{aligned}
$$

We require $H_{t}=\left[0, H_{0}\right]$ this is equation for O !
Then $H^{\prime}=H_{v}-t^{2}\left[0, H_{t}\right]+\frac{t^{2}}{2}\left[0, H_{t}\right]=H_{v}-\frac{t^{2}}{2}\left[0, H_{t}\right]=H_{v}+\frac{t^{2}}{2}\left[H_{t}, 0\right]$
Here $H_{t}=-\sum_{\substack{i, i j \\ i_{j}}} C_{i 2}^{+} c_{j e}$ and our guess for $\hat{O}=\sum_{i_{i j p}}\left(P_{s} H_{t} P_{d}^{d^{i}}-P_{d}^{d i} H_{t} P_{s}\right) \frac{1}{U}$

1) Prove $\left[0, H_{u}\right]=H_{t}$
2) $H_{\text {ara }}$. . . any $y=P_{s} H^{\prime} P_{s}=\frac{4 t^{2}}{C} \sum_{\langle i, j\rangle}\left(\vec{s}_{i} \vec{s}_{j}-\frac{1}{h}\right)$

Ps prayed to singly coupled state

2) Obtain enenopy spectrum and ground state wave function for mater molecule in tight-linding approximation

H	s	p_{x}	p_{y}	p_{z}	h_{1}^{s}	h_{2}^{s}	
s	ε_{s}	0	0	0	t_{s}	t_{s}	
p_{x}	0	ε_{p}	0	0	$t_{p} \cos \alpha$	$t_{p} \cos \alpha$	
p_{y}	0	0	ε_{p}	0	$t_{p} \sin \alpha$	$-t_{p} \sin \alpha$	
p_{z}	0	0	0	ε_{p}	0	0	
h_{s}^{\prime}	t_{s}	$t_{p} \cos \alpha$	$t_{p} \sin \alpha$	0	ε_{h}	0	
h_{s}^{2}	t_{s}	$t_{p} \cos \alpha$	$-t_{p} \sin \alpha$	0	0	ε_{h}	

$$
\begin{aligned}
\varepsilon_{s} & =-1.5 R_{y} \\
\varepsilon_{p} & =-1.2 R_{y} \\
\varepsilon_{h} & =-1 R_{y} \\
t_{s} & =-0.4 R_{y} \\
t_{p} & =-0.3 R_{y} \\
\alpha & =52^{\circ}
\end{aligned}
$$

Determine eigenvalue sperturn.
The oxygen configuration is $2 s^{2} 2 p^{4}$ and hydrogen $1 s^{\prime}$ hence we have P electrons. Which states are occupied in this moil? Whet is the ground stale mare function?
3) Obtain bond structure of graphene $\varepsilon\left(r_{r}\right)$ and plot it in the path $\Gamma \rightarrow k \rightarrow M \rightarrow \Gamma$

$$
\begin{aligned}
& \vec{a}_{1}=Q(1,0) \\
& \vec{a}_{2}=Q\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& \vec{r}_{1}=\frac{1}{3} \vec{a}_{1}+\frac{1}{3} \vec{a}_{2} \\
& \vec{r}_{2}=\frac{2}{3} \vec{a}_{1}+\frac{2}{3} a_{2}
\end{aligned}
$$

$$
H=-\sum_{\langle i j} t_{i j}\left(Q_{i}^{+} t_{j}+l_{j}^{+} a_{i}\right) \quad H^{0}=-\sum_{\langle i j} t_{j}\left(e^{i \vec{k} \vec{k}_{j j}} Q_{2}^{+} b_{2}+e^{\left.-i \vec{k} \vec{k}_{j} l_{2}^{+} Q_{2}\right)}\right.
$$

How to get $\vec{b}_{11} \vec{l}_{2}$?

H_{r}	Q_{r}	b_{r}
a_{r}^{+}	0	$f(\vec{r})$
b_{r}^{+}	$f^{*}(r)$	0

only weant-meigh bor hopping.

$$
\begin{aligned}
& \varepsilon_{r}^{2}-|f(r)|^{2}=0 \\
& \varepsilon_{r}= \pm|f(r)|
\end{aligned}
$$

$$
f(\vec{k})=t\left(e^{i \vec{k} \vec{R}_{1}}+e^{i \overrightarrow{\xi_{k}} \vec{R}_{2}}+e^{i \vec{r} \cdot \vec{R}_{3}}\right) \quad \xi_{2}= \pm|f(k)|^{2}
$$

$$
\vec{R}_{1}=\vec{r}_{2}-\vec{r}_{1}=\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right) e
$$

$$
\vec{R}_{2}=\vec{r}_{2}-\vec{r}_{1}-\vec{a}_{2}=\left(0,-\frac{1}{\sqrt{3}}\right) a
$$

$$
\vec{R}_{3}=\vec{r}_{2}-\vec{r}_{1}-\vec{a}_{1}=\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right) a
$$

$$
f(\vec{k})=t\left(e^{i \frac{\lambda_{x} a}{2}+i z_{y} a \frac{1}{2 \sqrt{3}}}+e^{-i \frac{\lambda_{x} a}{2}+i i_{y} a \frac{1}{2 \sqrt{3}}}+e^{-i \xi^{2} e \frac{1}{\sqrt{3}}}\right)
$$

$$
f(\overrightarrow{2})=t\left(2 e^{i i^{2} Q \frac{1}{2 \sqrt{3}}} \cos \frac{2 \times \infty}{2}+e^{-i x_{y} e \frac{1}{\sqrt{3}}}\right)
$$

$k_{x}=\pi$

$$
\operatorname{sy} e=\frac{2 \pi}{\sqrt{3}}
$$

$$
f(k)=t\left(2 e^{i \xi \alpha \frac{\sqrt{3}}{3}} \cos \frac{x_{x} a}{2}+1\right) e^{-i k j e \frac{1}{\sqrt{3}}}
$$

$$
t^{2}\left(1+4 \cos ^{2} \frac{k_{x} e}{2}+4 \cos \frac{k_{k} e}{2} \cos \left(r_{y} a \frac{\sqrt{2}}{2}\right)\right)
$$

$$
2+2 \cos 2_{x} e
$$

$$
\cos ^{2} \frac{\theta}{2}=\frac{1+\cos \theta}{2}
$$

Finally $\varepsilon_{2}= \pm t \sqrt{3+2 \cos \left(r_{x} e\right)+4 \cos \left(\frac{1}{2} r_{x} \theta\right) \cos \left(\frac{\sqrt{3}}{2} r_{y} e\right)}$

$$
\begin{aligned}
& \left(\frac{\frac{l_{1}}{\frac{l_{2}}{l_{3}}}}{\frac{l_{1}}{l_{1}}}\right)\left(\phi_{1} \phi_{2} \phi_{3}\right)=2 \pi I d \\
& \left(\begin{array}{ccc}
1 & \frac{1}{2} & 0 \\
0 & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & -\frac{1}{\sqrt{3}}, & 0 \\
0, & \frac{2}{\sqrt{3}}, & 0 \\
0 & 1 & 0
\end{array}\right) \\
& b_{1}=\frac{2 \pi}{2}\left(1_{1}-\frac{1}{\sqrt{3}}\right) \\
& b_{2}=\frac{2 \pi}{2}\left(0, \frac{2}{\sqrt{3}}\right) \\
& \vec{x}_{n}=\frac{1}{2} \vec{l}_{1}+\frac{1}{2} \vec{l}_{2}=\frac{2 \pi}{2}\left(\frac{1}{2}, \frac{1}{\sqrt{3}}\right) \\
& z_{k}=\frac{1}{3}\left(\vec{l}_{2}-\vec{l}_{1}\right)+\vec{l}_{1}=\frac{2 \pi}{2}\left(\frac{2}{3}, 0\right)
\end{aligned}
$$

Slow that Hemiltaion around point $\vec{k}=\frac{2 \pi}{a}\left(\frac{2}{3}, 0\right)$ can be written as $H=\frac{\sqrt{3}}{2}$ te $(\overrightarrow{2}-\vec{k}) \cdot \vec{己}$ where $\vec{Z}=\left(2_{x}, z_{3}\right)$

Expand around $\vec{r} \sim \vec{k}=\frac{2 \pi}{2}\left(\frac{2}{3}, 0\right) \quad \vec{g} \equiv(\vec{r}-\vec{k}) e \Rightarrow \vec{z} e=\binom{\frac{4 \pi}{3}+f_{x}}{+f_{y}}$

$$
\begin{aligned}
& -t\left(2 e^{i g y} \cos \left(\frac{\sqrt{3}}{3}+\frac{f x}{2}\right)+1\right) e^{-i \frac{g_{y}}{3}}=-t\left(2 e^{i g y}\left(-\frac{1}{2} \cos \left(\frac{\rho x}{2}\right)-\frac{\sqrt{3}}{2} \min \left(\frac{g x}{2}\right)\right)+1\right) e^{i \frac{g_{3}}{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =-t\left(-\left(1+\frac{\sqrt{3}}{2} i i_{2}\right)\left(1+\frac{\sqrt{3}}{2} j_{x}\right)+1\right)\left(1+i \frac{g_{3}}{3}\right) \\
& -t\left(-\lambda-\frac{\sqrt{3}}{2}\left(p_{x}+i p_{y}\right)+\lambda\right)=\frac{\sqrt{3}}{2} t\left(f_{x}+i g_{y}\right)
\end{aligned}
$$

$f(x) \approx \frac{\sqrt{3}}{2} t\left(g_{x}+i g_{y}\right)$ hence

H_{f}	b_{2}	a_{2}		
b_{2}^{+}	0	$\frac{\sqrt{3}}{2} t\left(f_{x}-i g_{y}\right)$		
a_{2}^{+}	or $\quad H_{f}=\frac{\sqrt{3}}{2} t\left(p_{x}+i g_{y}\right)$	0	\quad	where
---:	$\quad \vec{己}=($			

where $\vec{己}=\left(2^{x}, 2^{y}\right)$

$$
\begin{aligned}
& \varepsilon_{p}^{2}=\frac{3}{4} t^{2}\left(\rho_{x}^{2}+g_{y}^{2}\right) \\
& \xi_{g}= \pm \frac{\sqrt{3}}{2} t|g|
\end{aligned}
$$

Quantum Spin Chain \& maqnons (2.2.5 AS boob)
Here we freeze the charge degrees of freestom and consider only the spin degrees of freedom.
We are interested in magnetic interaction between localized moments (for example in Mott insulator) The process of virutud exchange happens because of quantum tunneling even if there is a gap for charge excitation

virtual even if gop in charge excitations

$$
H=-y \sum_{\langle i j\rangle} \stackrel{\rightharpoonup}{S}_{i} \cdot \vec{S}_{j}
$$

$\left[S_{i}^{\alpha}, S_{j}^{\beta}\right]=i \delta_{i j} \varepsilon_{\alpha B r} S_{i}^{\alpha}$ only on the same nite it does not commute total spin $s \geqslant \frac{1}{2}$
$y>0$ ferromagnet
$y<0$ entiferromagnet
Here we mill solve the problem in the limit of large spins S. (react solution in ID My Bethe ansate, in ∞D ley mean field)
How longe ore spin fluctuations?

$$
\left.\Delta S^{\alpha} \Delta S^{\beta} \sim\left|\left\langle\left[S^{\alpha}, S^{s}\right]\right\rangle\right|=\varepsilon_{\alpha \rho r} K S^{\alpha}\right\rangle \mid \leqslant S
$$

$\frac{\Delta S^{\alpha}}{S} \frac{\Delta S^{n}}{S} \leqslant \frac{1}{S}$ condurion $\frac{\Delta S}{S} \propto \frac{1}{\sqrt{s}}$ No for longe s are small!

Holstein-Primakaff transformation:

$$
\begin{aligned}
& S_{i}^{-}=Q_{i}^{+}\left(2 S-Q_{i}^{+} Q_{i}^{1 / 2}\right. \\
& S_{i}^{+}=\left(2 S-Q_{i}^{+} Q_{i}\right)^{1 / 2} Q_{i} \\
& S_{i}^{z}=S-Q_{i}^{+} Q_{i}
\end{aligned}
$$

The folloming identitios sufficiertly characterize the spin comuntation relations:

$$
\begin{array}{lrl}
{\left[S^{+}, S^{-}\right]=2 S^{z}} & \text { Proop: } & {\left[S^{+}, S^{-}\right]=\left[S^{x}+i S^{y}, S^{x}-i S^{y}\right]=-2 i\left[S^{x}, S^{y}\right]=2 S^{z}} \\
{\left[S^{z}, S^{+}\right]=S^{+}} & {\left[S^{z}, S^{+}\right]=\left[S^{z}, S^{x}+i S^{y}\right]=i S^{y}+i(-i) S^{x}=s^{+}} \\
{\left[S^{z}, S^{-}\right]=-S^{-}} & {\left[S^{z}, S^{-}\right]=\left[S^{z}, S^{x}-i S^{y}\right]=i S^{y}-i(-i) S^{x}=-S^{-}}
\end{array}
$$

Holstein Primakoff satify thase idertition, hena they faithfully represent spin
Proof!

$$
\begin{aligned}
{\left[s^{+}, s^{-}\right] } & =\left(2 s-a^{+} a\right)^{\frac{1}{2}} e a^{+}\left(2 s-a^{+} 0\right)^{\frac{1}{2}}-e^{+}\left(2 s-a^{+} a\right)^{\frac{1}{2}}\left(2 s-a^{+} Q\right)^{\frac{1}{2}} a \\
& =(2 s-\hat{M})^{\frac{1}{2}}(1+\hat{M})(2 s-\hat{M})^{\frac{1}{2}}-e^{+}(2 s-\hat{M}) a
\end{aligned}
$$

$$
\hat{m} \hat{m}-\hat{m}
$$

When $S \gg \frac{1}{2}$ we con apprortimate $(2 S-\hat{M})^{1 / 2}$ mith $\sqrt{2 S}$ berame

$$
(2 s-\hat{M})^{1 / 2} \sim \sqrt{2 s}+O\left(\frac{1}{\sqrt{s}}\right)
$$

$$
\begin{aligned}
& =2 S+(2 S-1) \hat{m}-\hat{m} \hat{m}-2 S \hat{m}+\hat{m} \hat{m}-\hat{m}=2(S-\hat{m})=2 S^{z}
\end{aligned}
$$

$$
\begin{aligned}
& (2 s-\hat{M})^{1 / 2}\left[\left(\$-a^{+} a\right) a-e\left(\$-e^{+} a\right)\right]=(2 s-\hat{M})^{1 / 2} \frac{[a, \hat{M}]}{\hat{a}}=s^{+} \\
& -a^{+} e a+a a^{+} a \\
& -\hat{\mu} a+a \hat{\mu}
\end{aligned}
$$

1) We stant mith Ferromagnet, We ore looking for low-energy excitations Ground state is $\left.|\phi\rangle^{\text {mile }}=\left|\begin{array}{cccc}1 & s^{2} & 3 & \cdots\end{array}\right| s\right\rangle \otimes|s\rangle \cdots$
maxinal s on eark rite

$$
\begin{aligned}
H= & -\sum_{\langle i j\rangle} Y_{i j}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right] \quad \begin{array}{l}
S_{i}^{-} \approx \sqrt{2 s} Q_{i}^{+} \\
S_{i}^{+} \simeq \sqrt{2 s} Q_{i} \\
H \approx
\end{array} \\
& -\sum_{\langle i j\rangle} Y_{i j}\left[\left(S-\hat{M}_{i}\right)\left(S-\hat{M}_{j}\right)+\frac{1}{2} 2 S\left(Q_{i} Q_{j}^{+}+Q_{i}^{+} Q_{j}\right)\right] \begin{array}{l}
S^{z}=S-\hat{M}_{i} \\
\end{array} \\
& -\sum_{\langle i j\rangle} H_{i j}\left[S^{2}-S\left(\hat{M}_{i}+\hat{M}_{j}\right)+\hat{M}_{i} \hat{M}_{j}+S\left(Q_{i} Q_{j}^{+}+Q_{i}^{+} Q_{j}\right)\right]
\end{aligned}
$$

$\sum_{(i j\rangle} Y_{i j} \stackrel{\text { m.m. }}{=} \frac{1}{2} N z y$ where z is connectinity
N is \# rites

$$
\begin{gathered}
H=-\frac{1}{2} N z y s^{2}+s \sum_{\langle i j\rangle} \varphi_{i j}\left(a_{i}^{+}-a_{j}^{+}\right)\left(a_{i}-a_{j}\right)-\sum_{\langle i j} y_{i} y_{i} \hat{m}_{i} \hat{m}_{j} \\
O(1)
\end{gathered}
$$

Fowrier tronsform $Q_{\vec{g}}=\frac{1}{\sqrt{N}} \sum_{i} e^{i \vec{g} \cdot \vec{R}_{i}} Q_{i} \quad$ and $\quad \theta_{i}=\frac{1}{\sqrt{N}} \sum_{\vec{g} \in B z} e^{-i \vec{g} \vec{R}_{i}} \theta_{\vec{j}}$ where $\left[Q_{\vec{f}}, Q_{\hat{f}}^{+}\right]=\delta_{\delta j^{\prime}}$ becaure of $\left[Q_{i}, Q_{j}^{+}\right]=\delta_{i j}$

$$
\begin{aligned}
& H=-\frac{1}{2} N z y s^{2}+S \sum_{<i j\rangle} Y_{i j} \frac{1}{N}\left(e^{i \vec{g} \vec{R}_{i}}-e^{i \vec{j} \vec{k}_{j}}\right) Q_{f}^{+}\left(e^{-i \dot{j} \vec{R}_{i}}-e^{-i \vec{j}^{\prime} \vec{R}_{j}}\right) Q_{\rho^{\prime}} \\
& S \sum_{f j^{\prime}} \frac{1}{2} \sum_{R_{i i}} y_{i j} \underbrace{\sum_{i} e^{i\left(g-g^{\prime}\right) R_{i}}}_{\delta_{f f^{\prime}}} \begin{array}{c}
\left(1-e^{-i g R_{i j}}\right)\left(1-e^{i g^{\prime} R_{i j}}\right) Q_{f}^{+} Q_{f^{\prime}} \\
1+1-e^{i g R}-e^{-i f R}=2\left(1-\omega f_{f}^{R R)}\right.
\end{array} \\
& \text { ortwelly }{ }^{\prime} \text { jo }
\end{aligned}
$$

tores cone of $n \cdot m$, hunce $\quad \frac{1}{2} S \sum_{f, \vec{R}_{i j}} Y_{i j} 2\left(1-\cos \left(\vec{p} \vec{R}_{i j}\right)\right) a_{j}^{+} Q_{\alpha}$

$$
H=-\frac{1}{2} N z y s^{2}+\sum_{j \in B z} \omega_{\vec{j}} Q_{\vec{j}}^{+} Q_{\vec{j}} \quad \text { where } \omega_{f}=s \sum_{\vec{R}_{j}} y_{i j}\left(1-\cos \left(\vec{j}_{j} \cdot \vec{R}_{i j}\right)\right)
$$

ID: $\quad \omega_{j}=25 y(1-\cos g a)$
2D дриare: $\quad \omega_{y}=2 S y\left[2-\cos \left(p_{x} e\right)-\cos \left(p_{y} e\right)\right]$
3Deatiiu: $\quad \omega_{j}=25 y\left[3-\cos \rho_{y} a-\cos g_{2} a-\cos y_{z} a\right]$

Generivally we appect $\omega_{f}(f \ll 1) \approx\left(s y 0^{2}\right) \cdot \dot{g}^{2}$ uning Foylor expanzion of ω_{f}.

2) Andiferromagnet

Bipartite lattices con be solved mith H.P. because me book at suall fluctuations (magnoms) from the Nell pround state.
Non-bipartite lattices are funtrated and do not ordes. Typically hare ovly paramagnons, i.e., difffuse scattering and wo shatp excitation.
Example of non-bipartite lattice: Liongulor lathice

On hipartite lattice we just double the vice of the unit cell

trustration on triongular lathice

Therefore $S_{B}^{x} \rightarrow S_{B}^{x}$ mith spima rotated along x-axis.
But this is ochieved by connonical framsformation

Therefore $\left.\begin{array}{l}S_{B}^{x} \rightarrow S_{B}^{x} \\ \\ S_{B}^{7} \rightarrow-S_{B}^{y} \\ S_{B}^{z} \rightarrow-S_{B}^{z}\end{array}\right\}$

$$
\begin{aligned}
& S_{B}^{+} \rightarrow S_{B}^{x}-i S_{B}^{y}=S_{B}^{-} \\
& S_{B}^{-} \rightarrow S_{B}^{x}+i S_{B}^{y}=S_{B}^{+}
\end{aligned}
$$

Now ground state (or vacumm) is liye befor: $\phi=|S\rangle \otimes|5\rangle \otimes|5\rangle \cdots \otimes|s\rangle$

$$
H=\sum_{<i j\rangle} Y_{i j}\left(S_{i}^{z} S_{j}^{z}+\frac{1}{2} S_{i}^{+} S_{j}^{-}+\frac{1}{2} S_{i}^{-} S_{j}^{+}\right)=\sum_{i \in A} \frac{1}{2} \sum_{j \in B} Y_{i j}\left[-S_{i}^{z} S_{j}^{z}+\frac{1}{2} S_{i}^{+} S_{j}^{+}+\frac{1}{2} S_{i}^{-} S_{j}^{-}\right]
$$

continue:

$$
H=\sum_{k i j} Y_{i j}\left(S_{i}^{z} S_{j}^{z}+\frac{1}{2} S_{i}^{+} S_{j}^{-}+\frac{1}{2} S_{i}^{-} S_{j}^{+}\right)=\sum_{i \in A} \frac{1}{i} \sum_{j \in B} y_{i j}\left[-S_{i}^{z} S_{j}^{z}+\frac{1}{2} S_{i}^{+} S_{j}^{+}+\frac{1}{2} S_{i}^{-} S_{j}^{-}\right]
$$

Holateim-Prinokoff: $\left.S_{i, A}^{-} \approx \sqrt{2 S} Q_{i}^{+} \quad S_{i, B}^{-} \approx \sqrt{2 S} b_{i}^{+}\right]$to remimol us
$\left.\begin{array}{ll}S_{i, A}^{+} \simeq \sqrt{2 S} Q_{i} & S_{i, B}^{+} \simeq \sqrt{2 S} \text { bi } \\ S_{A}^{z}=S-\hat{M}_{i}^{A} & S_{B}^{z}=S-\hat{M}_{i}^{B}\end{array}\right\} \begin{aligned} & \text { that me hove two } \\ & \text { interpenctietry sublatices }\end{aligned}$

$$
H=\frac{1}{2} \sum_{\substack{i \in A \\ j \in B}} y_{i j}[-(\underbrace{\left.-\hat{M}_{i}^{4}\right)\left(S-\hat{M}_{j}^{B}\right.}_{-S^{2}+S\left(M_{i}+M_{j}\right)-M_{j} M_{j}})+S Q_{i}^{+} b_{j}^{+}+S Q_{i} b_{j}]
$$

$$
H=-\frac{1}{2} N z y S^{2}+\frac{1}{2} \sum_{\substack{i \in A \\ j \in B}} y_{i j} S\left(\hat{M}_{i}^{A}+\hat{M}_{j}^{B}+Q_{i}^{+} b_{j}^{+}+\theta_{i} b_{j}\right)
$$

quadratic HamiCfomion, let not usual H.O.
Can be turned in 14.0 . by transformation

$$
f_{j}=\frac{1}{\sqrt{N}} \sum_{j \in R B z} e^{-i f^{2} \vec{z}_{j}} \vec{b}_{j}
$$

he ca $\vec{\gamma}_{-j}=\gamma_{j} ; r_{0}=H^{+} S z y$
$\left.m_{j}^{A}+\gamma_{0} M_{j}^{B}+\gamma_{j} a_{j}^{+} b_{-g}^{+}+\gamma_{-j} a_{j} b_{-j}\right)$
with $K_{\vec{j}} \equiv\left(\begin{array}{ll}r_{0} & r_{\vec{j}} \\ r_{\vec{j}} & r_{0}\end{array}\right)$
We will solve this H by Bogolintor transformation

$$
\begin{aligned}
& H=-\frac{N}{x} z y S^{2}+\sum_{j}\left(A_{0} M_{j}^{A}+\gamma_{0} M_{\alpha}^{B}+\gamma_{j} a_{j}^{+} b_{-g}^{+}+N_{-\alpha} O_{j} b_{-j}\right) \\
& H=-\frac{N}{2} z y S^{2}+\sum_{\alpha} \gamma_{0} a_{f}^{+} a_{j}+\gamma_{0} \underbrace{+1}_{b_{-j} b_{-j-g}^{+} b_{-g}^{+}}+\gamma_{g} a_{j}^{+} b_{-g}^{+}+\beta_{-j} b_{-j} a_{j})
\end{aligned}
$$

$$
\begin{aligned}
& H=-\frac{N}{k} z y S^{2}+\frac{t}{\hbar} \sum_{j \in B} y_{j i j} S\left(M_{j}^{A}+M_{\alpha}^{B}+e^{i \vec{j} \vec{R}_{i j}} a_{j}^{+} b_{-g}^{+}+e^{-i \vec{g}_{i j}} a_{j} b_{-j}\right)
\end{aligned}
$$

Bogolinbor transformation
2-D pinons $\psi_{g}=\binom{a_{g}}{b_{-j}^{+}} \quad \psi_{g}^{+}=\left(a_{21}^{+} b_{-j}\right)$ with which $\hat{H}=\psi^{+} K \psi+$ cons We will try to solve this with linear transformation ψ is not fermion or boons, indeed
$\theta_{f}=U_{g} \psi_{g}$ with U_{f} is 2×2 matrix.

$$
\left[\psi, \psi^{+}\right]=2_{z}
$$

We need to preserve computation relations. Since these are horns, we have $\left[\psi_{f}, \psi_{f}+\right]=2^{3}$
Note that for fermions $\left[\psi_{f}, \psi_{f}^{+}\right]=1$ (and moth is simpler).

Require: $\left[\phi_{\rho}, \phi_{g}^{+}\right]=2^{3} \Rightarrow\left(2^{3}\right)_{i j}=\left(u_{g}\right)_{i g}\left[\psi_{g l}, \psi_{g m}^{+}\right]\left(u_{g}^{+}\right)_{\text {mi }}=\left(u_{j} z^{3} u_{j}^{+}\right)_{i j}$

we this require: $U_{g} Z_{3} U_{f}^{+}=Z_{3}$ For boors u is not unitary!
We defined before $\begin{aligned} \phi_{f}=u_{f} \psi_{g} \Rightarrow \begin{aligned} \psi_{f} & =u_{g}^{-1} \phi_{\alpha} \\ \psi_{f}^{+} & =\phi_{g}^{+}\left(u_{g}^{-1}\right)^{+}\end{aligned}\end{aligned}$

Need to diagonalize $\left(M^{-1}\right)^{+} K U^{-1} \equiv \tilde{K} \in$ diagonal \leftrightarrows not rimi'Carty transformation
because $\tau_{3}=u \tau_{3} u^{+} \Rightarrow 1=\tau_{3} u \tau_{3} u^{+} \Rightarrow\left(u^{+}\right)^{-1}=\tau_{3} u \tau_{3} \quad$ like $\tilde{k}=T^{-1} K T$
Hence we oliggonatice $\tilde{K}=\tau_{3} u \tau_{3} K u^{-1}$
Yes, now it is Amilan'ty
trempormation!
or equivalently $\tau_{3} \tilde{K}=\left(\begin{array}{cc}\omega_{j}^{(1)} & 0 \\ 0 & -\omega_{j}^{(n)}\end{array}\right)=u\left(\tau_{3} k\right) u^{-1}$
Hence eigenvalues/eigenvectors of $\Sigma_{3} K$ are simply related to eigennalnes of \widetilde{K} Recall our original problem $K=\left(\begin{array}{ll}r_{0} & r_{2} \\ r_{g} & 1\end{array}\right)$ and $z_{0} K=\left(\begin{array}{ccc}r_{0} & 1 & r_{2} \\ -r_{2} & 1 & -r_{0}\end{array}\right)$

Eigenvalues: $\operatorname{Det}\left(\begin{array}{cc}r_{0}-\lambda_{g}, & r_{2} \\ -r_{g}, & -x_{0}-\lambda_{k}\end{array}\right)=0$

$$
\begin{aligned}
& -\left(r_{0}-\lambda_{g}\right)\left(r_{0}^{2}+\lambda_{g}\right)+r_{g}^{2} \quad \text { here } r_{g}=\frac{1}{2} s y \sum_{\bar{\delta}} \cos \vec{j} \cdot \vec{\delta} \\
& r_{0}^{2}-\lambda_{g}^{2}=r_{g}^{2} \Rightarrow \lambda_{g}= \pm \sqrt{x_{0}^{2}-r_{j}^{2}}
\end{aligned}
$$

Hence $u z_{3} k u^{-1}=\left(\begin{array}{ccc}\omega_{2} & 0 \\ 0 & & -\omega_{j}\end{array}\right)$ $\omega_{j} \equiv \sqrt{N_{0}^{2}-N_{j}^{2}}$

$$
\tilde{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\omega_{g} & 0 \\
0 & 1
\end{array}-\omega_{f}\right)=\left(\begin{array}{cc}
\omega_{j}, & 0 \\
0, & \omega_{f}
\end{array}\right)
$$

What is w_{p} in real systems

$$
N_{g}=\frac{i}{i} s y \sum_{\delta} \omega-\frac{1}{j} \cdot \vec{\delta} \quad \text { and } \omega_{j}=\sqrt{r_{0}^{2}-\gamma_{j}^{2}}
$$

ID: $\quad r_{f}=25 y \cos g e$

$$
\omega_{\alpha}=2 s y \sqrt{1-\cos ^{2} g e}=2 s y \mid \sin g a l
$$

generic small \vec{p} :

$$
\begin{aligned}
& \gamma_{g} \approx \frac{i}{i} S y \sum_{\delta} 1-\frac{1}{2}(\mid \vec{q} \cdot \vec{\sigma})^{2}=\alpha_{0}\left(1-\frac{1}{z} \sum_{\delta}\left(\overrightarrow{g_{j}} \cdot \vec{\sigma}\right)^{2}\right) \\
& \omega_{j}^{2}=r_{0}^{2}-r_{j}^{2}=r_{0}^{2}-r_{0}^{2}\left(1-\frac{1}{z} \sum_{\delta}(\vec{o} \cdot \vec{j})^{2}\right)^{2} \approx \frac{2 r_{0}^{2}}{z} \sum_{\vec{\delta}}(\vec{g} \cdot \vec{\delta})^{2} \\
& \omega_{f}=\frac{N_{0}}{\sqrt{z / 2}} \sqrt{\sum_{\vec{\sigma}}(\vec{g} \cdot \vec{J})^{2}} \\
& \text { 2D sgaure: } \frac{\gamma_{0}}{\sqrt{2}} \sqrt{{g_{x}^{2}+0_{y}^{2}}_{2}^{2}}=\frac{\gamma_{0}}{\sqrt{2}}|\vec{g}| \\
& \text { 3D rgware: } \frac{\mu_{0}}{\sqrt{3}} \sqrt{\rho_{x}^{2}+\rho_{y}^{2}+g_{z}^{2}}=\frac{\alpha_{0}}{\sqrt{3}}|\vec{g}| \\
& \text { conclusion }
\end{aligned}
$$

- valid even for $S=\frac{1}{2}$, and very good to $S=\frac{3}{2}, \frac{5}{2}, \ldots$
- at integer spins 1,2,3 the Tying anisotropy thuds to open up the gap

What is a mognon?
Eigennectors?
$u \quad \tau_{3} \cdot k \quad u^{-1}=z_{3} \tilde{k}$ enence $z_{3} k u^{-1}=u^{-1} z_{3} \tilde{k}=z_{3} \widetilde{k} u^{-1}$ berane $z_{3} \tilde{k}$ is diopond equind: $\quad\left(z_{3} k-\left(\begin{array}{cc}u_{1} & 0 \\ 0 & -u_{f}\end{array}\right)\right) u^{-1}=0$

$$
\left(\begin{array}{cc}
r_{0} \mp \omega_{f}, & r_{j} \\
-r_{f}, & -\left(r_{0} \mp \omega_{f}\right)
\end{array}\right)\binom{\mu_{ \pm}}{-\mu_{\mp}}=0
$$

$$
\begin{aligned}
\mu_{+} & =\sqrt{\frac{N_{0}+\omega_{q}}{2 \omega_{j}}}
\end{aligned} \text { so that } u^{-1}=\left(\begin{array}{cc}
\mu_{+} & -\mu_{-} \\
-\mu_{-} & \mu_{+}
\end{array}\right)
$$

$$
H=\psi^{+} K \psi
$$

chers: $\left(\kappa_{0} \mp \omega_{j}\right) \sqrt{\frac{N_{0} \pm \omega_{j}}{2 \omega_{j}}}-\kappa_{\rho} \sqrt{\frac{r_{0} \mp \omega_{j}}{2 \omega_{\rho}}}=0$

$$
\sqrt{\frac{N_{0} \mp \omega_{f}}{2 \omega_{f}}}(\underbrace{\sqrt{\gamma_{0}^{2}-\omega_{f}^{2}}}_{\gamma_{j}}-N_{y})=0
$$

rime ${\underset{j}{j}}_{\omega_{j}^{2}}^{2}=r_{0}^{2}-r_{j}^{2}$
Reguirerement for
commentation relotions $\mu_{+}^{2}-\mu_{-}^{2}=1$
$\operatorname{chs} \pi: \frac{N_{0}+\omega_{j}}{2 \omega_{j}}-\left(\frac{N_{0}-\omega_{j}}{2 \omega_{j}}\right)=1$

$$
H=\phi^{+} \tilde{k} \phi=\sum_{\alpha}\left(\alpha_{j}^{+} \beta_{-j}\right)\left(\begin{array}{cc}
\omega_{j} & 0 \\
0 & \omega_{f}
\end{array}\right)\binom{\alpha_{j}}{\beta_{-j}^{+}}=\sum_{\alpha} \alpha_{j}^{+} \alpha_{j} \omega_{j}+\beta_{-f}^{+} \beta_{-j} \omega_{j}+\omega_{\alpha}
$$

choc do $f \rightarrow 0 \quad \omega_{f} \alpha|\vec{g}| \ll N_{0}$
then $\mu_{+}=\mu_{-} \tilde{\sim} \frac{c}{\sqrt{|g|}}$ yyal amont of a gb^{+}
S^{t} on mbleattice A and S^{5} on mublettic B propepeting in opporits dimections.

Homenork: Su-Schsieffer-Heeper mondel on page 8G The kondo problem poge 91

Construction of the pooh intooral (Chpt 3)
This chapter is about mingle particle aynomics, expressed in terms of Feynman path integral.
Next chapter is generalization to may body problem unsung functional field internal
particle starts at portion gi (coordinate) and ends at g_{f}.
What is probability $P\left(g_{i} \rightarrow g_{f}\right)$ allowing all Q.M. allowed tromitions
Schrvolimper $E_{f}: i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle$, which con bu formally solved as

$$
\left|\psi\left(t^{\prime}\right)\right\rangle=e^{-\hbar H\left(t^{\prime}-t\right)} \Theta\left(t^{\prime}-t\right)|\psi(t)\rangle
$$

$U\left(t^{\prime}-t\right)$ is dime evolution operator Note $\theta(t)=\left\{\begin{array}{ll}1 & t \geqslant 0 \\ 0 & t<0\end{array}\right.$ introduced for canal response
$\left\langle g_{f}\right| / S c h . E_{p}$.

$$
\begin{aligned}
&\left\langle g_{f} \mid \psi\left(t_{f}\right)\right\rangle=\left\langle g_{+} \left\lvert\, e^{-\frac{i}{\hbar} H\left(t_{f}-t_{i}\right)} \Theta\left(t_{f}-t_{i}\right)^{\ell} l \psi\left(t_{i}\right)\right.\right\rangle \\
& \int \operatorname{dg}_{j}\left|g_{j}\right\rangle\left\langle g_{i}\right|=1
\end{aligned}
$$

$$
\left\langle g_{f} \mid \psi\left(t_{f}\right)\right\rangle=\psi\left(g_{f} \mid t_{f}\right)=\int d p_{i}\langle\underbrace{e^{-\frac{i}{\hbar} H\left(t_{f}-t_{i}\right)} \Theta\left(t_{f}-t_{i}\right)\left|g_{i}\right\rangle}_{V\left(g_{f}\left|t_{f}\right| g_{i} t_{i}\right)} \underbrace{\left\langle q_{i} \mid \psi\left(t_{i}\right)\right\rangle}_{\psi\left(g_{i}, t_{i}\right)} \text { become } \int d \rho \mid g\rangle\langle g|=1
$$

time evolution for the marefenction

$$
P\left(g_{i} \rightarrow g_{j}\right)=\left|U\left(p_{f} t_{+1}, g_{i} t_{i}\right)\right|^{2} \quad \text { probability that the syst } y \text { term goes }
$$ from $\psi(f i t i)$ to $\psi(g f, t)$

Let's make many anal steps rether than one large stop: Trotter-Suzuri decomposition $U\left(g_{f} t_{f}, g_{i} f_{i}\right)=\left\langle g_{f}\right| e^{-\frac{i}{\hbar} H \Delta t} e^{-\frac{i}{\hbar} H \Delta t} \ldots . e^{-\frac{i}{\hbar} H \Delta t}\left|g_{i}\right\rangle$ with $\Delta t \cdot N=t$ and $N \rightarrow \infty$

Crucial point $e^{-\frac{i}{\hbar} H \Delta t}=e^{-\frac{i}{\hbar} V_{\Delta} t} e^{-\frac{i}{\hbar} T \Delta t}+O\left(\Delta t^{2}\right)$ where $H=V+T$
Because $e^{A} e^{B}=e^{A+B} e^{\frac{1}{2}\left[A_{1} B\right]+\frac{1}{1}\left[A,\left[A_{1} B\right]\right]+\cdots}$ Baeer-Campel-Hemdorif formula we will neglect tum of of $(\Delta t)^{2}$, so that it mill floor his T Taal V commune.

Note that $f(\hat{p})|p\rangle=f(p) \mid p)$ and vimenlor for $f(\hat{g})$
Also note $\left\langle g_{i} \mid p_{j}\right\rangle=\frac{1}{\sqrt{2 \pi}} e^{\frac{i}{\hbar}} g_{i} p_{j} \quad$ plane wove in x-representation

We just derived: $\left\langle g_{f}\right| U\left(g_{i}\right)=\int D\left[\rho_{1} p\right] e^{\frac{i}{\hbar} S} \quad$ with $\quad S=\int_{z_{i}}^{t_{f}} d t[j p-H(p, g)]$

Example: $H(p, p)=\frac{p^{2}}{2 m}+V(g)$

Goussion Integrals
Real: $\int_{-\infty}^{\infty} d x e^{-\frac{a}{2} x^{2}}=\sqrt{\frac{2 \pi}{2}} ; \operatorname{Re} e>0$
Note: a can be a complax munber, int $\operatorname{Re}(a)>0$!

$$
\begin{gathered}
\int_{-\infty}^{\infty} d x e^{-\frac{a}{2} x^{2}+b x}=\sqrt{\frac{2 \pi}{2}} e^{\frac{h^{2}}{2 a}} ; \operatorname{Re} a>0 \\
-\frac{o}{2}\left(x-\frac{h}{a}\right)^{2}+\frac{h^{2}}{2 a}
\end{gathered}
$$

Complex:

$$
\begin{aligned}
& \int d\left(z_{1} z^{+}\right) e^{-z^{+} \omega z}=\int d x d y e^{-(x-i y) \omega(x+i y)}=\int d x d y e^{-\left(x^{2}+y^{2}\right) \omega}=\frac{\pi}{w} ; \text { Re } w>0 \\
& z \text { complex } \text { Nerroble }
\end{aligned}
$$

z complex verioble

$$
\begin{aligned}
& z^{+}=z^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \int d x d y e^{-\left(x-i y-\frac{\mu^{+}}{w}\right) \omega\left(x+i y-\frac{v}{w}\right)}=\int d \tilde{x} d \tilde{y} e^{-(\tilde{x}-i \tilde{y}) \omega(\tilde{x}+i \tilde{y})}=\frac{\pi}{w} \\
& \left.\begin{array}{l}
x-i y-\frac{\mu^{+}}{w}=\tilde{x}-i \bar{y} \\
x+i y-\frac{w}{w}=\tilde{x}+i \tilde{y}
\end{array}\right\} \tilde{x}=x-\frac{1}{2} \frac{\mu^{+}+v}{w} \\
& \left.x+i y-\frac{v}{w}=\tilde{x}+i \tilde{y}\right\} \tilde{y}=y+\frac{1}{2} i \frac{v-\mu^{+}}{w}
\end{aligned}
$$

Higher dimemions:
generic metrix thot con be diagondized $A=0^{+} D O$
Real: $\int d \vec{v} e^{-\frac{1}{2} \vec{v}^{+} A \vec{v}}=\int d \vec{v} e^{-\frac{1}{2}(O \vec{v})^{+} D O \vec{v}}=\int d \vec{v} e^{-\frac{1}{2} \vec{v}^{+} D \vec{v}}=\prod_{i} \sqrt{\frac{2 \pi}{D_{i}}}=\frac{(2 \pi)^{N / 2}}{(\operatorname{Det} A)^{1 / 2}}$
\vec{V} is real rector;
A is real positive' definite aymmatric motivix; ytis muffeiont if yymmatic pent is poritive offinute. diagonalising $A: O A O^{\top}=D ; \quad O \vec{v}=\vec{v} ; d \vec{v}=d \vec{v}$ beceme $\operatorname{Det} O=1$

$$
\int d \vec{v} e^{-\frac{1}{2} \vec{v}^{+} A \vec{v}+\vec{\jmath} \cdot \vec{v}}=\int d \vec{v} e^{-\frac{1}{2}\left(\vec{v}-A^{-1} j\right)^{+} A\left(\vec{v}-A^{-1} \vec{j}\right)+\frac{1}{2} \vec{\jmath} A^{-1} \vec{j}}=\frac{(2 \pi)^{1 / 2}}{(\operatorname{Det} A)^{1 / 2}} e^{\frac{1}{2} \vec{\jmath} A^{-1} \vec{j}}
$$

;A symmatic
Important iolentity for perturbation theong

$$
\begin{aligned}
& \underline{\partial j_{m}} \frac{\partial}{\partial j_{m}}\left|\int_{j=0} d \vec{v} e^{-\frac{1}{2}} \vec{v}^{+} A \vec{v}+\vec{j} \cdot \vec{v}=\sum_{j_{m}} \frac{D}{\partial_{j m}} \frac{(2 \pi)^{N / 2}}{(D+t)^{1 / 2}}\right|_{j=0}^{\frac{1}{2}} \vec{j}^{-1} \vec{f} \\
& \int d \vec{v} e^{-\frac{1}{2} \vec{v}+A \vec{v}} N_{m} v_{m}=\frac{(2 \pi)^{N / 2}}{\left(\operatorname{Det}^{1 / 2}\right)^{1 / 2}} \frac{1}{2}\left(\left(A^{-1}\right)_{m m}+\left(A^{-1}\right)_{m m}\right)
\end{aligned}
$$

It are define the following: $\frac{(\operatorname{Det} A)^{1 / 2}}{(2 \pi)^{1 / 2}} \int d \vec{N} e^{-\frac{1}{2} \vec{N}^{+} A \vec{N}} O \equiv\langle 0\rangle$ then we con write
$\left\langle v_{m} v_{m}\right\rangle=\left(A^{-1}\right)_{m m}$ for symmetric A.

We could also prove: $\left\langle v_{m_{1}} v_{m_{2}} v_{m_{3}} v_{m_{4}}\right\rangle=\underbrace{\left(A^{-1}\right)_{m_{1} m_{2}}\left(A^{-1}\right)_{m_{3} m_{4}}+\left(A^{-1}\right)_{m_{1} m_{3}}\left(A^{-1}\right)_{m_{2} m_{4}}+\left(A^{-1}\right)_{m_{1} m_{3}}\left(A^{-1}\right)_{m_{2} m_{3}}}_{\text {ell combinations }}$
This con be used to prove Wicks theorem
con be generotiad to any umber of pele - products.
stopped $10 / 11 / 2022$
Complex multi-D case

$$
\int d\left(v^{+}, v\right) e^{-\vec{v}^{+} A \vec{v}}=\pi^{N} \operatorname{Det}\left(A^{-1}\right) \quad \text { here } d\left(v^{+}, v\right)=\prod_{i} d v_{i}^{\prime} d v_{i}^{\prime \prime}
$$

A has to have a positive definite hernition part: $A=\underbrace{\frac{1}{2}\left(A+A^{+}\right)+\frac{1}{2}\left(A-A^{+}\right)}_{\text {hemition }}$
Easy to prose for A partitive definite heminition matrix. port should be positive definite

$$
\int d\left(v^{+}, v\right) e^{-\vec{N}^{+} A \vec{N}+\vec{w}^{+} \vec{N}+\vec{N}^{+} \vec{w}^{\prime}}=\pi^{N} \operatorname{Det}\left(A^{-1}\right) e^{\vec{w}^{+} A^{-1} \overrightarrow{w^{\prime}}}
$$

Finally the identity:
by boring derinatime m'thr.t.

Proof for $1^{\text {st }}$ order: $\left\langle v_{i}^{+} v_{j}\right\rangle=\left(A^{-1}\right\rangle_{j i}$

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial j_{i}^{+} \partial_{j}} \int d\left(v_{1}^{+} v\right) e^{-v^{+} A v+j^{+} v+N^{+} j}=\int d\left(v^{+}, v\right) e^{-v^{+} A v} v_{i}^{+} v_{j} \\
& \frac{\partial^{\prime \prime}}{\partial j_{i}^{+} \partial_{j}} \frac{\pi^{N}}{D_{2} A} e^{j^{+} A^{-1} j}=\frac{\pi^{N}}{\operatorname{DetA}}\left(A^{-1}\right)_{j i}
\end{aligned}
$$

Back to our example $U\left(g_{+} f_{f}, g_{i} f_{i}\right)=\delta_{j_{i}=g=0} \sigma_{g_{j}+f_{N}} \int_{i=1}^{N} \frac{N}{l_{j}} \frac{d p_{i}}{2 \pi} e^{\dot{j} \Delta t} \sum_{i=1}^{N}\left[\frac{\Delta g_{i}}{\Delta t} p_{i}-\frac{p_{i}^{2}}{\frac{2}{m}}-V\left(p_{i-1}\right)\right]$

$$
\text { with } \delta \rightarrow 0 \Rightarrow \underset{\text { integral }}{\underset{\text { pensition }}{ }}
$$

$$
\left.\xrightarrow{\longrightarrow \quad A=\frac{2 i}{\hbar} \frac{\Delta t}{2 m} \cdot I} \begin{array}{l}
j=\frac{i}{\hbar} \Delta t \frac{\Delta g}{\Delta t}
\end{array}\right\} j A^{-1} j=\frac{i}{\hbar} \Delta t\left(\frac{\Delta g}{\Delta t}\right)^{2} m \Rightarrow \frac{i}{\hbar} \Delta t \min \dot{g}^{2}
$$

integral applies

No ane:

$$
\int d \vec{v} e^{-\frac{1}{2} \vec{v}^{+} A \vec{v}+\vec{j} \cdot \vec{v}}=\frac{(2 \pi)^{1 / 2}}{(\operatorname{Det} A)^{1 / 2}} e^{\frac{1}{2} \vec{j} A^{-1} \vec{\jmath}}
$$

Finally $\quad \prod_{i=1}^{N} \int \frac{d p_{i}}{2 \pi} e^{\frac{j}{\hbar} \Delta t \sum_{i=1}^{N}\left(\frac{\Delta f_{i}}{\Delta t} p_{i}-\frac{p_{i}^{2}}{2 m}\right)}=\frac{(2 \pi)^{N / 2}}{(2 \pi)^{N}} \frac{1}{\left(\frac{i}{\hbar} \frac{\Delta t}{m}\right)^{N / 2}} e^{\frac{1}{2} \frac{j \Delta t m j^{2}}{D^{2}}}$

$$
U\left(g_{+} t_{f}, g_{i} f_{i}\right)=\delta_{g_{i}=g_{0} \delta_{g_{+}+} f_{N}} \frac{1}{\left(2 \pi \frac{\Delta t}{\hbar} \frac{\Delta t}{m}\right)^{N / 2}} \cdot \prod_{i=1}^{N} \int_{\rho_{i}} e^{i} \Delta t \sum_{i=1}^{N}\left[\frac{1}{2} m \dot{g}_{i}^{2}-V\left(f_{i-1}\right)\right]
$$

We con lance also mite

Free particle con be computed in cloned form because $\dot{g}=$ cont $=\frac{g_{f}-g_{i}}{t_{f}-t_{i}}$

$$
\begin{aligned}
& U\left(g_{+} t_{f}, g_{i} f_{i}\right)=\frac{1}{\left(2 \pi \frac{\Delta t}{\hbar} \frac{\Delta t}{m}\right)^{N / 2}} \cdot \int_{i=1}^{N} d g_{i} \delta_{j_{i}=g_{0} \delta_{g_{j}} f_{N}} e^{\dot{\sum} \int_{t_{i}}^{t_{f}} \frac{1}{2} m \dot{j}^{2} d t}=\operatorname{con} t \cdot e^{\frac{i}{\hbar} \frac{1}{2} m \frac{\left(g_{y}-g_{j}\right)^{2}}{t_{f}-t_{i}}} \\
& \quad \text { and } P\left(g_{f}, g_{i}\right)=|U|^{2}=1
\end{aligned}
$$

Skip
Semiclasical approximation reguines $\delta S=0$,i.e., the syotem goes through path where Feynmon integral contribution is largest becoms the exponent has saddec perint

$$
\left\langle g_{f}\right| U\left(f_{i}\right\rangle=\int D\left[\rho_{1} p\right] e^{\frac{i}{\hbar} S} \approx e^{\frac{i}{\hbar} \text { Sclamical }}+\cdots
$$

With definition $S=\int_{t_{i}}^{t_{f}} d t[j p-H(p, g)]$ than $\delta S=0$ reguires

$$
\delta s=\int d t\left[\left[\delta \dot{j} p+\dot{g} \delta p-\frac{\partial H}{\partial p} \delta p-\frac{\partial H}{\partial j} \delta j\right]\right.
$$

by parts $\int d t \int\left\{\delta g\left[-\dot{p}-\frac{\partial H}{\partial g}\right]+\delta_{p}\left[\dot{g}-\frac{\partial H}{\partial p}\right]\right\}=0$
hence classical EOM: $\quad \dot{f}=\frac{\partial H}{\partial p}$ and $\dot{p}=-\frac{\partial H}{\partial \rho}$

Neet step: Fluctuations around the satdbe point
$g=g$ larnical $t r(t)$ where $r(t)$ is smoll
We con expand the aetion $S\left[\left\{g\right.\right.$ lanaical $\left.\left.+r_{3}\right\}\right]=S_{\text {clasnial }}+\frac{1}{2} \iint d^{\prime} d t^{\prime \prime} \frac{\delta^{2} S}{\delta g\left(t^{\prime}\right) \delta\left(f\left(t^{\prime \prime}\right)\right.} r\left(t^{\prime \prime}\right) r\left(t^{\prime \prime}\right)$
exomple: $\left.\mathscr{L}=\frac{m \dot{j}^{2}}{2}-V(g) \Rightarrow S[g+r]\right]=\int \operatorname{dt}\left[\frac{1}{2} m[(\rho+r)]^{2}-V(\rho+r)\right]=$

$$
\int d t\left[\frac{1}{2} m \dot{j}^{2}+\frac{m j \dot{v}}{K}+\frac{1}{2} m \dot{r}^{2}-V(g)-\frac{\partial v}{\frac{\partial j}{\partial} r}-\frac{D^{2} V}{\partial g^{2}} r^{2}+\cdots\right]
$$

$$
S\left[[g+r 3] \pi S \operatorname{Seman}[\rho]+\int d t\left[\frac{1}{2} m \dot{r}^{2}-\frac{-0}{2} \frac{v^{2} v}{\rho^{2} r^{2}}\right]\right.
$$

vomibles berane Logranye Ep.ere ratiofieal
oy parts $-\frac{1}{2} m r \ddot{r}$

$$
\begin{aligned}
& =S_{\text {uan }}[g]+\int d t\left[-\frac{1}{2} r\left(m \ddot{r}+\frac{\partial^{2} v}{\partial g^{2}} r\right)\right] \\
& =S_{\text {como }}[\rho]-\frac{1}{2} \int d t r(t)\left[m \frac{\rho^{2}}{\partial t^{2}}+\frac{\partial^{2}-2}{\partial f^{2}}\right] r(c t)
\end{aligned}
$$

Goumion intagral, which can be enalwatet evoctly...

Functional field integral Capt h. Ass

1) In Feynman path integral formation me mere deding with a single particle characterized by path $\varphi(t)$.
In functional field 'ritegral formalism we dead with a field like
$\phi(x, t)$ defined in $(d+1)$ dimensional space
2) In Feynman path integral we formbated Integral on rigantates of

T and V operators, momaly p and f.
In many body problem of $2^{\text {md }}$ quantised operators we want to work in the rigenbosia of the operator 0, which is called coherent atotes.

Coherent stotes for bosons
The coherent states are

We will prove: $Q_{i}|\phi\rangle=\frac{\phi_{i}|\phi\rangle}{\hat{1}}$ hence $\mid \phi>$ in eigenvector and ϕ; complex number eigenvalue of operator Q_{i}
proof:

$$
Q_{i}|\phi\rangle=a_{i} e^{\sum_{i} \phi_{j} Q_{j}^{+}}|0\rangle=e^{\sum_{i \neq i} \phi_{j} o_{j}^{+}} a_{i} e^{\phi_{i} o_{i}^{+}}|0\rangle \text {. We med } a e^{\phi a^{+}}|0\rangle \text { to continua. }
$$

e_{j} to $j \neq i$ comment
mich 0 : and each other.
What is a $e^{\phi a^{+}}|0\rangle$?
Dine $a e^{\phi a t} \equiv x$
munctiply with $e^{-\phi a^{+}}$on both sides:
chur:

Now we answer what is $\underbrace{a e^{\phi a^{+}}}_{\dot{x}}|0\rangle=e^{\phi e^{+}}(a+\phi)|0\rangle=e^{\phi e^{+}} \phi|0\rangle$
Findly:

$$
Q_{i}|\phi\rangle=e^{\sum_{j \neq i} \phi_{j} Q_{j}^{+}} a_{i} e^{\phi_{i} Q_{i}^{+}}|0\rangle=\phi_{i} e^{\sum_{j} \phi_{j} a_{j}}|0\rangle=\phi_{i}|\phi\rangle
$$

which concludes the proof.

Important properties of coherent states

1) $e_{i}|\phi\rangle=\phi_{i}|\phi\rangle$
2) $\langle\phi| Q_{i}^{+}=\langle\phi| \phi_{i}^{*} \equiv\langle\phi| \bar{\phi}$
3) $Q_{i}^{+}|\phi\rangle=\frac{\partial}{\partial \phi_{i}}|\phi\rangle$

$$
\begin{aligned}
\text { proof: } \quad Q_{i}^{+} e^{\sum_{j} o_{j}^{+} \phi_{j}}|0\rangle= & e^{\sum_{j \neq i} o_{j}^{+} \phi_{j}} \\
& \underbrace{e_{i}^{+} e^{0_{i}^{+} \phi_{i}}}|0\rangle \\
& \frac{\partial}{\partial \phi_{i}}\left(e^{Q_{i}^{+} \phi_{i}}\right)
\end{aligned}|0\rangle=\frac{\partial}{\partial \phi_{i}}\left(e^{e_{i}^{+} \phi_{i}+\sum_{j \neq i} o_{j}^{+} \phi_{j}}|\phi\rangle\right)
$$

4)

$$
\begin{aligned}
& \langle v \mid \phi\rangle=e^{\sum_{i} \bar{v}_{i} \phi_{i}} \\
& \langle\phi \mid v\rangle=e^{\sum_{i} \Phi_{i} v_{i}}
\end{aligned}
$$

$$
\langle v|=\langle o| e^{\sum_{j} \bar{v}_{j} a_{j}}
$$

$$
\langle v \mid \phi\rangle=\langle 0| e^{\sum_{i} \bar{v}_{j} a_{j}} \uparrow_{\text {ais eigenopereto }}|\phi\rangle=\langle 0| e^{\sum_{i} \bar{v}_{j} \phi_{j}}|\phi\rangle=e^{\sum_{i} \bar{v}_{j} \phi_{j}} \underbrace{0|\phi\rangle}_{i}
$$

5)

$$
\int \prod_{i} \frac{d \bar{\phi}_{i} d \phi_{i}}{\pi} e^{-\sum_{i} \bar{\phi}_{i} \phi_{i}}|\phi\rangle\langle\phi|=I
$$

$$
\begin{gathered}
\langle 0| e^{\phi Q^{+}+}|0\rangle=\langle 0| 1+\phi e^{+}+\frac{1}{2} \phi\left(0 a^{2} \cdots \cdots\right\rangle \\
1
\end{gathered}
$$

Here $d \bar{\phi}_{i} d \phi_{i}=d \mathbb{R}_{\mathrm{C}} \phi_{i} d y_{m} \phi_{i} \quad$ Note, we also mite $\int \prod_{i} \frac{d \bar{\phi}_{i} d \phi_{i}}{\pi} \equiv \int d\left(\phi_{i}^{+} \phi_{i}\right)$
We use schur lemma: If all e_{i} and a_{i}^{+}commute with a certain operator, than the operator is a constant.

Discursion: Any operator con he expressed in terms of $Q_{;}$and Q_{i}^{+}and complex numbers. If operator commenter with ell a_{i} end a_{i}^{+}, it obese mot conterin any operator $a_{i} \sigma a_{i}^{+}$, hence it mont be a constant.

Proof that identity commutes with all Q_{i} :

$$
\begin{aligned}
& \mathcal{O}_{i} \int d\left(\phi_{1}^{+} \phi\right) e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}|\phi\rangle\langle\phi|=\int d\left(\phi_{1}^{+} \phi\right) \underbrace{\phi_{i} e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}}|\phi\rangle\langle\phi| \\
& \left(-\frac{\partial}{\partial \bar{\phi}_{i}} e^{-\sum_{e} \bar{\phi}_{k} \phi_{e}}\right) \\
& \begin{aligned}
&=\int d\left(\phi^{+}, \phi\right)\left(-\frac{\partial}{\partial \bar{\phi}_{i}} e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}|\phi\rangle\right)\langle\phi|=\int d\left(\phi^{+}, \phi\right) e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}|\phi\rangle \underbrace{\rho \frac{\partial \bar{\phi}_{i}}{}(\langle\phi|)}_{\text {by parts }}= \\
&\langle\phi| Q_{i}
\end{aligned}
\end{aligned}
$$

Crucial point ϕ is periodic
we used the fact: $Q_{i}^{+}|\phi\rangle=\frac{\partial}{\partial \phi_{i}}|\phi\rangle$

$$
\left.\begin{array}{l}
\phi(-\infty)=\phi(\infty) \\
\phi(0)=\phi(s)
\end{array}\right] \text { Donors }=\int d\left(\phi^{+}, \phi\right) e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}|\phi\rangle\langle\phi| a_{i}
$$

hence conjugate: $\langle\phi| 0_{i}=\frac{D}{\partial \bar{\phi}_{i}}\langle\phi|$
Similarly we can prove $I \cdot Q_{i}^{+}=Q_{i}^{+} I$, hence I commutes with all operators, and it must be a constant.
For the content, we know $\langle O| C|O\rangle=C$, hence me should show that $\langle O| I|0\rangle=1$. Proof:

$$
\begin{aligned}
&\langle 0| \int d\left(\phi^{+}, \phi\right) \cdot e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}|\phi\rangle\langle\underbrace{\langle\phi \mid O\rangle}_{\|}=\int d\left(\phi^{+}, \phi\right) e^{-\sum_{l} \bar{\phi}_{l} \phi_{l}}= \\
& \mid=\prod_{j}\left(\int \frac{d \bar{\phi}_{j} d \phi_{j}}{\pi} e^{-\bar{\phi}_{j} \phi_{j}}\right)=1 \\
&\left(\pi d \bar{\phi}_{j} d \phi_{j}\right.
\end{aligned}
$$

Note that $\prod_{j} \frac{d \bar{\phi}_{j} d \phi_{j}}{\pi}|\phi\rangle\langle\phi| \neq 1$, ie., we need the extra exponent in between. This is berceuse $|\phi\rangle\langle\phi|$ form on overcomplete basis.

Less essential propertion of colerent stetes:

1) The Heissenterg uncertainty achieves its minimum in a coberent stake, i.s., $\Delta x \Delta p$, $\frac{\hbar}{2}$.

Heissenkerg uncertainty on fenctuation of woidebles A, B
$\Delta A \Delta B \geqslant \frac{1}{2}|\langle[A, B]\rangle|$

$$
\frac{\prime \prime}{\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}}}
$$

Coherent atotes rostiofly the mimimm uncertainty relotion.
To prove:

$$
\begin{aligned}
& \langle\phi|\left(a+a^{+}\right)|\phi\rangle=\phi+\phi^{*} \\
& \langle\phi| 0^{+}=\langle\phi| \phi^{*} \\
& \langle\phi| a-a^{+}|\phi\rangle=\phi-\phi^{*} \\
& \left.\langle\phi|\left(a+a^{+}\right)^{2}|\phi\rangle=\langle\phi| a^{2}+a^{+} e^{+}+a^{+} a+\left(a^{+}\right)\right)^{2}|\phi\rangle=\phi^{2}+2 \phi \phi^{*}+\left(\phi^{*}\right)^{2}+1=\left(\phi+\phi^{*}\right)^{2}+1 \\
& \phi^{2} 1+{ }^{\prime \prime} e^{+a} \\
& \left.\langle\phi|\left(a-a^{+}\right)^{2}|\phi\rangle=\langle\phi| a^{2}-a a^{+}-e^{+} a y+\phi^{+}\right)^{2}|\phi\rangle=\left(\phi-\phi^{*}\right)^{2}-1 \\
& x=\frac{F^{m}}{2 m \omega}\left(a+a^{+}\right) \\
& \phi^{\prime \prime}-1-e^{+} e \\
& p=i \sqrt{\frac{\pi N a t}{2}}\left(0^{+}-a\right) \\
& \left.\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\frac{t}{2 m \omega}\langle\phi|\left(a+e^{+}\right)^{2}|\phi\rangle-\frac{t}{2 \pi} \omega\left(\langle | \phi\left|a+a^{+}\right| \phi\right\rangle\right)^{2}=\frac{t}{2 m \omega} \omega\left(\left(\phi+\phi^{*}\right)^{2}+1-\left(\phi+\phi^{*}\right)^{2}\right)=\frac{t}{2 m \omega}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta x \cdot \Delta p=\sqrt{\frac{\hbar}{2 m \omega} \frac{\hbar m \omega}{2}}=\frac{\hbar}{2}
\end{aligned}
$$

2) They have time urolytion like a cassical osilator anol are the closent state to classical hammonic orcilator

Coherent states for fermions
We are looking for state thess rotiofies: $Q_{i}|\mu\rangle=\mu_{i}|\mu\rangle$
7
ophiletion state eigenvalue
The problem is that a 's onticommite:

$$
Q_{i} Q_{j}=-a_{j} Q_{i} \text { lance } \underbrace{M_{i} M_{j}=-M_{j} M_{i}}
$$

How to solve the conundrum?
not true for complex numbers
Mothenatiticons invented efressmenn numbers
Properties of Grossmann numbers:

1) $\quad y_{i}, y_{j} \in A \in$ means gressmonm
then $C_{0}+c_{1}^{i} M_{i}+c_{2}^{i} M_{j} \in \mathcal{A}$ where $c_{0}, c_{i}^{i}, c_{2}^{i} \in \mathbb{C}$ but $c_{1}=0 c_{2}=0$ is mot allowed
complex mum hers
WL can multiply grass. with complex numbers and sum n them up.
2) The product of grossmonn numbers is
a) associative $\left(y_{1} \mu_{2}\right) \mu_{3}=\mu_{1}\left(y_{2} \mu_{3}\right)$
v) enticommuntetive $y_{1} y_{2}=-\mu_{2} \mu_{1}$
for any pair of y_{1} and y_{2} we have $\left[y_{1}, y_{2}\right]_{-}=0_{\uparrow}$ ¡ no delta function!
c) $y^{2}=0$
bename $y \cdot y=-y y \Rightarrow y^{2}=0$
d) three number $y_{1} y_{2} y_{3}=y_{3} y_{1} y_{2}$ behave like pensions, hut no δ function.
they behaverimiler ts fermions, cunt it is much simpler to manipulates became me do not need to reepprose of extra term arising tron 5 functions
3) Ne will extensively wee functions of Cyremmon numbers:

$$
f\left(\xi_{1}, \varphi_{2}, \ldots \xi_{m}\right)=\sum_{n=0}^{\infty} \sum_{i_{1}, i_{2},-i_{n}} \frac{1}{m!} \frac{D^{n} f(\xi=0)}{\partial \varphi_{i} \partial \varphi_{i} \cdots D \varphi_{i n}} \xi_{i n} \varphi_{m-1} \cdots \varphi_{i 1}<\text { the order matter! }
$$

example: $\begin{aligned} e^{-\left(\varphi_{1}+\varphi_{2}\right)} & =1-\left(\varphi_{1}+\varphi_{2}\right)-\frac{1}{2!}(\varphi_{1}^{2}+\underbrace{\varphi_{1} \varphi_{2}+\varphi_{2} \varphi_{1}}_{n}+\varphi_{2}^{2})+\frac{1}{n_{3!}!}\left(\varphi_{0}^{\left(\varphi_{1}^{3}+\varphi_{1} \varphi_{2} \varphi_{3}+\cdots\right.}\right) \\ & =1-\varphi_{1}-\varphi_{0}^{\prime \prime}\end{aligned}$

$$
=1-\varphi_{1}-\varphi_{2}
$$

4) Differentiation

$$
\frac{\partial}{\partial \eta_{i}} \eta_{j} \equiv \delta_{i j}\left(\eta_{j} \frac{\partial}{\partial y_{i}}\right)
$$

differentiation is anticommatative
example:

$$
\frac{\partial}{\partial y_{i}} y_{j}=-y_{j} \frac{\partial}{\partial y_{i}}
$$

$$
\begin{aligned}
\frac{\partial}{\partial y_{2}}\left(y_{1} y_{2}\right) & =-\frac{\partial}{\partial y_{2}}\left(y_{2} y_{1}\right)=-y_{1} \\
& =y_{1}\left(-\frac{\partial}{\partial y_{2}}\right) y_{2}=-y_{1}
\end{aligned}
$$

5) Integration

We defim $\int d y_{i} y_{i} \equiv 1$ and $\int d y_{i} \equiv 0$
From definition if follows that integration and differentiation is the same operation:

$$
\begin{aligned}
& \int d y f(y)=\int d y\left[f(0)+f^{\prime}(0) y\right]=f^{\prime}(0) \\
& \frac{\partial}{\partial y}(f(y))=\frac{\partial}{\partial y}\left(f(0)+f^{\prime}(0) y\right)=f^{\prime}(0)
\end{aligned}
$$

6) In physics, we need to mix grasmann variables with fermion operators $y_{i} Q_{j}$

We define: $\left[\mu_{i}, a_{j}\right]_{-}=0$
7) Fermionic colorent states are:
note the minussign here it loors like booons compered to booms
Proof:

$$
\begin{aligned}
& Q_{i}|M\rangle=Q_{i} e^{-\sum_{j} \mu_{i} \theta_{j}^{+}}|0\rangle=e^{-\sum_{i \neq 0} \mu_{j} \theta_{j}^{+}} Q_{i} e^{\theta_{i}^{+} \mu_{i}} \\
& \uparrow \\
& 1+Q_{i}^{+} \mu_{i}+\frac{1}{2},\left(Q_{i}^{+} \mu_{i}\right)^{2}+\cdots \\
& -\left(0_{i}^{+}\right)^{2}{\underset{M}{11}}_{11}^{0} \\
& \left(Q_{i}+Q_{i} Q_{i}^{+} \mu_{i}\right)|0\rangle=y_{i}|0\rangle \\
& =\mu_{i}\left(1-\mu_{i} Q_{i}^{+}\right)|0\rangle \\
& =\mu_{i} e^{-\mu_{i} Q_{i}^{+}}|0\rangle
\end{aligned}
$$

More on propertios of Coherent stotes:

1) $e_{i}|\eta\rangle=y_{i}|\eta\rangle$
cyrormenn
2) $\langle M| Q_{i}^{+}=\langle M| y_{i}^{+}$

Here y^{t} is new gresmonn mumber. (Like toring ϕ out ϕ^{*} os independent veriables instead)
Berame $\langle y|=\langle 0| e^{-\sum_{i} \theta_{i} \mu_{i}^{+}}$ of $\operatorname{Re} \phi$ and $\operatorname{Mr} \phi$
$\left.\begin{array}{rlrl}\text { 3) } & a_{i}^{+}|\eta\rangle=-\frac{\partial}{\partial y_{i}}|\eta\rangle & \left(\text { for lorom it is } \Theta_{i}^{+}|\phi\rangle=\frac{Q}{\partial \phi_{i}}|\phi\rangle \text { hene }\right. \\ \text { 4) }\langle\varphi \mid \eta\rangle=e^{\sum_{i} \varphi_{i}^{+} y_{i}} & \text { feneric } Q_{i}^{+}|\eta\rangle=\xi \partial \eta_{i}|\eta\rangle\end{array}\right)$
Proof: $<0 \mid e^{\sum_{i} \varphi_{i}^{+} o_{i}}$
5) $\int_{i} \prod_{i} d y_{i}^{+} d y_{i} e^{-\sum_{i} \eta_{i}^{+} y_{i}} \mid \eta><\psi_{\mid}=I \quad$ for hovens

$$
\int \prod_{i} \frac{d \phi_{\phi^{+}}+\phi_{i}}{\pi} e^{-\sum_{i} \phi_{i}^{+} \phi_{i}}|\phi\rangle\langle\phi|=I \quad \text { hence }
$$

We coned ure $\int \prod_{i} d y_{i}^{+} d y_{i} \equiv \int d\left(\mu^{+}, y\right)$ generia $\int d\left(\phi_{,}^{+}, \phi\right) e^{-\sum_{i} \phi_{i}^{+} \phi_{i}}|\phi\rangle\langle\phi|=I$

Proof: identical to bosons

$$
\begin{aligned}
& Q_{i} I=\int d\left(\eta^{+}, \mu\right) e^{-\sum_{e} \mu_{e}^{+} \mu_{e}} \mu_{i}|\mu\rangle\langle\mu|=\int \prod_{i} d y_{j}^{+} d \mu_{j}\left(-\frac{D}{\partial y_{i}^{+}} e^{-\sum_{e} \mu_{k}^{+} \mu_{e}}|\mu\rangle\right)\langle\mu|=
\end{aligned}
$$

From schun Lemme it follows $I=$ conot. The correct constant:

$$
\begin{aligned}
\langle O| I|O\rangle= & \int_{i} \prod_{i} d y_{j}^{+} d y_{j} e^{-\sum_{e} y_{e}^{+} \mu_{e}}\langle 0 \mid y\rangle\langle y \mid 0\rangle \\
& =\prod_{j}^{\prime \prime}\left(\int d y_{j}^{+} d \mu_{j}\left(1-\mu_{j}^{+} \mu_{j}\right)\right)^{\prime \prime}=\frac{1}{\prod_{j}} \cdot 1=1 \\
& 0+1=1
\end{aligned}
$$

Alterative (useful) proof:
Let's limit ourabes to one component. The generalization is simple.

$$
\int d y^{+} d y e^{-y^{+} \varphi}|y\rangle\langle y|=I
$$

where $|y\rangle=e^{-y e^{+}}|0\rangle$

$$
\langle y|=<o l e^{-a y^{+}}
$$

then $\langle 0| I|0\rangle=1$ as proven alone
$\langle ||I|\left\rangle=1\right.$ became $\left.\left.\int d y^{+} d y e^{-y^{+} \eta}\langle |\right| \eta\right\rangle\langle y \mid 1\rangle=\int d y^{+} d y e^{-y^{+} y} y y^{+}=1$

$$
\begin{equation*}
\langle 1 \mid \eta\rangle=\langle 1|\left(1+Q^{+} y\right)|0\rangle=\langle 1| a^{+}|0\rangle y=y \tag{+}
\end{equation*}
$$

corfull : $\left\langle 11-y e^{+} \mid 0\right\rangle=\langle 11-y \mid 1\rangle \neq-y$
Similarly $\langle 1| I|0\rangle=0$
$\langle 0| I\rangle=0$ hence this ts identity.
con not pull Y out from state lis without - anjou!!

Gaussian integrals for fermions

1) $\int d y^{+} d y e^{-y^{+} a y}=a \quad$ (proof: $\int d y^{+} d y\left(1+y e y^{+}\right)=a$
2) $\int_{i} d y_{i}^{+} d y_{i} e^{-\sum_{i j} \eta_{i}^{+} A_{i j} y_{j}} \equiv \int d\left(\mu^{+}, \mu\right) e^{-\vec{\eta}^{+} A \vec{q}}=\operatorname{Det}(A)$
maticu the order!

A stemution: $A=u^{+} D u$ where $D=\operatorname{dig}\left(D_{i}\right)$

Valid for won-Hermition matrices. Proof for 2×2 :
example 2×2:

We can prove similarly that the above formula is valid for arbitrary A. It does not need be Hermition.
3)

$$
\int d\left(M^{+}, y\right) e^{-\vec{y}^{+} A \vec{y}+\vec{w}^{+} \cdot \vec{y}+\vec{u}^{+} \cdot \vec{w}^{\prime}}=e^{\vec{w}^{+} A^{-1} \vec{w}^{\prime}} \operatorname{Det}(A) \text { for looms } \frac{e^{\vec{w}^{+} A^{-1}} \vec{w}^{\prime}}{\operatorname{Det}(A)}
$$

Proof:

$$
\vec{y}^{+}-\vec{w}^{+} A^{-1}=\vec{y}^{+}
$$

$$
\vec{q}-A^{-1} \vec{w}^{\prime}=\vec{q}^{\prime}
$$

mote $\left[\vec{\varphi}+A \vec{y}, \vec{w}^{+} A^{-1} \overrightarrow{w_{r}}\right]=0$
become allays in pairs.
non-trimel step!

$$
\begin{aligned}
& \mu^{+} A \vec{\mu}-\vec{w}^{+} \cdot \vec{\mu}-\vec{\mu}^{+} \cdot \vec{w}^{\prime}=\underbrace{\left(\vec{w}^{+} A^{-1} \vec{w}^{\prime}\right.}_{\left.\mu^{+} A y-\vec{w}^{+} \vec{\mu}-\vec{u}^{+}-\vec{w}^{+}+\vec{w}^{+} A^{-1}\right) A\left(\overrightarrow{w^{\prime}}-\vec{w}^{-1} \vec{w}^{\prime}\right)} \\
& \int d\left(\eta^{+}, \eta\right) e^{-\left(\vec{y}^{+}-\vec{w}^{+} A^{-1}\right) A\left(y-A^{-1} \vec{w}^{\prime}\right)+\vec{w}^{+} A^{-1} \vec{w}^{\prime}} \\
& =\int \prod_{2} d y_{k} \cdot d y_{e} e^{\overrightarrow{~^{+}}+A \vec{Y}} \cdot e^{\vec{w}^{+} A^{-1} \vec{w}^{\prime}}=\operatorname{Det} A \cdot e^{\vec{w}^{+} A^{-1} \vec{w}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(y_{1}^{+} A_{11} y_{1} y_{2}^{+} A_{22} y_{2}+\frac{1}{2}\left(y_{1}^{+} A_{12} y_{2} y_{2}^{+} A_{21} y_{1} \quad+\right.\text { other tum vanish }\right.
\end{aligned}
$$

$$
\begin{aligned}
& \iiint \int d y_{1}^{+} d y_{1} d y_{2}^{+} d y_{2} y_{2} y_{2}^{+} y_{1} y_{1}^{+}\left(A_{11} A_{22}-A_{12} A_{21}\right)=\operatorname{Det}(A)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\mu}^{+} \underline{\mu}^{+} \equiv \dot{q}^{+} i, e_{1} \sum_{j} \psi_{i}^{+} \mu_{i j}^{*}=\varphi_{i}^{+} \quad e^{-\mu_{1}^{+} \mu_{1} A_{11}-\mu_{1}^{+} \mu_{2} A_{12}-\mu_{2}^{+} \mu_{1} A_{21}-\mu_{2}^{+}+A_{22}}
\end{aligned}
$$

4) $\left\langle\eta_{i}, \mu_{i} \cdots \eta_{i N} \eta_{j \omega}^{+} \cdots \eta_{j-}^{+} \eta_{j i}^{+}\right\rangle=\sum_{p}(-1)^{p}\left(A^{-1}\right)_{i_{1} j_{1}}\left(A^{-1}\right)_{i_{2}, j_{2}} \cdots\left(A^{-1}\right)_{i_{, j} j_{N}}$
where $\langle O\rangle=\frac{1}{\operatorname{Det} A} \int e^{-\vec{\mu}^{+} A \vec{\mu}} O$

Proof of the lowest order:

$$
\begin{aligned}
& \frac{1}{\operatorname{Det} A} \int \prod_{e} d y_{c}^{+} d y_{e} e^{-\vec{y}^{+} A \vec{\mu}}(1+\underbrace{\sqrt[\vec{w}^{+}]{y}+\vec{\mu}^{+} \vec{w}}_{\text {only one } y \Rightarrow \text { vanides }}+\frac{1}{2}\left(\vec{w}^{+} \vec{\mu}+\vec{\mu}^{+} \vec{w}\right)^{2}+\cdots)=1+\vec{w}^{+} A^{-1} \vec{w}+\frac{1}{2}\left(\vec{w}^{+} A^{-1} \vec{w}\right)^{2}+\ldots
\end{aligned}
$$

first order: $\int \prod_{2} d y_{2}^{ \pm} d y_{c} e^{-\vec{y}+A \vec{r}} u_{i}=0$

$$
\int_{e} \prod_{e} d y_{2}^{+}+y_{l}\left(1-\vec{y}+A \vec{y}+\frac{1}{2}(\vec{y}+\vec{A} \vec{y})^{2}+\cdots\right) y_{\hat{\mu}}
$$

will never have a par oodul member of $y^{\prime} s \Rightarrow$ vanishes
second order:

$$
\begin{aligned}
& 1+\frac{1}{\operatorname{Det} A} \int_{e} d y_{c}^{+} d y_{e} e^{-\vec{q}^{+} A \vec{\mu}} \frac{1}{\frac{1}{2}}\left(\vec{w}^{+} \vec{\mu}+\vec{\mu}^{+} \vec{w}\right)^{2}=1+\vec{w}^{+} A^{-1} \vec{w}+O\left(w^{2}\right) \\
& \underbrace{\frac{1}{2}\left(w_{i}^{+} \mu_{i} \mu_{i}^{+} w_{j}+\eta_{j}^{+} w_{j} w_{i}^{+} \mu_{i}\right)}_{\mu_{i} \eta_{i}^{+1} w_{i}^{+} w_{j}}+\cdots \\
& w_{i}^{+} w_{j}\left\langle\mu_{i} \mu_{j}^{+}\right\rangle=w_{i}^{+}\left(A^{-1}\right)_{i j} w_{j} \Rightarrow\left\langle M_{i} M_{j}^{+}\right\rangle=\left(A^{-1}\right)_{i j}
\end{aligned}
$$

To prove lighter coder me need to expand to the appropriate order.

Field integral for the partition function
We want to evaluate $Z=\operatorname{Tr}\left(e^{-B(H-j N)}\right)$ or equivalently $Z=\sum_{m}\langle M| I e^{-B(\hat{H}-j \hat{N})}|M\rangle$

Reminder: coherent states $|\psi\rangle=e^{\sum_{i} Q_{i}^{+} \psi_{i}}|0\rangle$ valid for both pons and fermions \%; are either compla numbers or gressuam numbers.

$$
I=\int d\left(\psi^{+}, \psi\right) e^{-\sum_{i} \psi_{i}^{+} \psi_{i}}|\psi\rangle\langle\psi| \text { valid for both fermion of bosons }
$$

$$
z=\sum_{m} \int d\left(\psi^{+}, \psi\right) e^{-\sum_{i} \psi_{i}^{+} \psi_{i}}\langle n \mid \psi\rangle\langle\psi| e^{-\beta(\hat{H}-\beta \hat{N})}|n\rangle
$$

we wont to elimmate $\sum_{n}|n\rangle\langle n|$ which is also 1 .
for fermions - \Rightarrow the origin of antiperiodic voundery conduction for fermions! It is fully aymatic (itelwaystranforms lid a number $A_{\text {in }}$) whence ne con forget it tare.
why -? $\langle M \mid \psi\rangle\langle\psi \mid m\rangle=\langle-\psi \mid m\rangle\langle\mu \mid \psi\rangle$ for fermions
Proof: We mill prove that

$$
\begin{aligned}
& \sum_{n}\langle m \mid \psi\rangle\langle\psi \mid m\rangle=\prod_{i}\left(1+\psi_{i} \psi_{i}^{+}\right) \text {while } \\
& \sum_{m}\langle\psi \mid m\rangle\langle n \mid \psi\rangle=\prod_{i}\left(1-\psi_{i} \psi_{i}^{+}\right)
\end{aligned}
$$

eunice me need to flip nigh on one ψ !
Start with: $\sum_{m}\langle m| e^{\sum_{i} \alpha_{i}^{+} \psi_{i}}|0\rangle\langle 0| e^{\sum_{i} \psi_{i}^{+} \alpha_{i}}|m\rangle$
concentrate on single state here/becane $e^{+} \psi$ behoves hic boson for all other states and

$$
\begin{aligned}
& \sum_{m_{i}}\left\langle m_{i}\right| e^{a_{i}^{+} \psi_{i}}|0\rangle\langle 0| e^{\psi_{i}^{+} a_{i}}\left|m_{i}\right\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& \langle 0| \psi_{i}|0\rangle\langle 0| \psi_{i}^{+}|0\rangle
\end{aligned}
$$

Neet $\sum_{m_{i}}\left\langle\psi \mid m_{i}\right\rangle\left\langle m_{i} \mid \psi\right\rangle=\sum_{m_{i}}\langle 0| e^{\psi_{i}^{+} Q_{i}}\left|m_{i}\right\rangle\left\langle m_{i}\right| e^{\theta_{i}^{+} \psi_{i}}|0\rangle=$

$$
\langle\underbrace{\left.\left|e^{\psi_{i}^{+} Q_{i}}\right| 0\right\rangle}_{11}<0 \underbrace{0\left|e^{\theta_{i}^{+} \psi_{i}} 10\right\rangle}_{1}+\langle 0| e^{e^{\psi_{i}^{+} \theta_{i}}|1\rangle\left\langle 1 \mid e^{\theta_{i}^{+} \psi_{i}} 10\right\rangle}\langle 0| \psi_{i}^{+} \underbrace{\theta_{i}|1\rangle\langle 1| 0_{i}^{+} \psi_{i}|0\rangle}_{|0\rangle}
$$

$$
\begin{aligned}
\langle 0| \psi_{i}^{+}|0\rangle\langle 0| \psi_{i}|0\rangle \quad & =1+\psi_{i}^{+} \psi_{i} \\
& =1-\psi_{i} \psi_{i}^{+}
\end{aligned}
$$

Wly can we concentrate on ringle state?

Bock to partition function
$z=\int d\left(\psi_{0}^{+}, \psi_{0}\right) e^{-\sum_{i} \psi_{i 0}^{*} \psi_{i}}\left\langle\xi \psi_{0}\right| e^{-\beta(\hat{H}-\mu \bar{v})}\left|\psi_{0}\right\rangle \quad$ where $\xi= \pm 1$ for fermiom/Losors
$\zeta \psi(0)=\psi(B)$ we mill have antiperiodic boundary conolitions for fermions and periodic for bosons
These ψ have cestein fire
like $t=0$. Later we will introduce
thun for every time slice.
Next Trotter-Suzwin' $B=\Delta T \cdot N$ and $N \rightarrow \infty$

$$
\begin{aligned}
& Z=\int d\left(\psi_{0}^{+}, \psi_{0}\right) e^{-\sum \psi_{i 0}^{+} \psi_{i 0}}\left\langle\xi \psi_{0}\right| e^{-\Delta T\left(H-\gamma^{N)}\right.} I_{\hat{j}^{N-1}} e^{-\Delta T\left(H-j^{N}\right)} \cdots I_{\eta^{2}} e^{-\Delta T(H-j N)}\left|\psi_{0}\right\rangle \\
& \int d\left(\psi_{N-1}^{+}, \psi_{N-1}\right) e^{-\sum_{i} \psi_{N, i}^{+} \psi_{N, i}}\left|\psi_{N_{1}, i}\right\rangle\left\langle\psi_{N, 1} \quad \int d\left(\psi_{1,}^{+} \psi_{1}\right) e^{-\sum_{i} \psi_{1}+\psi_{1} i} \mid \psi_{1}\right\rangle\left\langle\psi_{1},\right.
\end{aligned}
$$

$$
z=\int d\left(\psi_{0}^{+}, \psi_{0}\right) \cdots d\left(\psi_{N-1}+\psi_{N-1}\right) e^{-\sum_{i}\left(\psi_{i_{0}}^{+} \psi_{i_{0}}+\cdots+\psi_{N-1 i}^{+} \psi_{N-1 i}\right)_{x}}
$$

time slice

$$
z=\prod_{\substack{t \\ \psi_{t}=\xi \psi(t=0)=\psi(t=s) \\ \psi_{0}=\psi(t=0)}} d\left(\psi_{t}^{+}, \psi_{t}\right) e^{-\sum_{i, t=0}^{N-1} \psi_{i t}^{+} \psi_{i t}} \times \prod_{t=0}^{N-1}\left\langle\psi_{t+1}\right| e^{-\Delta i(\hat{H}-j \hat{N})}\left|\psi_{t}\right\rangle
$$

Wa need: $\left\langle\psi_{t+1}\right| e^{-\Delta T\left(H-j^{N)}\right.}\left|\psi_{t}\right\rangle$? We regnine H has the "normal under" form

$$
\begin{aligned}
H & =\sum_{i j} h_{i j} Q_{i}^{+} Q_{j}+\sum_{i j^{2} m} V_{i j m} Q_{i}^{+} Q_{j}^{+} Q_{l} Q_{m} \\
\text { Then }\left\langle\psi_{t+1}\right| e^{-\Delta T\left(H-j^{N)}\right.}\left|\psi_{t}\right\rangle & =\left\langle\psi_{t+1}\right| e^{-\Delta i\left(H\left[\psi_{t+1}^{+}, \psi_{t}\right]-\mu N\left[\psi_{t+1,}^{+} \psi_{t}\right]\right)}\left|\psi_{t}\right\rangle
\end{aligned}
$$

wherentstates ore rigentates of ψ operator, bonce acting on the bet or right five numb bess!

Then $\left\langle\psi_{t+1}\right| e^{-\Delta T\left(H-j^{N)}\right.}\left|\psi_{t}\right\rangle=e^{-\Delta T\left(H\left[\psi_{t+1}, \psi_{t}\right]-\sigma^{N}\left[\psi_{t+1}^{+}, \psi_{t}\right]\right)}$

$$
\left\langle\psi_{t+1} \mid \psi_{t}\right\rangle=e^{-\Delta \tau\left(H\left(\psi_{t+1}^{+}, \psi_{t}\right]-\mu^{n}\left[\psi_{t+1}^{+}, \psi_{t}\right]\right)} \times e^{\sum_{i, t} \psi_{i t+1}^{+} \psi_{i t}}
$$

from properties of colarent states!

Copy from previous page:

$$
\begin{aligned}
& z=\int_{\prod_{t=0}^{N-1} d\left(\psi_{t}+\psi_{t}\right) e^{-\sum_{i, t=0}^{N-1} \psi_{i t}^{+} \psi_{i t}} \times \prod_{t=0}^{N-1}\left\langle\psi_{t+1}\right| e^{-\Delta T(\hat{H}-\mu \hat{N})}\left|\psi_{t}\right\rangle}^{\psi_{N}=\xi \psi(t=0)=\psi(t=s)} \\
& \psi_{0}=\psi(t=0)
\end{aligned}
$$

Finally put together $Z=\int_{t=0}^{N-1} d\left(\psi_{t}+\psi_{t}\right) e^{-\sum_{t=0}^{N-1} \Delta T\left(H\left[\psi_{t+1}^{+}, \psi_{t}\right]-\mu N\left[\psi_{t+1,}^{+} \psi_{t}\right]\right)+\sum_{i, t=0}^{N-1} \psi_{i t+1}^{+} \psi_{i t}-\psi_{i t}^{+} \psi_{i t}}$

$$
\begin{aligned}
& \psi_{N}=\psi(s) \\
& \psi_{0}=\psi(0)
\end{aligned}
$$

exponent: - $\sum_{t=0}^{N-1} \Delta T\left(H\left[\psi_{t+1}^{+} \psi_{t}\right]-\mu N\left[\psi_{t+1}^{+}, \psi_{t}\right]-\sum_{i, t=0}^{N-1} \frac{\left(\psi_{i_{t+1}}^{+}-\psi_{i_{t}}^{+}\right)}{\Delta T} \psi_{i_{t}}\right)$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}:-\int_{0}^{B} d T[H\left[\psi^{+}(T), \psi(T)\right]-\gamma^{N(T)}-\underbrace{\left.\frac{\partial \psi^{+}}{\partial T}\right) \psi(T)}_{\text {y parts }}] \\
& \begin{aligned}
\int_{0}^{3} d T & \frac{\partial \psi^{T}}{\partial T} \psi(T)= \\
& \left.\psi^{+} \psi\right|_{0} ^{B}-\int_{0}^{3} \psi^{+}(B) \psi(B)-\psi^{t}(0) \psi(0)=0
\end{aligned}
\end{aligned}
$$

exponent: $-\int_{0}^{\beta} d T\left[H\left[\psi^{+}(T), \psi(T)\right]-\gamma^{N(T)}+\psi^{+}(T) \frac{2}{\rho^{T}} \psi(T)\right]$
define: $\quad \prod_{t=0}^{N-1} d\left(\psi_{t i}^{+}, \psi_{t i}\right)=D\left[\psi_{1}^{+}, \psi\right]$
Finally:

$$
z=\int D\left[\psi^{+}, \psi\right] e^{-\int_{0}^{0} d i\left(\sum_{i} \psi_{i}^{+}(r)\left(\frac{2}{\partial r}-\mu\right) \psi_{i}(r)+H\left[\psi^{+}(r), \psi^{2}(r)\right]\right)}
$$

all $\psi \psi^{+}$are time dependent!

We had to affine that $\psi(T)$ is periodic/antipeniodic for boom/fermions

Morons
$G(T)$
 fermions

(Anti) Periodic field \Rightarrow Foamier transform is dis rete:

$$
\psi(T)=\frac{1}{\sqrt{B}} \sum_{m} \psi_{m} e^{-i \omega_{m} T} \quad \psi_{m}=\frac{1}{\sqrt{r}} \int_{0}^{\beta} \psi(T) e^{i \omega_{m} \tau} d \tau
$$

Motsubera fregnencie: $\omega_{M}= \begin{cases}2 \pi m / s & \text { for bosons } \\ (2 m+1) \pi / s & \text { for fermion }\end{cases}$
Check $\psi(T+\beta)=\frac{1}{\sqrt{\beta}} \sum_{m} \psi_{m} e^{-i \omega_{m} T} \underbrace{e^{-j \omega_{m} \beta}}_{\xi= \pm 1}=\xi \psi(T)$ as expected.

Won - inturactimg electrous

$$
Z=\int D\left[\psi^{+} \psi\right] e^{-\int_{0}^{3} d \psi^{+}(\vec{r}, r)\left[\frac{\partial}{\partial r}-\mu-\frac{\nabla^{2}}{2 m}\right] \psi(\vec{r}, \tau) d^{3} \vec{r}}
$$

Donble Founior trousform: $\quad \psi_{(\vec{r}, T)}=\frac{1}{\sqrt{V}} \frac{1}{\sqrt{\beta}} \sum_{\dot{p}, i, \omega_{m}} \psi_{\left(\vec{g}, i \omega_{m}\right)} e^{i\left(\vec{g} \cdot \vec{r}-\omega_{m} T\right)}$
on the leatice $\vec{f} \in /$.B. Z.

$$
\begin{aligned}
& \text { exponent: }
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{\dot{\delta}, m} \psi_{\left(j, \omega_{m}\right)} \psi_{\left(\vec{j}, \omega_{m}\right)}\left[i \omega_{m}+\mu-\frac{\dot{g}^{2}}{2 M}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { expoment: }
\end{aligned}
$$

$$
\text { Pemion: } \int \prod_{1} d y_{1}^{+} d y_{c} e^{-\vec{M} \cdot A \cdot \vec{M}} \equiv \operatorname{Det}(A)
$$

borom: $\iint_{2} \frac{\pi}{2}\left(\frac{\left.z_{z}, z\right)}{\pi}\right) e^{-\vec{z}^{+} A \vec{z}}=\frac{1}{\operatorname{Det}(A)}$

$$
z=e^{-S F} \Rightarrow F=-T \ln z=\xi T \sum_{\overline{\dot{F}} m} \ln \left(\xi_{\dot{F}}-i \omega_{n}\right)
$$

Matsubara summation
Inz stoppead lave 10/25/2022

Proof by Residue theorem! $\oint d z h(z) g(z)=2 \pi i \sum_{i \omega_{m}}$
Residue of $f(z)=\frac{1}{e^{3 z}+1}$ at $z=i \omega_{m}=\frac{(2 n+1) \pi}{\beta}$
only has residuums, while o is
endytical. enclafical.

$$
\begin{aligned}
& f(z): f\left(i \omega_{m}+x\right)=\frac{1}{e^{(2 m+1) \pi+\beta x}+1}=\frac{1}{-e^{\beta x}+1}=\frac{1}{-1-\beta x+1}=-\frac{1}{\beta} \cdot \frac{1}{x} \Rightarrow \operatorname{Res}\left(f_{1} \omega_{m}\right)=-\frac{1}{\beta} \\
& f(-z): f\left(-i \omega_{m}-x\right)=\frac{1}{e^{-(2 n+1) \pi-\beta x}+1}=\frac{1}{-e^{-\beta x}+1}=\frac{1}{-1+\beta x+1}=\frac{1}{\beta} \cdot \frac{1}{x} \Rightarrow \operatorname{Res}\left(f_{1} \omega_{m}\right)=\frac{1}{\beta}
\end{aligned}
$$

Reridue of $M(z)=\frac{1}{e^{3 z}-1}$ at $z=i \omega_{m}=\frac{2 m \pi}{\beta}$

$$
\begin{array}{ll}
M(z): & m\left(i \omega_{m}+x\right)=\frac{1}{e^{2 m \pi+\beta x}-1}=\frac{1}{\beta \cdot x} \\
M(-z): & m\left(-i \omega_{m}-x\right)=\frac{1}{e^{2 m \pi-\beta x}-1}=-\frac{1}{\beta x}
\end{array}
$$

Conclution

$$
\begin{aligned}
& \oint d z f(z) g(z)=2 \pi i \sum_{\omega_{m}}\left(-\frac{1}{\beta}\right) g\left(i \omega_{m}\right) \\
& \oint d z f(-z) g(z)=2 \pi i \sum_{\omega_{m}}\left(\frac{1}{\beta}\right) g\left(i \omega_{m}\right) \\
& \oint d z M(z) g(z)=2 \pi i \sum_{\omega_{m}} \frac{1}{\beta} g\left(i \omega_{m}\right) \\
& \oint d z M(-z) g(z)=2 \pi i \sum_{\omega_{n}}\left(-\frac{1}{\beta}\right) g\left(i \omega_{m}\right)
\end{aligned}
$$

coatour such that $f(z)$ is analytical!

Beck to free energy

$$
\begin{aligned}
& F=\left\{T \sum_{\overrightarrow{\dot{p}} m} \ln \left(\varepsilon_{\vec{f}}-i \omega_{m}\right)=\right. \oint \frac{d z}{2 \pi}\left\{\begin{array}{l}
f(z) \\
m(z)
\end{array}\right\} \ln (\xi-z) e^{z \cdot \delta} \\
& z \rightarrow \infty \quad f(z), \mu(z) \rightarrow e^{-3 z} \rightarrow 0 \text { converges } \\
& z \rightarrow-\infty \quad f(z), \mu(z) \rightarrow 1,-1 \\
& \ln (\xi-z) \rightarrow \ln (z) \quad \text { diverges! } \\
& f(z) \ln (\xi-z) e^{z \delta} \rightarrow \ln (|z|) e^{-|z| \delta} \text { converges! }
\end{aligned}
$$

Wc could mure $\left\{\begin{array}{l}-f(-z) \\ -M(-z)\end{array}\right\} e^{-z \delta}$ iso converges
Contour

$\ln (\xi-z)$ has branch-ant on the real axis ecfualy poles at $z=\varepsilon_{g}$, hit δ can be continuous...
$F \equiv \sum_{\sigma} F_{f}$ elvers mors for fermions, became the find Matrubare point is at $I . T$

$$
\begin{aligned}
& f(z) e^{z \delta} \ln (-z) \rightarrow 0 \\
& =\int_{-\infty}^{\infty} \frac{d y}{2 \pi} \cdot f(x)[\ln (\xi-x-i y)-\ln (\xi-x+i y)] e^{x \delta} \\
& =-\int^{\infty} \frac{d x}{2 \pi}\left(\xi \frac{1}{3} \ln \left(1-\xi e^{-3 x}\right)\right)\left(\frac{-1}{\varepsilon_{0}-x-i y}-\frac{-1}{\varepsilon_{-x+i y}}\right)^{y+\text { converges now even for } \delta=0 \text {, hance we con }} \text { safely set it to sen }
\end{aligned}
$$ solely set it to sens.

by parts $-\infty$) $\left(\frac{-1}{\varepsilon_{j}-x-i y}-\frac{-1}{\varepsilon_{g}-x+i q}\right)$

$$
f(x)=-\frac{d}{d x} \frac{1}{\beta} \ln \left(1+e^{-\beta x}\right)
$$

for boom: $M(x)=\frac{d}{d x} \frac{1}{3} \ln \left(1-e^{-\beta x}\right)$

$$
\begin{gathered}
F_{j}=\varphi \int_{-\infty}^{\infty} \frac{d r}{2 \pi} \frac{1}{\beta} \ln \left(1-\xi e^{-s x}\right)\left(\frac{1}{\varepsilon_{g}-x-i y}-\frac{1}{\varepsilon_{g}-x+i y}\right)=\xi_{-\infty}^{\infty} \frac{d \mu}{2 \pi} \frac{1}{\beta} \ln \left(1-\xi e^{-\beta x}\right) 2 i \pi \delta\left(\xi_{g}-x\right)=\xi T \ln \left(1-\xi e^{-\beta \xi}\right) \\
P \frac{1}{\varepsilon_{g}-x}+i \pi \delta\left(\varepsilon_{g}-x\right) ; \rho \frac{1}{\varepsilon_{g}-x}-i \pi \delta\left(\xi_{-}-x\right)
\end{gathered}
$$

Finally: $F=-\sum_{f} T \ln \left(1+e^{-3 \varepsilon_{f}}\right)$
for booms $F=\sum_{f} T \ln \left(1-e^{-\beta \varepsilon_{g}}\right)$

Homework 2, 620 Many body

October 13, 2022

1) Problem 4.5 .5 in A\&S: Using the frequency summation technique compute the following correlation functions:

$$
\begin{align*}
\chi^{s}(\mathbf{q}, i \Omega) & =-\frac{1}{\beta} \sum_{\mathbf{p}, i \omega_{n}} G^{0}\left(\mathbf{p}, i \omega_{n}\right) G^{0}\left(-\mathbf{p}+\mathbf{q},-i \omega_{n}+i \Omega\right) \tag{1}\\
\chi^{c}(\mathbf{q}, i \Omega) & =-\frac{1}{\beta} \sum_{\mathbf{p}, i \omega_{n}} G^{0}\left(\mathbf{p}, i \omega_{n}\right) G^{0}\left(\mathbf{p}+\mathbf{q}, i \omega_{n}+i \Omega\right) \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
G^{0}\left(\mathbf{q}, i \omega_{n}\right)=\frac{1}{i \omega_{n}-\varepsilon_{p}} \tag{3}
\end{equation*}
$$

and $i \Omega, i \omega_{n}$ are bosonic, fermionic Matsubara frequencies, respectively.
2) Problem 4.5.6 in A\&S: Pauli paramagnetic susceptibility occurs due to the coupling of the magnetic field to the spin of the conduction electrons. The corresponding Hamiltonian is:

$$
\begin{equation*}
H=H^{0}\left[c^{\dagger}, c\right]-\mu_{0} \vec{B} \sum_{\mathbf{k}, s, s^{\prime}} c_{\mathbf{k}, s}^{\dagger} \vec{\sigma}_{s, s^{\prime}} c_{\mathbf{k}, s^{\prime}} \tag{4}
\end{equation*}
$$

where H^{0} is the non-interacting electron Hamiltonian with dispersion ε_{k}.
Calculate the free energy of the system (in the presence of the magnetic field) and show that the magnetic susceptibility $\left(\chi=\partial^{2} F / \partial B^{2}\right.$ at $\left.B=0\right)$ at low temperature is $\frac{\mu_{0}}{2} \rho\left(E_{F}\right)$, where $\rho\left(E_{F}\right)$ is the density of electronic states at the Fermi level.
3) Problem 4.5.7 in A\& S: Electron-phonon coupling.

In the first few lectures we showed how we can obtain the phonon dispersion in a material. The quantum solution in terms of independent harmonic oscillators has the usual form

$$
\begin{equation*}
H_{p h}=\sum_{\mathbf{q}, \nu} \omega_{\mathbf{q}, \nu} a_{\mathbf{q}, \nu}^{\dagger} a_{\mathbf{q}, \nu} \tag{5}
\end{equation*}
$$

where \mathbf{q} is momentum in the 1 BZ , and ν is a phonon branch. The Fourier transform of the oscillation amplitude is

$$
\begin{equation*}
u_{\mathbf{q}, \alpha, j}^{\nu}=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}_{n}} u_{n, \alpha, j}^{\nu} e^{-i \mathbf{q} \mathbf{R}_{n}} \tag{6}
\end{equation*}
$$

Here α is the Wickoff position in the unit cell, j is x, y, z and \mathbf{R}_{n} is the lattice vector to unit cell at $\mathbf{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}$, and N is the number of unit cells in the solid. The solution of the Quantum Harmonic Oscilator (QHO) gives the relation between operators $a_{\mathbf{q}, p}$ and the position operator, which is in this case given by

$$
\begin{equation*}
u_{\mathbf{q}, \alpha, j}^{\nu}=\frac{1}{\sqrt{2 M_{\alpha} \omega_{\mathbf{q}, \nu}}} \varepsilon_{\alpha, j}^{\nu}(\mathbf{q})\left(a_{\mathbf{q}, \nu}+a_{-\mathbf{q}, \nu}^{\dagger}\right) \tag{7}
\end{equation*}
$$

Here $\varepsilon_{\alpha, j}^{\nu}(\mathbf{q})\left(\right.$ or $\left.\vec{\varepsilon}_{\alpha}^{\nu}(\mathbf{q})\right)$ is the phonon polarization, and M_{α} is the ionic mas at Wickoff position α.
When solving the phonon problem, we wrote the following equation

$$
\begin{equation*}
\left[H_{e}+\sum_{i, j} V_{e-i}\left(\mathbf{r}_{j}-\mathbf{R}_{i}\right)+\sum_{i \neq j} V_{i-i}\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right)\right]\left|\psi_{\text {electron }}\right\rangle=E_{\text {electron }}[\{\mathbf{R}\}]\left|\psi_{\text {electron }}\right\rangle \tag{8}
\end{equation*}
$$

which gives the solution of the electron problem in the static lattice approximation (Born-Oppenheimer), where \mathbf{R}_{i} are lattice vectors of ions, H_{e} is the electron Hamiltonian, and V_{e-i} and V_{i-i} are electron-ion and ion-ion Coulomb repulsions, respectively.
Due to ionic vibrations, the displacement of ions creates an additional term in the Hamiltonian, which according to the above equation, should be proportional to

$$
\begin{equation*}
H_{e-i}=\int d^{3} r \sum_{n, \alpha}\left[V_{e-i}\left(\mathbf{r}-\mathbf{R}_{n \alpha}-\vec{u}_{n \alpha}\right)-V_{e-i}\left(\mathbf{r}-\mathbf{R}_{n \alpha}\right)\right] \rho_{\text {electron }}(\mathbf{r}) \tag{9}
\end{equation*}
$$

where $\mathbf{R}_{n \alpha}$ is position of an ion at Wickoff position α and unit cell n.

- Using above equations, shows that for small phonon-displacement u, the electronphonon coupling should have the form

$$
\begin{equation*}
H_{e-i}=\sum_{\alpha, j, \mathbf{q}, \nu, \sigma, i_{1}, i_{2}, \mathbf{k}} c_{i_{1}, \mathbf{k}+\mathbf{q}, \sigma}^{\dagger} c_{i_{2}, \mathbf{k}, \sigma}\left(a_{\mathbf{q}, \nu}+a_{-\mathbf{q}, \nu}^{\dagger}\right) \frac{g_{i_{1}, i_{2}, \alpha, \nu}^{\mathbf{k}, \mathbf{q}}}{\sqrt{2 M_{\alpha} \omega_{\mathbf{q}, \nu}}} \tag{10}
\end{equation*}
$$

where the electron field operator is expanded in Bloch basis

$$
\begin{equation*}
\psi_{\sigma}(\mathbf{r})=\sum_{\mathbf{k}, i} \psi_{\mathbf{k}, i}(\mathbf{r}) c_{\mathbf{k}, i, \sigma} \tag{11}
\end{equation*}
$$

and the matrix elements g are given by

$$
\begin{equation*}
g_{i_{1}, i_{2}, \alpha, \nu}^{\mathbf{k}, \mathbf{q}}=\frac{1}{\sqrt{N}} \sum_{j} \varepsilon_{\alpha, j}^{\nu}(\mathbf{q})\left\langle\psi_{\mathbf{k}+\mathbf{q}, i_{1}}\right| \sum_{n} e^{i \mathbf{q} \mathbf{R}_{n}} \frac{\partial V_{e-i}\left(\mathbf{r}-\mathbf{R}_{n \alpha}\right)}{\partial R_{n \alpha, j}}\left|\psi_{\mathbf{k}, i_{2}}\right\rangle \tag{12}
\end{equation*}
$$

Explain why the above integration $\left\langle\psi_{\mathbf{k}+\mathbf{q}, i_{1}}\right| \ldots\left|\psi_{\mathbf{k}, i_{2}}\right\rangle$ can be carried over a single unit cell, rather than the entire solid.

- Now use the following approximations to simplify the above Hamiltonian
* We have only one type of atom in the unit cell, i.e., $M_{\alpha}=M$.
* We consider only one Bloch band, i.e., $c_{i_{1} \mathbf{k}}=c_{\mathbf{k}}$ in our model.
* We consider the longitudinal phonon with $\omega_{\mathbf{q}, \nu}=\omega_{\mathbf{q}}$ and approximate form

$$
\begin{equation*}
g_{i_{1}, i_{2}, \alpha, \nu}^{\mathbf{k} \mathbf{q}} \approx \delta_{i_{1}, i_{2}} i q_{\nu} \gamma \tag{13}
\end{equation*}
$$

Show that H_{e-i} is

$$
\begin{equation*}
H_{e-i}=\gamma \sum_{\nu, \mathbf{q}, \sigma, \mathbf{k}} c_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} c_{\mathbf{k}, \sigma}\left(a_{\mathbf{q}, \nu}+a_{-\mathbf{q}, \nu}^{\dagger}\right) \frac{i q_{\nu}}{\sqrt{2 M \omega_{\mathbf{q}}}} \tag{14}
\end{equation*}
$$

- Introduce Grassmann field $\psi_{\mathbf{q} \sigma}$ for the coherent states of the electrons $c_{\mathbf{k} \sigma}$ and complex fields $\Phi_{\mathbf{q}, j}$ for phonon operators $a_{\mathbf{q}, j}$, and show that the action of the electron-phonon problem has the form

$$
\begin{align*}
S=\int_{0}^{\beta} d \tau \sum_{\mathbf{k}, \sigma} \psi_{\mathbf{k} \sigma}^{\dagger}(& \left.+\partial_{\tau}+\varepsilon_{\mathbf{k}}\right) \psi_{\mathbf{k} \sigma}+\int_{0}^{\beta} d \tau \sum_{\mathbf{q}, \nu} \Phi_{\mathbf{q}, \nu}^{\dagger}\left(+\partial_{\tau}+\omega_{\mathbf{q}}\right) \Phi_{\mathbf{q}, \nu} \tag{15}\\
& +\gamma \int_{0}^{\beta} \sum_{\nu, \mathbf{q}, \sigma, \mathbf{k}} \psi_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} \psi_{\mathbf{k}, \sigma}\left(\Phi_{\mathbf{q}, \nu}+\Phi_{-\mathbf{q}, \nu}^{\dagger}\right) \frac{i q_{\nu}}{\sqrt{2 M \omega_{\mathbf{q}}}} \tag{16}
\end{align*}
$$

- Introduce fields in Matsubara space $\left(\psi_{\mathbf{k} \sigma}(\tau) \rightarrow \psi_{\mathbf{k} \sigma, n}\right.$ and $\left.\Phi_{\mathbf{q}, \nu}(\tau) \rightarrow \Phi_{\mathbf{q}, \nu, m}\right)$ to transform the action S to the diagonal form. Next, use the functional field integral technique to integrate out the phonon fields, and obtain the effective electron action of the form

$$
\begin{equation*}
S_{e f f}=\sum_{\mathbf{k}, \sigma, n} \psi_{\mathbf{k} \sigma}^{\dagger}\left(-i \omega_{n}+\varepsilon_{\mathbf{k}}\right) \psi_{\mathbf{k} \sigma}-\frac{\gamma^{2}}{2 M} \sum_{\mathbf{q}, m, \mathbf{k}, \mathbf{k}^{\prime} \sigma, \sigma^{\prime}} \frac{q^{2}}{\omega_{\mathbf{q}}^{2}+\Omega_{m}^{2}} \psi_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} \psi_{\mathbf{k}^{\prime}-\mathbf{q}, \sigma^{\prime}}^{\dagger} \psi_{\mathbf{k}^{\prime} \sigma^{\prime}} \psi_{\mathbf{k} \sigma} .(\tag{17}
\end{equation*}
$$

Notice that at small frequency $\Omega_{m} \rightarrow 0$ this interaction is attractive, which is the necessary condition for the conventional superconductivity to occur.
Explain why ions with small mass (like hydrides with Hydrogen) could achieve high-Tc with conventional superconductivity. Somewhat counterintuitive is the requirement that the phonon frequency should be large (and not small), as naively suggested by the dimensional analysis. Comment why you think high phonon frequency might still be beneficial to superconductivity?

Homemors

1) Freguency summation Ags p. 185

- Cooper instability reguires the following perticle-particle susceptithlity

$$
X(g, i \Omega)=-\frac{1}{3} \sum_{\substack{i w_{m} \\ \vec{p}}} g^{0}(\vec{p}, \underbrace{\left.i \omega_{n}\right)}_{\text {fernionc }} \underbrace{\left(-\vec{p}+\vec{j},-i w_{n}+i \Omega\right)}_{\substack{\text { boromic }}}
$$

Use freperency summation to evrelnate Motsubare sum.
Here $\mathscr{g}^{0}\left(\vec{p}, i \omega_{m}\right)=\frac{1}{i \omega_{m}-\varepsilon_{p}}$

- Density-demidy responrefunction (dielectricfunction) reopures the following exprestion (polarization)

$$
X(j, i \Omega)=-\frac{1}{\beta} \sum_{\substack{i \omega_{m} \\ p}} \varphi^{j}\left(\vec{p}, i \omega_{m}\right) \varphi^{0}\left(\vec{p}+\vec{g}, i \omega_{m}+i \Omega\right)
$$

2) Panli paramsgnetism A\&S 186

$$
H=H_{0}-\mu_{0} \vec{B} \cdot \vec{s}=H_{0}\left[c^{+} c\right]-\mu_{0} B_{z} \frac{1}{2}\left(\hat{M}_{\uparrow}-\hat{M}_{\downarrow}\right)
$$

Calculate free energy $F(B)$ and shov that rusceptilility is:

$$
x=\frac{\delta^{2} F}{\delta B^{2}} \xrightarrow{T=0} \frac{\mu_{0}^{2}}{2} \rho\left(E_{F}\right)
$$

$$
\begin{aligned}
& X^{s}\left(g_{1} i \Omega\right)=-\frac{1}{3} \sum_{p, i \omega} \varphi_{p}^{0}\left(i \omega_{m}\right) \varphi_{j-p+g}^{0}\left(-i \omega_{n}+i \Omega\right) \\
& =-\frac{1}{\beta} \sum_{p, i \omega} \frac{1}{i \omega_{m}-\varepsilon_{p}} \frac{1}{-i \omega_{m}+i \Omega-\varepsilon_{p-r}} \\
& =-\frac{1}{\beta} \sum_{p, i \omega}\left(\frac{1}{i \omega_{M}-\varepsilon_{p}}+\frac{1}{-i \omega_{m}+i \Omega-\varepsilon_{j-p}}\right) \frac{1}{i \Omega-\varepsilon_{j-p}-\varepsilon_{p}} \\
& =-\sum_{p}\left(f\left(\varepsilon_{p}\right)-f\left(-\varepsilon_{g-p}+i \Omega\right)\right) \frac{1}{i \Omega-\varepsilon_{j-p}-\varepsilon_{p}}=\sum_{p} \frac{-f\left(\varepsilon_{p}\right)+f\left(-\varepsilon_{f-p}\right)}{i \Omega-\varepsilon_{p}-\varepsilon_{f-p}}=\sum_{p} \frac{1-f\left(\varepsilon_{j-p}\right)-f\left(\varepsilon_{p}\right)}{i \Omega-\varepsilon_{p}-\varepsilon_{j-1}} \\
& \left.X^{c}{ }_{(p, i \Omega}\right)=-\frac{1}{\beta} \sum_{p, i \omega_{n}} \varphi_{p}^{0}\left(i \omega_{m}\right) \operatorname{l}_{p+g}^{0}\left(i \omega_{m}+i \Omega\right) \\
& =-\frac{1}{\beta} \sum_{p, i \omega_{m}} \frac{1}{i \omega_{m}-\varepsilon_{p}} \frac{1}{i \omega_{m}+i \Omega-\varepsilon_{p+g}}=-\frac{1}{\beta} \sum_{p i \omega_{m}}\left(\frac{1}{i \omega_{m}-\varepsilon_{p}}-\frac{1}{i \omega_{m}+i \Omega-\varepsilon_{p+g}}\right) \frac{1}{i \Omega+\varepsilon_{p}-\varepsilon_{p+g}} \\
& =-\sum_{p} \frac{f\left(\varepsilon_{p}\right)-f\left(\varepsilon_{p+f}\right)}{i \Omega+\varepsilon_{p}-\varepsilon_{p+\rho}}
\end{aligned}
$$

Electron-phonon coupling

$$
\begin{aligned}
& H_{p h}=\sum_{\vec{q} v} \omega_{\rho v} a_{\vec{q} v}^{+} Q_{\vec{q} v}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\vec{g} \alpha j}^{\nu}=\frac{1}{\sqrt{2 M_{\alpha} \omega_{\rho^{\nu}}}} \sum_{{ }_{\text {polarization }}^{V}}^{V}(\vec{g})\left(Q_{j^{\nu}}+Q_{-f^{\nu}}^{+}\right) \text {from } \hat{x} \text { of Q.H.O. }
\end{aligned}
$$

polarization
unit vector in direction of vilnation
From this it follows $\mu_{m \alpha j}^{v}=\frac{1}{\sqrt{N}} \sum_{\dot{p}} e^{i \vec{g} \cdot \vec{R}_{M}} \frac{1}{\sqrt{2 M_{\alpha} \omega_{j v}}} \varepsilon_{\alpha j}^{v}(\dot{g})\left(Q_{\rho \nu}+O_{-j v}^{+}\right)$

$$
\begin{aligned}
& H_{l-i}=\int d^{3} r \sum_{m, \alpha}\left[V_{l-i}\left(\vec{r}-\vec{R}_{m \alpha}-\vec{M}_{m \alpha}\right)-V_{l-i}\left(\vec{r}-\vec{R}_{m \alpha}\right)\right] \text { Pelectim }(\vec{r})
\end{aligned}
$$

$$
\begin{aligned}
& \int d^{3} r \psi_{k_{1}, i}^{+}(\vec{r}) \sum_{m}\left(\frac{\partial V_{e-i}\left(\vec{r}-\vec{R}_{m \alpha}\right)}{\partial R_{m \alpha j}}\right) e^{i \overrightarrow{g^{2}} \vec{R}_{m}} \psi_{z_{2} i_{2}}(\vec{r})=\int d^{3} r \sum_{m} e^{i\left(\vec{z}_{2}-\vec{k}_{1}\right) \vec{r}+i g \vec{R}_{m}} \mu_{2_{1} i_{1}(\vec{r})}^{\partial V_{R_{-i}}\left(\vec{r}-\vec{R}_{m \alpha}\right)} \partial \mu_{R_{2_{2}} i_{2}}(\vec{r}) \\
& \psi_{k i}(\vec{r})=\mu_{z i}(\vec{r}) e^{i \vec{k} \vec{r}} \\
& \text { periodic } \\
& \vec{r}=\vec{R}_{m}+\vec{r}_{1} \leftarrow \text { within one witt all } \\
& \text { con be split }
\end{aligned}
$$

$$
\begin{aligned}
& \text { chur } \\
& z=\int D\left[\psi^{*}, \psi\right] D\left(\phi^{+} \phi\right] e^{-S[\psi, \phi]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { F.T:: } \quad \phi_{f i}(T)=\frac{1}{\sqrt{B}} \sum_{n} \phi_{j i n} e^{-i Q_{n} T} \\
& Y_{f i}(\tau)=\frac{1}{\text { 分 }} \sum_{m} Y_{p f i} e^{-i \omega_{n} T}
\end{aligned}
$$

$$
\begin{aligned}
& r_{f i}=\frac{i g_{j} N}{\sqrt{2 \mu \omega_{f} s^{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mning: } \int d\left(\phi^{+}, \phi\right) e^{-\dot{\phi}^{+} A \vec{\phi}+\vec{w}^{+} \vec{\phi}+\vec{\phi}^{+} \vec{w}^{\prime}}=\frac{1}{\operatorname{Det}(A)} e^{\vec{w}^{+} A^{-1} \vec{w}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{\omega_{j}-i \Omega_{n}}+\frac{1}{\omega_{f}+i \Omega_{m}}\right)=\frac{\omega_{g}}{\omega_{f}^{2}+\Omega_{m}^{2}}
\end{aligned}
$$

became of longitudinal choice

$$
S_{\text {eff }}\left[\psi_{1}^{+}, \psi\right]=\sum_{r=2} \psi_{r 2}^{+}\left(-i \omega_{m}+\varepsilon_{r}\right) \psi_{r=2}-\sum_{k g^{m}} \frac{r^{2}}{2 M} \frac{g^{2}}{\omega_{j}^{2}+\Omega_{m}^{2}} \hat{M}_{f m} \hat{M}_{j_{j}-m}
$$

small M better, became interaction stronger real axis: $\frac{g^{2}}{\omega_{f}^{2}-\Omega^{2}} \Rightarrow \begin{array}{r}\text { negative up to } \omega_{f} \\ \text { hence large } \omega_{\mathrm{f}} \text { better }\end{array}$ hence large wo better

On real axis $\frac{1}{\omega_{g}^{2}-\left(i \Omega_{m}\right)^{2}} \rightarrow \frac{1}{\omega_{f}^{2}-\Omega^{2}}$ hence ign change at $\Omega \approx \omega_{f}$.

Perturbation theory (5 and 7 in A\&S)

- Existed before funchonal field integral
- Nell covered in Mehan's hook, which does not use functioned integrals

We wite $S=S_{\uparrow}+\Delta S$
here quadratic
(can be developed for any solvable S_{0}, $\ln t$
any type of interaction

Feynman, diagrams ore way,
$\frac{C h p+7 \mathrm{in} A g S}{T}$ move complicated then
To proceed we need do introduce the lowest possible correlation function, ie., the riugle particle Green's function
imagine $\quad G_{i j}\left(T-T^{\prime}\right)=-\left\langle T_{T} Q_{i}(T) Q_{j}^{+}\left(T^{\prime}\right)\right\rangle \quad$ in imaging tim T_{T} repleas
commentator.
But whet is $Q_{i}(t)$? We are used to fields being t-dependent. What about operation? It is defined is Heisenberg representation.
Schrodinger representation: $i \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle \Rightarrow|\psi(t)\rangle=e^{-i H t} \Theta(t)|\psi(0)\rangle$ (real time)' Hecissenherp representation: $|\psi\rangle$ is not time dependent, but operators are.

Operators evolve as: $O(t)=e^{i H t} O e^{-i H t}$

$$
\text { hence } \frac{\partial O(t)}{\partial t}=e^{i H t} i[H, 0] e^{-i H t}=i[H, O(t)]
$$

The two representation ore equivalent, because they gimme the some physical response function!

$$
\begin{array}{ll}
\frac{\text { Hechroedinges }}{\text { Heisconling }} \\
\underbrace{\left\langle\psi_{1}(t)\right| O\left|\psi_{2}(t)\right\rangle} & \left\langle\psi_{1}\right| e^{i \theta t} O e^{-i H t}\left|\psi_{2}\right\rangle \\
\left\langle\psi_{1}(0)\right| e^{i H t} O e^{-i H t}\left|\psi_{2}(0)\right\rangle & \left\langle\psi_{1}^{\prime \prime}(0)\right|
\end{array}
$$

There is a third representation, interaction (Dirac) representation:

$$
\begin{aligned}
& \left|\psi_{I}(t)\right\rangle \equiv e^{i H_{0} t}\left|\psi_{S}(t)\right\rangle=e^{i H_{0} t} e^{-i H t} \Theta(t)\left|\psi_{(0)}\right\rangle \\
& O_{I}(t) \equiv e^{i H_{0} t} O e^{-i H_{0} t}
\end{aligned}
$$

hence both $\left|\psi_{I}(t)\right\rangle$ and $O_{I}(t)$ are time dependent, lust O_{I} has trinal time depenatence.
It also gives the sam obervabels:

$$
\left\langle\psi_{I}(t)\right| O_{I}(t)\left|\psi_{I}(t)\right\rangle=\left\langle\psi_{s}(t)\right| \underbrace{e^{-i H_{0} t} e^{i H_{0} t}}_{11} O \underbrace{1 /}_{1} e^{-i H_{0} t}\left|\psi_{s}(t)\right\rangle
$$

We will not ane this representation.

Heisenberg representation is most useful for us, be come it is easy to treuplote to function integral: $Q(t) \longleftrightarrow \psi(t)$.

How are quantities calculated in Heisenberg representation?
$Z=\operatorname{Tr}\left(e^{-B H}\right)$ Here H might be $\hat{A}-\mu \hat{v}$ for ground potential
We introduce $H(T)=\sum_{i j} h_{i j} Q_{i}^{+}(T) Q_{j}(T)+\sum_{i j 2 \mu} V_{i j k e} Q_{i}^{+}(T) Q_{j}^{+}(T) Q_{x}(T) Q_{e}(T)-\sum_{i} f_{j}^{T}(T) Q_{i}(T)+Q_{i}^{+}(T) j_{i}^{(T)}$ here H dos not need $H(T)$ become $H(T)=e^{H T} H(0) e^{-H T}=H(0)$
$Z=\operatorname{Tr}\left(T_{\tau} e^{-\int_{0}^{i} d \tau H(T)}\right)$ If $H(T)=H(0)$ as $\operatorname{Tr}\left(e^{-s H}\right)$
(If H is t-independent, me dol not do anything became $\int_{0}^{\hat{d} I T} H(\tau)=\beta H$ But then form be is valid even for time dependent It with son me filers $j^{+} \cdot a+Q^{+} j$

Define time ordering operator: $T_{T} Q_{1}\left(T_{1}\right) Q_{2}\left(T_{2}\right)=\left\{\begin{array}{ll}T_{1} \geqslant T_{2}: & Q_{1}\left(T_{1}\right) Q_{2}\left(T_{2}\right) \\ T_{1}<T_{2}: & \xi\end{array} Q_{2}\left(T_{2}\right) Q\left(T_{1}\right)\right.$
elway orders all operators in time

For example the correlation functions in imaginonydime are dextrad by

$$
\begin{aligned}
G_{i_{1} i_{2}}\left(T_{1}-T_{2}\right)=-\frac{\partial^{2} \ln z}{\left.\int_{j_{i}\left(T_{2}\right) j_{i_{1}}^{+}(T)}\right|_{j=0}} & =-\left.\frac{1}{z} \frac{\partial^{2}}{\sum_{j_{i}}^{j_{2}}\left(T_{2}\right) j_{i_{1}}^{+}\left(T_{1}\right)} \operatorname{Tr}\left(T_{T} e^{-\int_{0}^{1} d_{i}\left(H-\sum_{l} j_{l}^{+}(T) Q_{R}(T)+Q_{l}^{+}(T) j e(T)\right)}\right)\right|_{j=0} \\
& =-\frac{1}{z} \operatorname{Tr}\left(T_{T} e^{-\int_{0}^{B} d T H} Q_{i_{1}}\left(T_{1}\right) Q_{i_{2}}^{+}\left(T_{2}\right)\right) \\
& \equiv-\left\langle T_{T} Q_{i_{1}}\left(T_{1}\right) Q_{i_{2}}^{+}\left(T_{2}\right\rangle\right\rangle
\end{aligned}
$$

Why do we need dime ordering?

$$
G_{i i_{2}}\left(T_{1}-T_{2}\right)=-\left\langle T_{T} Q_{i_{1}}\left(T_{1}\right) Q_{i_{2}}^{+}\left(T_{2}\right)\right)={ }^{V}-\frac{1}{z} \operatorname{Tr}\left(e^{-\beta H} e^{H T_{1}} \theta_{i_{1}} e^{-H T_{1}} e^{H T_{2}} Q_{i_{2}}^{+} e^{-H T_{2}}\right)
$$

Definition of Heisenberg operators H here is t-imbependent

$$
\begin{aligned}
= & -\frac{1}{z} \operatorname{Tr}\left(e^{-\int_{T_{1}}^{B} H d T} Q_{i_{1}} e^{-\int_{T_{2}}^{\pi_{1}} H d T} Q_{i_{2}}^{+} e^{-\int_{0}^{\pi} H d r}\right) \\
& \equiv-\frac{1}{z} \operatorname{Tr}\left(T_{T} e^{-\int_{0}^{B} H d r} Q_{i_{1}}\left(T_{1}\right) Q_{i_{2}}^{+}\left(T_{2}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& X_{i_{1} i_{2} i_{3} i_{4}}\left(T_{1}-T_{2}\right)=\left.\frac{\partial^{4}}{\partial_{i_{4}^{4}}^{+}\left(T_{2}\right)} \frac{\ln z}{j_{i_{3}}\left(T_{2}\right) \supset j_{i_{2}}^{+}\left(T_{1}\right) \supset j_{j_{1}\left(T_{1}\right)}}\right|_{j=0}
\end{aligned}
$$

$$
\begin{aligned}
& X_{i_{1} i_{2} i_{3} i_{4}}\left(T_{1}-T_{2}\right)=\left\langle T_{T} Q_{i_{1}}^{+}\left(T_{1}\right) Q_{i_{2}}\left(T_{1}\right) Q_{i_{3}}^{+}\left(T_{2}\right) Q_{i_{4}}\left(T_{2}\right)\right\rangle-\left\langle T_{T} Q_{i_{1}}^{+} Q_{i_{2}}\right\rangle\left\langle T_{5} Q_{i_{3}}^{+} \quad Q_{i_{4}}\right\rangle \\
& -\left\langle T_{T} Q_{i_{1}}^{+}\left(\pi_{1}\right) Q_{i_{4}}\left(\pi_{\tau}\right)\right\rangle\left\langle T_{T} Q_{i_{2}}\left(T_{1}\right) Q_{i_{3}}^{+}\left(\tau_{L}\right)\right\rangle
\end{aligned}
$$

We will me this rmowledge to derive the same correlation functions in functional field integral representation.

Stopped 11/3/2022

$$
\begin{aligned}
& +\underbrace{\left.\frac{1}{z} \frac{\partial z}{\partial j_{i_{2}}\left(i_{2}\right)} \frac{D z}{\left.\partial \theta_{i_{1}}{ }^{+}\right\rangle\left(i_{1}\right)}\right|_{j=0} Q_{\left.i_{1}\right\rangle}}{ }_{j=0} \\
& \text { vomishes } \\
& =-\left\langle T_{T} Q_{i_{1}}\left(T_{1}\right) Q_{i_{2}}^{+}\left(T_{2}\right)\right\rangle \\
& X_{i_{1} i_{2} i_{3} i_{4}}\left(T_{1}-T_{2}\right)=\left.\frac{\partial^{4} \ln \operatorname{Tr}\left(e^{-\int_{0}^{T} d T\left[H-\sum_{i,} \int_{i}^{+}(r) Q_{i}(r)+Q_{i}^{+}(\tau) j(T)\right]}\right.}{\left.\partial_{i_{4}}^{+}\left(T_{2}\right) j_{j_{3}}\left(T_{2}\right) \partial j_{i_{2}}^{+}\left(T_{1}\right) \rho_{j_{1}\left(T_{1}\right)}\right)}\right|_{j=0} \\
& =\left\langle Q_{i_{1}}^{+}\left(T_{1}\right) Q_{i_{2}}\left(r_{1}\right) Q_{i_{3}}^{+}\left(T_{2}\right) Q_{i_{1}}\left(T_{h}\right)\right\rangle-\left\langle Q_{i_{1}}^{+}\left(T_{1}\right) Q_{i_{2}}\left(\pi_{1}\right)\right\rangle\left\langle Q_{i_{3}}^{+}\left(T_{0}\right) Q_{i_{4}}\left(r_{4}\right)\right\rangle \\
& -\left\langle Q_{i_{1}}^{+}\left(T_{1}\right) Q_{i_{4}}\left(T_{2}\right)\right\rangle\left\langle Q_{i_{2}}\left(\sigma_{1}\right) Q_{i_{3}}^{+}\left(T_{2}\right)\right\rangle
\end{aligned}
$$

Connected correlation function

$$
(-1)\left\langle Q_{i_{3}}^{+}\left(i_{2}\right) Q_{i_{2}}\left(\pi_{1}\right)\right\rangle
$$

$$
=\left\langle Q_{i_{1}\left(T_{1}\right)}^{+} Q_{i_{2}}\left(T_{1}\right) Q_{i_{3}}^{+}\left(T_{2}\right) Q_{i_{4}}\left(T_{4}\right)\right\rangle-G_{i_{2} i_{1}}\left(0^{-}\right) G_{i_{n} i_{3}}\left(O^{-}\right)+G_{i_{4} i_{4}}\left(T_{2}-T_{1}\right) G_{i_{2} i_{3}}\left(T_{1}-T_{2}\right)
$$

Back to Functional Integral and correlation functions
(Abs page 379 just argues that since equal time correlation functions $\langle 0\rangle$ cen be obtained by devinetive, the time dependent shoved mors also. We. nil prove it)

In Herren berg reporerentetion

$$
G_{i_{1} i_{2}}\left(T_{1}-T_{2}\right)=-\left.\frac{\partial^{2} \ln z}{\int_{j_{i}}\left(T_{2} j_{i_{1}}^{+}\left(T_{1}\right)\right.}\right|_{j=0}=\quad \text { with } H \rightarrow H_{0}-\sum_{i} j_{i}^{+}(\tau) Q_{i}(\tau)+Q_{i}^{+}(\tau) j_{i}(\tau)
$$

Crucial point: To pet Functional Yntegal for z we replace $Q_{i}(T) \rightarrow \psi_{i}(T)$ and use

$$
\begin{aligned}
& S=\int_{0}^{B}\left(\sum_{i}^{r} \psi_{i}^{+}\left(z_{r}^{-\gamma}-\gamma_{i}\right) \psi_{i}-H[\gamma]\right) d T
\end{aligned}
$$

It is generally trave: $\left\langle T_{T} Q_{i_{1}}\left(\pi_{1}\right) Q_{i_{2}}^{+}\left(\pi_{2}\right) Q_{i_{3}}\left(\pi_{3}\right) Q_{i_{1}}^{+}\left(\pi_{2}\right)\right\rangle=\frac{1}{2} \int D\left(\psi_{1}^{+} \psi\right] e^{-S} \psi_{i}\left(\pi_{1}\right) \psi_{i 2}^{+}\left(\pi_{2}\right) \psi_{i_{3}}\left(\pi_{3}\right) \psi_{i h}^{+}\left(\pi_{\pi}\right)$
eng dims olepemblentaverage of operators
replace operators with comesponting fields

Beck to Coreen's fuction: (in Heissenberg representation)

Real time plynical green's function

$$
\left.G_{p p^{\prime}}^{\text {retionded }}\left(t-t^{\prime}\right)=-i \circlearrowleft\left(t-t^{\prime}\right)<\left[a_{p}(t), a_{p}^{+}\left(t^{\prime}\right)\right]_{-\xi}\right\rangle
$$

We will use Lehwon representation to estoblith connection betreen reforded (plysrical) G.F. and imaginary time G.F.

$$
\begin{aligned}
& =-i \Theta\left(t-t^{\prime}\right) \frac{1}{z} \sum_{m_{1} m}\left[e^{-\beta E_{m}+i\left(E_{m}-E_{m}\right)\left(t-t^{\prime}\right)}-\xi e^{\left.-B E_{m}+i E_{m}-E_{m}\right)\left(t-t^{\prime}\right)}\right]\langle M| Q_{p}|m\rangle\langle m| Q_{p}^{+}|m\rangle \\
& =-i \Theta\left(t-t^{\prime}\right) \frac{1}{z} \sum_{m_{1} m}\left(e^{-B E_{m}}-\eta C^{-B E_{m}}\right) e^{i\left(E_{m}-E_{m}\right)\left(t-t^{\prime}\right)}\langle m| Q_{p}|m\rangle\langle m| Q_{p^{\prime}}^{+}|M\rangle
\end{aligned}
$$

In Real trepuency $G_{p p^{\prime}}^{\text {refended }}(\omega)=\int_{-\infty}^{\infty} d\left(t-t^{\prime}\right) e^{i \omega\left(t-t^{\prime}\right)} G_{p p^{\prime}}^{\text {ret }}\left(t-t^{\prime}\right)$

$$
G_{p p^{\prime}}^{\text {net }}(\omega)=-i \frac{1}{z} \sum_{m_{1} m}\left(e^{-B E_{m}}-\xi e^{-B E_{m}}\right)\langle m| Q_{p}|m\rangle\langle m| Q_{p}^{+}|m\rangle \underbrace{\infty}_{\frac{0-1}{\int_{0}^{\infty}} e^{i\left(\omega+E_{m}-E_{m}+i \delta\right)}} \text { hosto be- } e^{i\left(\omega+E_{m}-E_{m}\right) \Delta t-\delta_{\Delta t} t}{ }^{-\infty} d \Delta t
$$

$$
\begin{array}{r}
G_{p p^{\prime}}^{\text {ret }}(\omega)=\frac{1}{z} \sum_{m_{1}, m} \frac{\left(e^{-B E_{m}}-\xi e^{-B E_{m}}\right)}{\left(\omega+E_{m}-E_{m}+i \delta\right)}\langle M| O_{p} \\
\uparrow \\
+ \text { retarded } \\
\text { - edvanced }
\end{array}
$$

Exomple $p=p^{\prime}=\overrightarrow{2}$ momentun and fermions:

$$
\left.G_{2}^{\text {net }}(\omega)=\frac{1}{z} \sum_{m m} \frac{e^{-\beta E_{m}}+e^{-\beta E_{m}}}{\omega+E_{m}-E_{m}+i \delta}\left|\langle n| \sigma_{2}\right| m\right\rangle\left.\right|^{2}
$$

Spectral function $A_{2}(\omega)=-\frac{1}{\pi} \mathscr{I n}_{n} G_{2}^{\text {net }}(\omega)$ meassured in ARPES

$$
G^{+}(\omega+i s)
$$

mave generally $A_{p p^{\prime}}(\omega)=\frac{1}{2 \pi i}\left[G_{p p^{\prime}}(\omega+i \delta)-G_{p^{\prime}}^{\prime \prime}(\omega-i \delta)\right]$ paritive definitk
We ruow $\frac{1}{\omega-Q+i \delta}=P \frac{1}{\omega-Q}-i \pi \delta(\omega-Q)$ if $a \in \mathbb{R}$

$$
\begin{aligned}
& \frac{1}{\omega-a-i \delta}=p \frac{1}{\omega-a}+i \pi \delta(\omega-a) \\
& \left.\left.A_{z}(\omega)=\sum_{m m} \frac{\left(e^{-\beta E_{m}}+e^{-\beta E_{m}}\right.}{z}\right)\left|\langle M| a_{k}\right| m\right\rangle\left.\right|^{2} \delta\left(\omega+E_{m}-E_{m}\right) \geqslant 0 \\
& \left.\int A_{2}(\omega) d \omega=\sum_{m m} \frac{\left(e^{-\beta E_{m}}+e^{-\beta E_{m}}\right)}{z}\left|\langle M| Q_{2}\right| m\right\rangle\left.\right|^{2}=\frac{1}{z} \sum_{m m}\langle M| e^{-\beta E_{m}} Q_{2}|m\rangle\langle m| Q_{z}^{+}|\mu\rangle+ \\
& \langle M| Q_{z}|m\rangle\langle m| e^{-B E_{m}} Q_{\varepsilon}^{+}|m\rangle \\
& G_{r}^{\text {not }}(\omega)=\int \frac{A_{r}(x) d x}{\omega-x+i \delta} \quad \begin{array}{c}
\text { Kramers }-K \text { romip } \\
\text { relation }
\end{array}
\end{aligned}
$$

proof:

$$
\begin{aligned}
\int \frac{A_{2}(x) d x}{w-x+i \delta} & \left.=\int d x \frac{1}{w-x+i \delta} \sum_{m m} \frac{\left(e^{-\beta E_{m}}+e^{-\beta E_{m}}\right)}{z}\left|\langle m| O_{2}\right| m\right\rangle\left.\right|^{2} \delta\left(x+E_{m}-E_{m}\right) \\
& \left.=\sum_{m m} \frac{\left(e^{-\beta E_{m}}+e^{-\beta E_{m}}\right)}{z}\left|\langle m| O_{2}\right| m\right\rangle\left.\right|^{2} \frac{1}{\omega-E_{m}+E_{m}+i \delta}
\end{aligned}
$$

$A_{z}(w)$ is meannued directly by ARPES:

$$
\frac{p^{2}}{2 m_{c}}=E_{\text {in }}=h v-\phi-\varepsilon_{2}
$$

momenticm of
phaton is
negtigtre rence:
binding enerify of elction wor function
hV - GeV … 200 eV
$\phi \sim$ hev mare fuction ε_{2} wre went to defermine ε_{11} congtol momention to be determines.

Want $\varepsilon_{r}(r)$

$$
\begin{aligned}
& \frac{1}{w-a+i \sigma}=P \frac{1}{w-a}-i \pi \delta(w-a) \\
& \int_{-\infty}^{\infty} \frac{d \omega}{\omega-a+i 5}=P \int_{-\infty}^{\infty} \frac{d \omega}{\omega-a}-i \pi \\
& \underbrace{\int_{-\infty}^{\theta-\varepsilon} \frac{d \omega}{\omega-a+i 5}+\int_{0+\varepsilon}^{\infty} \frac{d \omega}{\omega-Q+i \delta}}_{\lim _{\varepsilon \rightarrow 0}}+\underbrace{\int_{-\varepsilon}^{\varepsilon} \frac{d u}{x+i \sigma}}_{\ln (\varepsilon+i \delta)-\ln (-\varepsilon+i \sigma)} \\
& P \int \frac{d \omega}{w-0+i 5}
\end{aligned}
$$

Non-inferacting system

$$
\begin{aligned}
& \begin{array}{cc}
\langle M| C_{R}|m\rangle \\
E & 1 \\
E_{n} & \left.A_{\varepsilon}(\omega)=\sum_{m m} \frac{\left(e^{-B E_{m}}+e^{-B E_{m}}\right)}{z}\left|\langle M| O_{2}\right| m\right\rangle\left.\right|^{2} \delta\left(\omega+E_{m}-E_{m}\right)
\end{array} \\
& E_{m}=E_{m}-\varepsilon_{r} \Rightarrow E_{m}-E_{m}=\varepsilon_{2} \\
& \begin{aligned}
A_{\varepsilon}(\omega) & \left.=\sum_{m m} \frac{\left(e^{-\beta E_{m}}+e^{-\beta E_{m}}\right)}{z}\left|\langle n| \theta_{z}\right| m\right\rangle\left.\right|^{2} \delta\left(\omega-\varepsilon_{z}\right) \\
& =\int\left(\omega-\varepsilon_{2}\right) \cdot 1 \quad \int A_{z}(\omega) d \omega=1
\end{aligned}
\end{aligned}
$$

Then: $G_{r}^{\text {ret }}(\omega)=\frac{1}{\omega-\varepsilon_{2}+i \delta} \quad$ fron $k, k . \quad G_{r}^{\text {ret }}(\omega)=\int \frac{A_{2}(x) d x}{\omega-x+i \delta}$
$\frac{\text { Interactinus system }}{\checkmark}$
$|\Omega\rangle=\underbrace{C_{2}^{+}|M\rangle}_{\text {Not eigenstate }|m\rangle \Rightarrow \text { offer some time ure ham a ruperposition of rigenstetes }}$

$$
\underbrace{\langle n| C_{2}(t)}_{\langle\Omega(t)|} \underbrace{C_{2}^{+}(0)|\mu\rangle}_{|\Omega(0)\rangle} \sim \underbrace{e^{-\frac{t}{T}} \Rightarrow G_{7} \sim \frac{1}{\omega+i / \tau_{\kappa}} \kappa_{\text {self evergy }}}_{\substack{\uparrow \\ \text { veropop decays mot hme }}}
$$

In the Fern' liguid picture:

$$
\begin{aligned}
G_{r}(\omega)= & \frac{z_{r}}{\omega+\mu-\frac{r^{2}}{2 m^{*}+i \delta}}+G_{r}^{i m \omega o h} \sim \frac{z_{r}}{\omega+\mu-\varepsilon_{r} \frac{m}{m^{*}+i \delta}}+G_{r}^{\text {incoh }}(\omega) \\
A_{r}(\omega)= & \left.z_{r} \delta\left(\omega+\mu-\varepsilon_{r} \frac{m}{m^{*}}\right)+A_{r}^{\text {imcoh }} / \omega\right) \\
& \uparrow
\end{aligned}
$$

guaripartide renomalization au plituide

Imaginary time Green's function $T=$ it
It is easier to manipulate and calculate. To pet real time response me Wirer's rotation $G_{2}(i \omega) \rightarrow G_{2}(\omega+i s)$

$$
G_{i_{1},}\left(T_{1}-T_{2}\right)=-\left.\frac{\partial^{2} \ln z}{\partial j_{i}\left(T_{2} j_{i 1}^{+}\left(T_{1}\right)\right.}\right|_{j=0} \equiv-\left\langle T_{1} Q_{i_{1}}\left(T_{1}\right) Q_{i_{2}}^{+}\left(T_{1}\right)\right\rangle \text { no commutator }
$$

Is equivalent to $G_{i, 2}(T)=-\Theta(T)\left\langle Q_{i_{1}}(T) Q_{i}+(0)\right\rangle-\xi \Theta(-T)\left\langle Q_{i_{2}}+(0) Q_{i}(T)\right\rangle$
We use Lehman representation to establish relationship between

$$
G_{i_{1} i_{2}}(T) \text { and } G_{i, 2}^{\ln t}(t)
$$

$$
\begin{aligned}
& G_{p p^{\prime}}(T)=-\left\langle T_{T} O_{p}(T) O_{p}(0)\right\rangle \quad \text { hence } \\
& G_{p p^{\prime}}(T)=-\theta(T) \frac{1}{z} \sum_{m}\langle m| e^{-\beta H} e^{H T} Q_{p} e_{\uparrow_{I}^{-H T}} Q_{p^{\prime}}^{+}|m\rangle \\
& -\xi \Theta(-T) \frac{1}{z} \sum_{m}\langle m| e^{-\beta H} O_{p}^{+} e^{H T} O_{p}^{I} e^{-H T}|m\rangle \\
& G_{p p^{\prime}}(T)=-\Theta(T) \frac{1}{z} \sum_{m_{1} m}\langle n| Q_{p}|m\rangle\langle m| Q_{p^{\prime}}^{+}|m\rangle e^{-\beta E_{m}+\left(E_{m}-E_{m}\right) \tau} \\
& -\zeta \theta(-T) \frac{1}{z} \sum_{m_{1} m}\langle m| O_{p}^{+}|m\rangle\langle M| O_{p}|m\rangle e^{-\beta E_{m}+\left(E_{m}-E_{m}\right) \tau} \\
& G_{p p^{\prime}}\left(i \omega_{m}\right)=\int_{0}^{B} e^{i \omega_{m} T} G_{p p^{\prime}}(\tau) d \tau \quad \text { and } \quad G_{p p^{\prime}}(\tau)=\frac{1}{\beta} \sum_{i \omega_{m}} e^{-i \omega_{n} T} G_{p p^{\prime}}\left(i \omega_{n}\right)
\end{aligned}
$$

Motrubaro freg nercies, be coun un know it nunt rotisfy (antiperiondicuty.

$$
\begin{aligned}
& e^{\sin \omega_{z}}=\xi= \begin{cases}-1 & \text { fermions } \\
+1 & \text { proons }\end{cases} \\
& G_{p} p^{\prime}\left(i \omega_{2}\right)=\frac{1}{z} \sum_{m, m}\langle n| \theta_{p}|m\rangle\langle m| \theta_{p^{\prime}}^{+}|m\rangle \frac{e^{-\beta E_{m}}-\xi e^{-\beta E_{m}}}{i \omega_{2}+E_{m}-E_{m}}
\end{aligned}
$$

compere with

$$
G_{p p^{\prime}}^{\text {net }}(\omega)=\frac{1}{z} \sum_{m_{1}, m} \frac{\left(e^{-B E_{m}}-\xi e^{-\beta E_{m}}\right)}{\left(\omega+E_{m}-E_{m}+i \delta\right)}\langle m| Q_{p}|m\rangle\langle M| Q_{p}^{+}|m\rangle
$$

only need to repplace $G_{2}(i \omega) \rightarrow G_{2}\left(\omega+i \sigma^{\prime}\right)$

This is not entirely trinial when $G_{x}\left(i w_{n}\right)$

- is enown with fimite precition (Pede, maxent) - is rnown analitically lent not in an analytic form
example: $\frac{e^{B i \omega_{m}}}{i \omega_{m}-\varepsilon_{a}} \neq \frac{e^{B(\omega+i \sigma)}}{\omega-\xi+i \sigma} \quad$ at $\omega \rightarrow \infty$ dinerges, hence mon-enalydic $\frac{\varphi}{i \omega_{m}-\varepsilon_{2}}=\frac{\varphi}{\omega-\varepsilon_{\varepsilon}+i \delta}$ is anobytic

Generelise the Green'sfunction into entire complex plone

$$
G(z)=\int \frac{A(x)}{z-x+i 0^{0}} d x \text { where } A(x)=-\frac{1}{2 \pi i}\left[G(x+i r)-G^{+}\left(x-i \sigma^{i}\right)\right]
$$

Whot con be computed from the efreen's function?

1) perial / total demily $G_{p}\left(T \rightarrow 0^{-}\right)=\left\langle C_{p}^{+} C_{p}\right\rangle=n_{p}$ lere $p=(\vec{p}, s)$
2) rintic energy $T=\left\langle\sum_{p} \varepsilon_{p} C_{p}^{+} c_{p}\right\rangle=\sum_{p} \varepsilon_{p} G_{p}\left(i \rightarrow 0^{-}\right)$
3) current demily

$$
\begin{gathered}
: \vec{j}=\frac{i}{2 m}\left[\left(\vec{\nabla} Q^{+}(\vec{r}, T)\right) Q(\vec{r}, T)-Q^{+}(\vec{r}, T)(\nabla Q(\vec{r}, T))\right] \\
\left.\vec{j}=\frac{i}{2 m} \lim _{\vec{r} \rightarrow \rightarrow \vec{r}^{\prime}}\left(\vec{\nabla}_{\vec{r}}-\overrightarrow{\vec{r}}_{r^{\prime}}\right)<Q^{+}(\vec{r}, T) Q(\vec{r}, T)\right) \\
G\left(\vec{r}_{1}^{\prime}, \vec{r}, T \rightarrow 0^{-}\right)
\end{gathered}
$$

$$
\vec{j}=\frac{i}{2 m} \lim _{\vec{r} \rightarrow \vec{r}^{\prime}}\left(\vec{\nabla}_{\vec{r}}-\vec{\nabla}_{\vec{r}^{\prime}}\right) G\left(\vec{r}_{1}, \vec{r}, T \rightarrow 0^{-}\right) \quad \begin{aligned}
& \text { wedt to be colubbted with } \\
& \text { electic piles tumed on. }
\end{aligned}
$$

4) total energy $\sum_{2} Q_{2}^{+}\left[\hat{H}_{0}, Q_{2}\right]=-H_{0}$ beccume H_{0} is of guodnatic form $\sum_{i} O_{2}^{+}\left[\hat{V}, O_{2}\right]=-2 V$ when \hat{V} is of ouertic form

Let's comider: $\left(\frac{\partial}{\partial T}-\varepsilon_{p}+\mu\right) G_{p}\left(T \rightarrow 0^{-}\right)=\left\langle Q_{p}^{+}(0) \frac{\partial}{\partial T} Q_{p}(T)\right\rangle-\left(\varepsilon_{p}-\mu\right) m_{p}$

$$
\begin{aligned}
& \frac{\partial T}{} a_{p}(T)=\left[H_{1} a_{p}(s)\right] \text { breare } Q_{p}(J)=e^{H T} Q_{p} e^{-H T} \\
= & \left\langle a_{p}^{+}\left[H_{1} Q_{p}\right]\right\rangle-\left(\varepsilon_{r}-\mu\right) M_{p}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{p}\left(\frac{\partial}{\partial T}-\varepsilon_{p}+\mu\right) G_{p}\left(T \rightarrow 0^{-}\right)=\sum_{p}\left\langle_{-\left(H_{0}\right)}^{\left.\theta_{p}^{+}\left[H_{0}, a_{p}\right]\right\rangle}+\sum_{p}^{\left\langle Q_{p}^{+}\left[V, a_{p}\right]\right\rangle}-\langle 2 V\rangle\right. \\
&-\sum \sum_{p}^{\left(\varepsilon_{p}-j\right) \mu_{p}} \underbrace{}_{-\left\langle H_{0}\right\rangle} \\
&=-2 E_{\text {+ot }}
\end{aligned}
$$

Hence

$$
\begin{array}{ll}
E_{\text {tot }}=-\frac{1}{2} \sum_{p}\left(\frac{\partial}{\partial T}-\varepsilon_{p}+j\right) G_{p}\left(T \rightarrow 0^{-}\right) \sigma & G_{p}(T)=\frac{1}{\beta} \sum_{i \omega} e^{-i \omega_{n} \tilde{}} G_{p}\left(i \omega_{m}\right) \\
E_{\text {tot }}=\frac{T}{2} \sum_{p, \omega_{m}}\left(i \omega_{m}+\varepsilon_{p}-j\right) G_{p}\left(i \omega_{n}\right) &
\end{array}
$$

not veell convering berame $G_{p}(i \omega) \rightarrow \frac{1}{i \omega}$ anol iw. $G(i \omega) \rightarrow$)

$$
\begin{aligned}
& G_{p}\left(i \omega_{n}\right)=\frac{1}{i \omega_{m}+\mu-\varepsilon_{p}-\Sigma_{p}\left(i \omega_{m}\right)} \\
& E_{\text {tot }}=\frac{T}{2} \sum_{r, \omega_{m}} \frac{i \omega_{m}+\mu-\varepsilon_{p}-\sum_{r}\left(i \omega_{m}\right)-2 \mu+2 \varepsilon_{p}+\Sigma_{p}\left(i \omega_{m}\right)}{i \omega_{m}+j-\varepsilon_{r}-\Sigma_{p}(i \omega)}=\frac{T}{2} \sum_{r, \omega_{m}}\left(1+\left[\sum_{p}(i \omega)+2\left(\varepsilon_{p}-\gamma\right)\right] G_{p}\left(i \omega_{m}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{\text {tot }}=T \sum_{p, 1 \omega_{m}}\left[\varepsilon_{T}-\gamma+\frac{1}{2} \sum_{p}\left(i \omega_{m}\right)\right] G_{p}(i \omega) \equiv \operatorname{Tr}\left(\left(H_{0}-\mu+\frac{1}{2} \Sigma\right) G\right) \\
& \text { hane }\langle V\rangle=\frac{1}{2} \operatorname{Tr}(\Sigma G) \text { and } T=\operatorname{Tr}\left(H_{0} G\right)
\end{aligned}
$$

Bar to Pertarketion Throng (following Nagele-Orland)
Finn for single particle G, which is easier:

$$
\begin{aligned}
G_{i_{1}, 2}\left(T_{1}, T_{2}\right) & =-\frac{1}{z} \int D\left[\psi^{+}, \psi\right] e^{-S}{ }^{-\Delta S} \psi_{i_{1}\left(T_{1}\right)} \psi_{i_{2}}^{+}\left(T_{2}\right) \\
& =-\frac{1}{z} \sum_{m=0}^{\infty} \int D\left[\psi_{1}^{+}, \psi\right] e^{-S_{0}} \frac{(-\Delta S)^{m}}{m!} \psi_{i_{1}}\left(\pi_{1}\right) \psi_{i_{2}}^{+}\left(\pi_{2}\right) \equiv-\frac{z_{0}}{z} \sum_{m=0}^{\infty}\left\langle\frac{(\Delta S)^{m}}{m!} \psi_{i_{1}}\left(\pi_{1}\right) \psi_{i_{2}}^{+}\left(T_{2}\right)\right\rangle_{0}
\end{aligned}
$$

here $S_{0}=\int_{0}^{B} d i \sum_{i} \psi_{i}^{+}(\tau)\left(\frac{\partial}{\partial T}-\mu+\varepsilon_{i j}\right) \psi_{j}(T)$ is quadratic.
and $z_{0}=\int D\left[x_{1}^{+}, x\right] e^{-s_{0}}$ in momentum n it is diogoned $\varepsilon_{r} \quad$ and $\langle O\rangle=\int D\left[\psi^{+}, \psi\right] e^{-s_{0}} 0$
We desired before the identity

$$
\begin{equation*}
\left\langle\psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{N}} \psi_{j v}^{+} \ldots \psi_{j_{2}}^{+} \psi_{j i}^{+}\right\rangle=\sum_{p}(\xi)^{p}\left(A^{-1}\right)_{i_{1} j_{1}} \cdots\left(A^{-1}\right)_{i, j j_{i v}} \tag{1}
\end{equation*}
$$

where $\langle U\rangle=(\operatorname{Det} A)^{\xi} \int e^{-\sum_{i j} \psi_{i}^{+} A_{i j} \psi_{j}} 0$
Here $A=\left(\frac{\partial}{\partial r}-\mu+\varepsilon_{i j}\right) \leftarrow$ madix in $(T, i)\left(T_{1, j}\right)$

$$
\begin{gathered}
A\left(T i, T^{\prime} j\right)=\delta\left(T-i^{\prime}\right)\left(\frac{0}{j T^{\prime}-j}+\varepsilon_{i j}\right) \equiv-\left[G^{0}(T i, i j j)\right]^{-1} \\
\text { No that }\left(A^{-1}\right)_{\left(T i, T^{\prime} j\right)}=-G^{0}\left(T i, T^{\prime} j\right)=-G_{i j}^{0}\left(T-T^{\prime}\right)
\end{gathered}
$$

which is celled Wirer's therm. The "recipy" is to express $(\Delta S)^{n}$ in expansion, and use $E_{f}(t)$ to unduate term by term.
-Note that: $\left\langle\psi_{i,} \psi_{j_{i}}^{+}\right\rangle_{0}=\left(A^{-1}\right)_{i, j,}$ hence we con oho waite

$$
\left\langle\psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{N}} \psi_{j N}^{+} \ldots \psi_{j-}^{+} \psi_{j i}^{+}\right\rangle_{0}=\sum_{p}(\xi)^{p}\left\langle\psi_{i_{1}} \psi_{\left.j i_{1}\right\rangle_{0}}^{\rangle_{0}}\left\langle\psi_{i_{2}} \psi_{j j_{2}}^{+}\right\rangle_{0} \cdots\left\langle\psi_{i_{N}} \psi_{j i_{N}}^{+}\right\rangle_{0}\right.
$$

Nick's theorem requires all pormble contraction of the average.
Note that thus is only valid for quachatis So!

- Note: any correlation function can be expanded in the same nay

$$
\left\langle X\left(T_{1}, T_{2}, \ldots T_{n}\right)\right\rangle=\frac{Z_{0}}{Z} \sum_{m=0}^{\infty}\left\langle\frac{(-\Delta S)^{m}}{m!} X\left(T_{1} \pi_{2}, \ldots, T_{2}\right)\right\rangle_{0}
$$

To prove $A=-\left[G^{\circ}\right]^{-1}$

Founcer transtom of: $S_{0}=\int_{0}^{B} d T \sum_{i, j} \psi_{i}^{+}(T)\left(\frac{2}{\partial T}-\mu+\varepsilon_{i j}\right) \psi_{j}(T) ; \quad \psi_{i}(T)=\frac{1}{\sqrt{B}} \sum_{\omega_{A}} \psi_{i}\left(\omega_{m}\right) e^{-i \omega_{A} T}$

$$
S_{0}=\sum_{m} \psi_{i}^{+}\left(\omega_{m}\right) \underbrace{\left(i \omega_{m}+\mu-\varepsilon_{i j}\right)}_{-G_{i j}^{0^{-1}}\left(i \omega_{m}\right)} \psi_{j}\left(\omega_{m}\right) \quad \underbrace{}_{\text {beack to time }}
$$

then

$$
S_{0}=\int_{0}^{3} d j^{\prime} d T^{\prime} \sum_{i j} \psi_{i}^{+}(T)\left[-G^{0}\right]_{\left(i, 1, j^{\prime}\right)}^{-1} \psi_{j}\left(T^{\prime}\right)
$$

matrixion i,j and T, T^{\prime}

$$
\left[G^{0}\right]_{\left(i T, j T^{\prime}\right)}^{-1}=\left[G_{i j}^{0}\left(J, T^{-1}\right)\right]^{-1}=\delta\left(T-T^{\prime}\right)\left[-\partial T^{\prime}+\mu-\varepsilon_{i j}\right]
$$

Nomally me should also expant denominator Z i.e.,

$$
z=\sum_{m=0}^{\infty} \int D\left[\psi^{+} \psi\right] e^{\int_{0}^{3} \psi+\left[G^{0}\right]^{-1} \psi} \frac{(-\Delta S)^{n}}{n!}=\frac{z_{0}}{z} \sum_{m=0}^{\infty}\left\langle\frac{(-\Delta S)^{n}}{n!}\right\rangle_{0}
$$

We mell show that "limsed clwster theovem" allows us to expand only nominetor ant sun insteod "the connectiol" Feynmon dhiograms.

Finally, me need to specify the form of the interaction, for example

the phonon interaction is dynamic, on has the form

Let's valuate a few terms! $G_{i, i_{2}}\left(T_{1}-T_{2}\right)=-\frac{z_{0}}{z} \sum_{m=0}^{\infty}\left\langle\frac{(-\Delta S)^{m}}{m!} \psi_{i_{1}}\left(T_{1}\right) \psi_{i_{2}}^{+}\left(T_{2}\right)\right\rangle_{0}$
0) order $G_{i, i_{2}}\left(T_{1}-T_{2}\right)=\frac{Z_{0}}{z} G_{i, i_{2}}^{0}\left(T_{1}-T_{2}\right) \xrightarrow{T_{2} i_{2}} i_{1} \pi_{1}$ straight him wite arrow stands for G^{0}

1) order $G_{i i_{2}}\left(T_{1}-T_{2}\right)=+\frac{z_{0}}{z} \sum_{i j \beta 2} \frac{1}{2} V_{i j z l} \int_{0}^{3} d T\left\langle\psi_{i}^{+}(T) \psi_{j}^{+}\left(T^{\prime}\right) \psi_{2}\left(T^{\prime}\right) \psi_{l}(T) \psi_{i 1}\left(T_{1}\right) \psi_{i_{2}}^{+}\left(T_{2}\right)\right\rangle_{0}$

$$
-\left\langle\psi_{i}^{+}(r) \psi_{j}^{+}\left(r^{\prime}\right) \psi_{i_{2}}^{+}\left(r_{2}\right) \psi_{2}\left(r^{\prime}\right) \psi_{2}(r) \psi_{i_{1}}\left(r_{1}\right)\right\rangle_{0}
$$

3! terms

1) $\left\langle\psi_{i}^{+}(r) \psi_{k}\left(T^{\prime}\right)\right\rangle_{0}\left\langle\psi_{j}^{+}\left(r^{\prime}\right) \psi_{l}(r)\right\rangle_{0}\left\langle\psi_{i_{2}}^{+}\left(T_{2}\right) \psi_{i_{1}}\left(r_{1}\right)\right\rangle_{0}=G_{\eta i}^{0}\left(T^{\prime}-T\right) G_{l_{j}}^{0}\left(T-T^{\prime}\right) G_{i_{1} i_{2}\left(T_{1}-T_{2}\right)}^{0}$

$$
\Rightarrow-\left\langle\psi_{i}^{+}(\tau) \psi_{2}\left(T^{\prime}\right)\right\rangle_{0}\left\langle\psi_{j}^{+}\left(T^{\prime}\right) \psi_{i_{1}}\left(T_{1}\right)\right\rangle_{0}\left\langle\psi_{i_{2}}^{+}\left(\pi_{2}\right) \psi_{l}(\tau)\right\rangle_{0}=-G_{z_{1}\left(T^{\prime}-T\right)}^{0} G_{i_{j}}^{0}\left(T_{1}-T^{\prime}\right) C_{R_{l i}}^{0}\left(T^{\prime}-T_{2}\right)
$$

$\xrightarrow[i_{2} r_{2}]{O_{2}^{i}}{ }_{i}^{j}{ }_{i}^{j} T_{1}$
3)

4) $\left.\left\langle\psi_{i}^{+}(T) \psi_{l}(T)\right\rangle_{0}\left\langle\psi_{j}^{+}\left(T^{\prime}\right) \psi_{i}\left(T_{1}\right)\right\rangle_{0}\left\langle\psi_{i_{2}}^{+} \tau_{2}\right) \psi_{2}\left(T^{\prime}\right)\right\rangle_{0}=G_{i}^{0}\left(T=0^{-}\right) G_{i,}^{0}\left(T_{1}-T^{\prime}\right) G_{2 i_{2}}^{0}\left(T^{\prime}-T_{2}\right)$

5) $\left\langle\psi_{i}^{+}(\tau) \psi_{i_{1}}\left(T_{1}\right)\right\rangle\left\langle\psi_{j}^{+}\left(T^{\prime}\right) \psi_{R}\left(T^{\prime}\right)\right\rangle\left\langle\psi_{i_{2}}^{+}\left(T_{2}\right) \psi_{l}(T)\right\rangle_{0}=G_{i ; i}^{0}\left(T_{1}-\tau\right) G_{2 j}^{0}\left(\tau=0^{-}\right) G_{l i i_{2}}^{0}\left(\tau-T_{2}\right)$

$G \mid-\left\langle\psi_{i}^{+}(r) \psi_{i_{1}}\left(T_{1}\right)\right\rangle_{0}\left\langle\psi_{j}^{+}\left(T^{\prime}\right) \psi_{l}(T)\right\rangle_{0}\left\langle\psi_{i_{2}}^{+}\left(\pi_{2}\right) \psi_{i 2}\left(T^{\prime}\right)\right\rangle_{0}=-G_{i, i}^{0}\left(T_{1}-T^{\prime}\right) G_{i j}^{0}\left(T T^{\prime}\right) G_{\lambda i_{2}}^{0}\left(\Gamma^{\prime}-T_{2}\right)$

Stopped Nor 10,2022

Two types of diagroms:

Disconnectedt

Connecterl

This moses at ony order:
Connecterl:

Disconnectect:
ot least tur pieces $m<m$ vertices imide

Limkeol Cluster Theorem!
The disconnented digerams exartly cancal the denominator $\frac{z^{0}}{z}$.

Therefore it con be mittton $G_{i_{1} i_{2}}\left(\pi_{1}-\pi_{2}\right)=\sum_{m=0}^{\infty}\left\langle\frac{(-\Delta S)^{m}}{m!} \psi_{i_{1}}\left(\pi_{1}\right) \psi_{i_{2}}^{+}\left(\pi_{2}\right)\right\rangle_{0}^{\text {conuccted }}$

Proof:

$$
\begin{aligned}
& \text { mumber of way to distinente } \\
& (\Delta S) \text { vertias petwean }(\Delta S)^{m} \text { ourl } \\
& (\Delta S)^{m-m}
\end{aligned}
$$

$$
(\Delta S)^{m-m}
$$

$$
\begin{aligned}
& G_{i_{1} 1_{2}}\left(\tau_{1}-\frac{T_{2}}{2}\right)=-\frac{z_{0}}{z} \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{m=0}^{m}\left\langle(-\Delta S)^{m} \psi_{i_{1}}\left(r_{1}\right) \psi_{i_{2}}^{+}\left(\pi_{2}\right)\right\rangle_{0}\left\langle(-\Delta S)^{m-m}\right\rangle_{0}\binom{m}{m} \\
& \frac{1}{M!} \frac{m!}{(M-m)!m!} \\
& G_{i_{1} i_{2}}\left(\pi_{1}-\pi_{2}\right)=-\frac{z_{0}}{z} \sum_{m, m}\left\langle(-\Delta S)^{m} \psi_{i_{1}\left(\pi_{1}\right)} \psi_{i_{2}}^{+}\left(\pi_{0}\right)\right\rangle_{0}^{c n} \frac{1}{m!} \cdot\left\langle(-\Delta S)^{m-m}\right\rangle \frac{1}{(m-m)!} \\
& =-\frac{z_{0}}{z} \sum_{m}\left\langle\frac{(-\Delta s)^{m}}{m!} \psi_{i_{1}}\left(\pi_{1}\right) \psi_{i_{2}}^{+}\left(\pi_{2}\right)\right\rangle^{c_{n}} \times \sum_{r^{2}=0}^{\infty}\left\langle(-\Delta S)^{r}\right\rangle \frac{1}{r^{!}!}
\end{aligned}
$$

* $\quad \sum_{m=0}^{\infty} \sum_{m=0}^{n}\left\langle(-\Delta S)^{m} 0\right\rangle \frac{1}{m!}\left\langle(-\Delta S)^{m-m}\right\rangle \frac{1}{(m-m)!}$

For $m=0: \quad \sum_{m=0}^{\infty} \frac{\left\langle\left(-\Delta S^{m}\right)\right\rangle}{m!}=\frac{z_{0}}{z_{0}}$
For $\left.\quad m=1: \frac{\langle(-\Delta S) 0\rangle}{1!} \sum_{m=1} \frac{\left\langle(-\Delta S)^{m-1}\right.}{(m-1)!}\right\rangle=\frac{\langle(-\Delta S) 0\rangle}{1!} \frac{z}{z_{0}}$

Topologically equivalent diagrams and symmetry factors

Symmetry of the interaction vertices
At the lowest order we got two Hartue f two Fork digeras became there ere two mays to mane vertices

$$
\left.\begin{array}{c}
(r, i) \\
T
\end{array} \stackrel{(r, j)}{T, j}\right)
$$

which is exactly canceled by $\frac{1}{2}$ in defintion of V.

This vars at any order and $\left(\frac{1}{2} V_{i j e}\right)^{m}$ and 2^{m} nays of rearranging indics in interaction.
(Negele-Oreand defines labeled g unlabeled diagrams. In labeled diagrams) we label eft-might pant for each interaction ifinníh io

Alternatively me assign direction to bosonic propagator $L^{\prime \prime \prime} M_{R}^{\prime \prime}$
If we conviden labeled diagrams we have two copies of diagrams

we have only one copy!

 unlabeld di ogram.

Concherion from intaration of order n: $\left(\frac{1}{2}\right)^{n}\left(V_{i j z e}\right)^{m}$ is exatly conaled by 2^{n} labeled copies of the same unlobeled diagram.

In addition, at order M we hane extre M ! ways fo rearange indias between different interaction, i.e.,
 and gives the noum graph.
this M ! different arrangement can be used to mimplify the egeration

$$
\begin{aligned}
& G_{i i_{2}}\left(T_{1}-T_{2}\right)=-\sum_{m=0}^{\infty}\left\langle\frac{(-\Delta S)^{n}}{m!} \psi_{i_{1}}\left(T_{1}\right) \psi_{i_{2}}^{+}\left(T_{2}\right)\right\rangle_{0}^{\text {connecteol, ecoleleal }} \\
& G_{i i_{2}}\left(T_{1}-T_{2}\right)=-\sum_{m=0}^{\infty} \frac{1}{2^{m} m!}\left\langle\left(\int_{d-d i}^{\beta} \sum_{i j e l}^{B} V_{i j z e} \psi_{j(r)}^{+} \psi_{j(r)}^{+} \psi_{2}\left(r^{\prime} \psi_{l}(r)\right)^{m} \psi_{i 1}\left(\pi_{1} \psi_{i 2}^{+}\left(T_{2}\right)\right\rangle_{0}^{\text {wnneeted, lobeled }}\right.\right.
\end{aligned}
$$

sonntians me abo mite connected-topologically different
What are topologially different diagrams?

Rules for Feynman diagrams for G :
Draw all topologically district connected diagrams composed of M vertices \nrightarrow n in and directed limes
$\left[\begin{array}{l}\text { Tho diagrams ore topologically distinct if they cannot be deformed } \\ \text { so ar to coincide completely including the direction of the arrows on } \\ \text { electron propagator }\end{array}\right]$ electron propagators
For each topologically district diogrem evaluate contributions as follows

- Assign time/treguency and nomentum/rite/orlital labels
- For each vertex arrign factor Vijre

$\operatorname{lime} \begin{cases}G_{i j}\left(\text { Tent }-T_{\text {start }}\right) & \overrightarrow{j \text { Treat }} \\ G_{i j}\left(i \omega_{m}\right) & \text { Tout }\end{cases}$ conserve frog ency in each rester
- Sum over all internal indices anil
$\left\{\begin{array}{l}\text { integrate over all time }[0, B] \text {. }\end{array}\right.$
[sum over all internal Metsubare frepucucies
- Multiply the result by $\begin{cases}(-1)^{n} \xi^{M_{L}} \text {, in time } \\ \frac{(-1)^{m}}{3^{m}} \xi^{M_{L}} \text { in frequency }\end{cases}$
where M_{L} is the number of closed femionic loops
stopped Nov N/2022
Cues for tint furs order:

Simplifications of perturbative series for G

1) Transform to consement indices: momentum and frequency

$$
G_{22^{2}}^{0}\left(i \omega_{m}\right)=-\delta_{2 x^{\prime}} \int_{0}^{B}\left\langle T_{T} Q_{2}(T) Q_{2}^{+}(0)\right\rangle e^{i \omega_{m} T} \quad \text { hance } \longrightarrow \ggg \gg \omega_{m}
$$

Coulomb interaction in momention space $v_{8}=\frac{8 \pi}{g^{2}+\lambda}$ comesponts to $V\left(\vec{r}-\vec{r}^{\prime}\right)=\frac{2 e^{-\sqrt{\lambda} r}}{\left|\vec{r}-\vec{r}^{\prime}\right|}$ hence we con mite $\hat{V}=\frac{1}{2} \sum_{i_{1}, z_{2} s^{\prime}} \psi_{r_{1}+g_{s}}^{+} \psi_{r_{2} s^{\prime}}^{+} \psi_{r_{2}+g s^{\prime}} \psi_{r_{1} s} v_{2}$ and

Note : $\frac{1}{2}$ from Vier was eliminated by considering ubabeled diagrams. Here tailor rule applies. We hare $\overbrace{2}^{\frac{1}{2} V_{2}} \neq T_{2}$
Example:

$$
\begin{aligned}
& G_{2}(i \omega)=\frac{(-1)^{2}}{\beta} \sum_{i \omega^{\prime} \xi^{\prime}} G_{\left.\Omega^{\prime}(i)^{\prime}\right)}^{0} v_{j=0}\left[G_{2}^{0}(i \omega)\right]^{2}+\frac{(-1)}{\beta} \sum_{\substack{i \Omega \\
j}} G_{\lambda+j}^{0}(i \omega+i \Omega) v_{j}\left[G_{2}^{0}(i \omega)\right]^{2}+ \\
& {\left[\frac{(-1)}{3} \sum_{i / 2} C_{T_{r+g}}^{0}(i \omega+i \Omega) V_{j}\right]^{2}\left[G_{r}^{0}(i \omega)\right]^{3}}
\end{aligned}
$$

2) Dyson Equation

Diagrams lite m, μ, ξ ane butter handed by geometric sum, and the resulting quantity Σ is usually better converging than G. We wite $G=\left(G^{0-1}-\Sigma\right)^{-1}=G_{\uparrow}^{0}+G^{0} \Sigma G^{0}+G^{0} \Sigma G^{0} \Sigma G^{0}+\cdots$

$\left[G_{a g}(i \omega)\right]^{2}$ e logs
tares core of all single particle reducible diagrams.
In general $G=\rightarrow+\Sigma \rightarrow+\Sigma \rightarrow \Sigma$
hence Σ shored be one particle irreducible: does not foll into two pieces by cutting a single particle line

Modification of rules for self-energy (es compared to G):

- Proa all topologically distinct connected rimple partide ineducable di grams.
- Cut legs from the oligrom.
- All tart pole diagrams contribute a constant, and can be eliminated by redefining (properly recalculating) the chemical potential/ringle particle potential.

Tadpole:

$$
\frac{\bigcup_{n=0}^{2, \omega}, j=0}{} \text { because } \sum_{2}\left(i \omega_{m}\right)=v_{p=0} \text {. constant } \text { indepenile }
$$

$$
\text { constant independent of } 2 \text { and } w_{n}
$$

is he σ^{μ} in $G=\left(i \omega+\mu-\varepsilon_{2}-\sum_{r}(\omega)\right)^{-1}$ all constants absorbed in
In general tadpole is the Hartruen potential redefining σ^{a}.

$$
\sum\left(\vec{r}, \vec{r}^{\prime}\right)=\delta\left(\vec{r} \vec{r}^{\prime}\right) \cdot \int V_{c}\left(\vec{r}-\vec{r}^{\prime \prime}\right) m\left(\vec{r}^{\prime \prime}\right) d^{3} r^{\prime \prime}
$$

It starts with $\sum\left(\vec{r}, \vec{r}^{\prime}\right)=\delta\left(\vec{r}-\vec{r}^{\prime}\right) \int V_{c}\left(\vec{r}-\vec{r}^{\prime \prime}\right) M^{0}\left(\vec{r}^{\prime \prime}\right) d^{3} r^{\prime \prime}$
and then M^{0} is replaced by mure sophisticated
opprotimation for derity $O+\cdots+(3)+\cdots$
We urwally remove these diagrams from perturbation, aced just ref-comister thy enduate dewily n and Ifortrice potential for this dernity.
Hence perturbation on Hastree state is very convenient, which con drop o tadpoles.

Expansion for free energy
We wrote $\frac{Z}{Z_{0}}=\sum_{m=0}^{\infty} \frac{\left\langle(-\Delta S)^{m}\right\rangle_{0}^{\text {all }}}{M!}$ and use it to cancel all disconnected diagram. But we did not develop rules to evaluate Z.
Rules ore similar, hut their is a complication for high symmetry diagorm.

We can derive "himket cluster theorem" for thermodynamic potential, whit states

$$
\frac{Z_{0}}{z_{0}}=\sum_{m=0}^{\infty} \frac{\left\langle(-\Delta S)^{m}\right\rangle_{0}}{n!}=\exp \left(\sum_{m=0}^{\infty} \frac{\left\langle(-\Delta S)^{n}\right\rangle_{0} \text { connected-topologially distinct }}{s_{D}}\right)
$$

Here s_{∞} is a symmetry factor for a given diagram, and is on integer that enumerates how many copies of the same diagram me obtain when exchanging indices on all interactions.
There are $2^{m} \cdot m$! possible exchanges of indices, and moot generate topologically distinct diagrams, while sum don't. When there ar external loge (bide perturbation for G) $s_{D}=1$, but considering voceum-to-vocum diagrams $s_{\infty} \geqslant 1$.

Examples:

Proof through functional derivative

$$
\begin{aligned}
& z=\sum_{m=0}^{\infty} \int D\left[\psi^{+} \psi\right] e^{\int_{0}^{3} \psi_{i(T)}^{+}\left[G^{0}\right]_{i r, j j^{\prime}}^{-1} \psi_{j\left(T^{\prime}\right)} \frac{(-\Delta S)^{m}}{\mu!}} \\
& \frac{\delta \ln z}{\delta\left[G^{0}\right]_{\left(i, j, \gamma^{\prime}\right)}^{-1}}=\frac{1}{z} \sum_{m=0}^{\infty} \int D\left[\psi^{+} \psi\right] e^{\int_{0}^{3} \psi_{i(T)}\left[G^{0}\right]_{i, j, j^{\prime}}^{-1} \psi_{j}\left(T^{\prime}\right)} \frac{(-\Delta S)^{m}}{\mu!} \psi_{i}^{+}(T) \psi_{j}\left(T^{\prime}\right)=G_{j i}\left(T^{\prime}-T\right)
\end{aligned}
$$

$$
\begin{aligned}
& G^{\top}=\frac{\delta \ln z}{\delta\left[G^{0}\right]^{-1}}=\frac{\delta G^{0}}{\left.\delta G_{0}^{0}\right]^{-1}} \frac{\delta \ln z}{\delta G^{0}} \\
& G^{\top}=\frac{\delta \ln z}{\delta\left[G^{0}\right]^{-1}}=-G^{0} \frac{\delta \ln z}{\delta G_{0}^{0}} G^{0} \\
& G^{\top}=-\left[G^{0} \frac{\delta \ln z}{\delta G^{0}} G^{0}\right]
\end{aligned}
$$

Wok: $\quad G^{0}\left[G^{0}\right]^{-1}=1$

$$
\begin{aligned}
& \delta G^{0}\left[G^{0}\right]^{-1}+G^{0} \delta\left[G^{0}\right]^{-1}=0 \\
& \delta G^{0}=-G^{0}\left[\delta G^{0}\right]^{-1} G^{0}
\end{aligned}
$$

Functional derinative $\frac{\delta \ln z}{\delta G^{0}}$ is a simple cutting of G^{0} propagator in expansion for $\ln Z$.

Note: $z^{0}=\operatorname{Det}\left[-G_{0}^{-1}\right]$

$$
\ln Z_{0}=\ln \operatorname{Det}\left[-G_{0}^{-1}\right]=-\operatorname{Tr} \ln \left(-G_{0}\right)
$$

$\left(\frac{\delta \ln Z_{0}}{\delta G_{0}}\right)^{\top}=G_{0}^{-1} \quad$ hence of order $0: G^{(0) T}=-\left(G_{0} G_{0}^{-1} G_{0}\right)=-G_{0}$

$$
G_{i,}(T)=-\left\langle T_{r} Q_{i}(\tau) Q_{j}^{+}(0)\right\rangle=\left\{\begin{array}{ll}
0\langle\tau\langle s & -\left(Q_{i}(r) Q_{j}^{+}(0\rangle\right\rangle \\
-s\langle 0\langle T & \left\langle Q_{j}^{+}(0) Q_{i}(\tau)\right\rangle
\end{array} \quad G_{1}^{(0)}(s-j)=G_{0}(\tau)\right.
$$

We know that each topologically distinct diagram should appear only once in expansion of G.

If $\frac{5 \ln z}{5 G^{\circ}}$ produces multiple copies of the same diagram, it nonet hove symmetry fetor $S_{D}>1$.

Example:

hence $A_{\mathscr{D}}=2$

Convergence of perfurbatire reries - how to make it convergent
Hermonic "osailator "lise"

$$
\left.S=\int_{0}^{3}\left(\partial_{T}^{2}+\omega_{f}\right) \phi_{f} \phi_{f}+\frac{1}{4} g \phi_{j}^{i}\right]_{d r} \Rightarrow S=\left(\omega_{f}-i \omega_{n}\right)\left|\phi_{f w_{m}}\right|^{2}+\frac{1}{4} f\left|\phi_{j w_{n}}\right|^{h}
$$

Atland of Simons warning of perturhative exponnion

$$
I(g)=\int \frac{\frac{6}{\sqrt{2 \pi}}}{} e^{-\frac{1}{2} x^{2}-\frac{1}{h} g x^{3}}=\frac{e^{\frac{1}{8 g}}}{2 \sqrt{\pi g}} \text { Besselk }\left[\frac{1}{h}, \frac{1}{8 g}\right]
$$

$$
I(f)=\int \frac{d \psi}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}-\frac{f}{4} x^{4}}=\int \frac{d x}{\sqrt{12 \pi}} e^{-\frac{1}{2} x^{2}} \sum_{m=0}^{\infty} \frac{\left(-\frac{q}{j}\right)^{n}}{m!} x^{h m}=\sum_{m=0}^{\infty} \frac{\left(-\frac{g}{n}\right)^{n}}{n!} \frac{(4 m)!}{2^{2 m}(2 m)!}
$$

Stirlin: $r!\sim \sqrt{2 \pi} r^{k+\frac{1}{2}} e^{-2}$

$$
\approx \sum_{m=0}^{\infty}\left(\frac{4 m}{e}\right)^{n} \frac{1}{\sqrt{\pi m}}(-g)^{n} \approx \sum_{m=0}^{\infty}\left(-\frac{4 g n}{e}\right)^{n} \frac{1}{\sqrt{\pi m}}
$$

$$
\int \frac{d y}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} x^{4 m}=\frac{(4 m)!}{2^{2 m}(2 M)!} \approx\left(\frac{4 M}{l}\right)^{2 m} \sqrt{2}
$$

even for very small p the expannion
Note:

$$
\begin{aligned}
& \left(\begin{array}{l}
(h m-1)!! \\
\frac{(4 m)!}{2^{2 m}(2 m)!}=\frac{4 m-1)(4 m-3) \cdots 1}{2 \cdot 2 m} \frac{4 m(h m-1)(4 m-2)(4 m-3)(4 m-4) \cdots}{2(2 m-1)} \frac{2(2 m-2) \cdots}{2}
\end{array}=(4 m-1)(4 m-3) \cdots\right.
\end{aligned}
$$

$$
/ I^{(2)} 1-\frac{3}{5} q+\frac{105}{32} g^{2}
$$

$I(g), f$

* oliverges ot suficiontly barge M. If g is large, perturbaction Jails instently!

$$
\frac{\lg m_{e}}{d}>1
$$

$$
m_{2}>\frac{e}{n g}
$$

Examph $g=1 \Rightarrow M_{c}=1$

* Fundomental issue: - p changes the tregnency of onclation.
- Ovalrep between occilator with freguency 1 and renommahied freguency mith pertwrbation is venishing.

Trick by Klimert and Feynman:

$$
\begin{aligned}
& I^{\text {lat }}(\mathrm{f})=\int_{\sqrt{\frac{0}{2 \pi}}} e^{-\frac{1}{2} x^{2}-\frac{1}{5} g x^{4}}=\frac{e^{\frac{1}{8 g}}}{2 \sqrt{\pi g}} \operatorname{Bessel} k\left[\frac{1}{4}, \frac{1}{8 g}\right] \\
& I(y, \Omega)=\int \frac{04}{\sqrt{2 \pi}} e^{-\frac{1}{2} \Omega^{2} x^{2}-\xi\left(\frac{1}{\operatorname{tg}} x^{4}-\frac{1}{2}\left(\Omega^{2}-1\right) x^{2}\right)} \uparrow_{\text {center }} \\
& \text { counter } \\
& \text { tern } \\
& \left\lvert\,=\int_{q=1}^{\sqrt{2 \pi}} e^{-\frac{1}{2} \Omega^{2} x^{2}} \cdot \sum_{m=0}^{\infty} \frac{(-\varphi)^{m}}{M!}\left(\frac{1}{5} g x^{n}-\frac{1}{2}\left(\Omega^{2}-1\right) x^{2}\right)^{m}\right. \\
& q=1
\end{aligned}
$$

0) Introduce variational parameter Ω
1) Expand in ξ and not g
2) At each order optimize $I(g, \Omega)$ with principle of minimal sensitivity, i.e., $\frac{d I(0, \Omega)}{d \Omega}=0 \Rightarrow \Omega_{m}$ at order M
3) $I_{1}\left(\Omega_{1}, g\right), I_{2}\left(\Omega_{2}, g\right), \ldots I_{m}\left(\Omega_{m}, g\right)$ will likely converge.

$$
\begin{aligned}
& \Omega x=y \\
& I(g, \Omega)=\int \frac{d y}{\sqrt{2 T}} e^{-\frac{1}{2} y^{2}} \sum_{m=0}^{\infty} \frac{1}{\Omega^{2 m+1}}\left(\frac{-\xi)^{m}}{m!}\left(\frac{19}{5} \frac{g}{\Omega^{2}} y^{4}-\frac{1}{2}\left(\Omega^{2}-1\right) y^{2}\right)^{m}=\sum_{m=0}^{\infty} \frac{1}{\Omega^{2 m+1}} \frac{(-\xi)^{m}}{m!} \sum_{m=0}^{m}\binom{m}{m}\left(\frac{g}{5 \Omega^{2}}\right)^{m}\left[-\frac{1}{2}\left(\Omega^{2}-1\right)\right]^{n-m} \int \frac{d y}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} y^{4 m+2 m-2 m}\right. \\
& \left.=\sum_{m=0}^{\infty} \frac{y^{m}}{\Omega^{2 n+1}} \frac{(-1)^{m}}{N^{m}!} \sum_{m=0}^{m}\left(\frac{m}{m}\right)\left(\frac{g}{4} \underline{m}^{m}\right)^{m}\left[-\frac{1}{2}\left(\Omega^{2}-1\right)\right]^{n-m} \frac{(2(m+m))!}{2^{m+m}(m+m)!} \frac{\Delta!!}{(m-m)!m!}=\sum_{m=0}^{\infty} \sum_{m=0}^{m} \frac{(-1)^{m}}{2^{2 m}} \frac{g}{4}\right)^{m} \frac{\left(\Omega^{2}-1\right)^{m-m}}{\Omega^{2(m+m)+1}} \frac{(2(m+m)!}{(m+m)!(m-m)!m!}
\end{aligned}
$$

$I^{0}(\rho, \Omega)=\frac{1}{\Omega} \quad$ no optimum

$$
\begin{aligned}
& I^{\prime}(f, \Omega)=\frac{1}{\Omega^{2}}+\frac{1}{2 \Omega^{3}}\left(-\frac{3}{2} \frac{q}{\Omega^{2}}+\Omega^{2}-1\right)=-\frac{3}{4} \frac{g}{\Omega^{5}}-\frac{1}{2 \Omega^{3}}+\frac{3}{2} \frac{1}{\Omega} \Rightarrow \frac{d I^{\prime}}{6 / \Omega}=+\frac{\sqrt{ }}{4} \frac{g}{\Omega^{6}}+\frac{3}{2} \frac{1}{\Omega^{4}}-\frac{3}{2} \frac{1}{\Omega^{2}}=0 \\
& I^{\prime}\left(g, \Omega^{0}\right)=\frac{1}{2 \Omega^{5}}\left(-\frac{3}{2} g-\Omega^{2}+3 \Omega^{4}\right)=\frac{1}{2} \sqrt{\Omega^{5}}\left(-\frac{3}{2} g-\Omega^{2}+3\left(\Omega^{2}+\frac{5}{2} g\right)\right) \\
& \Omega^{4}-\Omega^{2}-\frac{5}{2} g=0 \\
& \Omega_{0}^{2}=\frac{1}{2}(1 \pm \sqrt{1+10 g}) \\
& =\frac{1}{2 \Omega^{5}}\left[-\frac{3}{2} g+2 \Omega^{2}+\frac{15}{2} g\right]=\frac{\left(3 y+\Omega^{2}\right)}{\Omega^{5}}=\frac{\left(3 g+\frac{1}{2}+\frac{1}{2} \sqrt{1+10 g}\right)}{\left[\frac{1}{2}(1+\sqrt{1+10 g})\right]^{5 / 2}} \\
& \Omega^{4}=\Omega^{2}+\frac{5}{2} g \\
& I^{\prime}\left(g \rightarrow \infty, \Omega^{0}\right) \approx \frac{3 g}{\left(\frac{\sqrt{10}}{2}\right)^{3 / 2}} g^{-1 / 4} \approx 0.954 g^{-1 / 4}
\end{aligned}
$$

$I^{\text {exact }}(g \rightarrow \infty)=1.023 \mathrm{~g}^{-1 / 4}$
$I^{2}(y, \Omega)$ no optimum

$$
\begin{aligned}
& I^{3}(g, \Omega)=\frac{1}{\Omega}+\frac{1}{2 \Omega^{3}}\left(-\frac{3}{2} \frac{g}{\Omega^{2}}+\Omega^{2}-1\right)+\frac{-3465 g^{3}+\cdots}{128 \Omega^{13}} \\
& I^{3}(g, \Omega \text { opdicied }) \approx 1.011 g^{-1 / 4}
\end{aligned}
$$

Comparison of perturatation with functional integrel

$$
z(g)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-\frac{1}{2} x^{2}-\frac{1}{n} g x^{4}}=\sum_{m=0}^{\infty} z_{n} g^{m}=\sum_{m=0}^{\infty} \int_{-\infty}^{\infty} \frac{d x}{\sqrt{2 \pi}} e^{-\frac{1}{i} x^{2}} \frac{(-1)^{m}}{m!}\left(\frac{x x^{4}}{n}\right)^{m} \Rightarrow z_{m}=\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}} x^{4 n}\right) \frac{(-1)^{m}}{4^{m} m!}
$$

Evaluating z_{n} by functional inteyral technigue:
chonge of variable: $x=\sqrt{z} y$

Uning goursion intagral stationang condition: $\frac{\partial A}{\partial y}=y-\frac{y}{y}=0$ or $y= \pm 2$ for otationarily:
flentuation onound: $\frac{\partial^{2} A}{\partial y^{2}}=1+\frac{4}{y^{2}}=2$

$$
A \approx A(\pm 2)+\frac{1}{2} \frac{\partial^{2} A}{\partial^{2}}(y \mp 2)^{2}=2(1-\ln 4)+\frac{1}{2} 2(y \mp 2)^{2}
$$

Then $z_{2} \sim \frac{(-1)^{2}}{4^{2} r!} e^{22 \ln r} \sqrt{2} \int_{-\infty}^{\infty} \frac{d y}{\sqrt{2 \pi}} e^{-2\left[2(1-\ln 4)+(y+2)^{2}\right]}=\frac{(-1)^{2}}{h^{2} r!} e^{22 \ln r} \sqrt{2} e^{-2 z(1-\ln 4)} \frac{1}{\sqrt{2 k}} \cdot 2$

$$
=\frac{(-1)^{2}}{x!} \frac{e^{2(\ln x-1+\min)}}{2^{2 x}} \sqrt{2}
$$

finally

$$
z(f)=\sum_{m=0}^{\infty}\left(-i g \frac{m}{e}\right)^{m} \frac{1}{\sqrt{\pi n}}
$$

$$
\left.=\frac{(-1)^{2}}{2!}\left(\frac{2 r e}{l}\right)^{22} \sqrt{2} \approx \frac{(-1)}{\sqrt{2 \pi}}\left(\frac{2}{2}\right)^{2}\right)^{2 \sqrt{2}} \sqrt{\sqrt{2}}\left(\frac{2 r}{l}\right)^{2 r}=
$$

$$
=\frac{(-1)^{2}}{2}\left(\frac{n s}{l}\right)^{2} \frac{1}{\sqrt{\pi^{2}}}
$$

which is the ame as bufore doing streighfornar expamion,

$$
\begin{aligned}
& z_{2}=\frac{(-1)^{2}}{4^{2} r!} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}} x^{4 x} \frac{d x}{\sqrt{2 \pi}}=\frac{(-1)^{2}}{4^{2} x^{2}} 2^{2 r+1} \int_{-\infty}^{\infty} \frac{d y}{\sqrt{2 \pi}} e^{-\frac{1}{2} r y^{2}} y^{4 x} \\
& =\frac{(-1)^{x}}{h^{2} x!} e^{2 x \ln x} \sqrt{r} \int \sqrt{\frac{d y}{\sqrt{2 \pi}}} e^{-r\left(\frac{1}{2} y^{2}-2 \ln y^{2}\right)}{\operatorname{Ary})=\frac{y^{2}}{2}-2 \ln y^{2}}^{2}
\end{aligned}
$$

Homework 3, 620 Many body

November 17, 2022

1) Draw all connected topologically distinct (unlabeled) Feynman diagrams for the selfenergy up to the second order with expansion on the Hartree state. Exclude tadpoles, which are accounted for by expanding on the Hartree state with redefined single particle potential.
Assume that the system is translationally invariant, use momentum and frequency basis to write complete expression for the value of these diagrams. Use the Coulomb interaction v_{q} and single-particle propagator $G_{\mathbf{k}}^{0}\left(i \omega_{n}\right)$ in your expressions.
2) Calculate the symmetry factors for the following Feynman diagrams, which contribute to $\log Z$ expansion.

3) The Uniform Electron Gas is translationally invariant homogeneous system of interacting electrons, which is kept in-place by uniformly distributed positive background charge. The action for the model is

$$
\begin{array}{r}
S[\psi]=\sum_{\mathbf{k}, \sigma} \int_{0}^{\beta} d \tau \psi_{\mathbf{k} \sigma}^{\dagger}(\tau)\left(\frac{\partial}{\partial \tau}-\mu+\varepsilon_{k}\right) \psi_{\mathbf{k} \sigma}(\tau) \\
+\frac{1}{2 V} \sum_{\sigma, \sigma^{\prime} \mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q} \neq 0} v_{\mathbf{q}} \int_{0}^{\beta} d \tau \psi_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger}(\tau) \psi_{\mathbf{k}^{\prime}-\mathbf{q}, \sigma^{\prime}}^{\dagger}(\tau) \psi_{\mathbf{k}^{\prime}, \sigma^{\prime}}(\tau) \psi_{\mathbf{k}, \sigma}(\tau) \tag{1}
\end{array}
$$

Here $\varepsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m}$ and $v_{q}=\frac{e_{0}^{2}}{\varepsilon_{0} q^{2}}$ is the Coulomb repulsion. The uniform density n_{0} is equal to the number of electrons per unit volume, i.e., $n_{0}=N_{e} / V$ for charge neutrality. The density n_{0} is usually expressed in terms of distance parameter r_{s}, which is the typical radius between two electrons, and is defined by $1 / n^{0}=4 \pi r_{s}^{3} / 3$. Furthermore, the Coulomb repulsion and the single-particle energy can be conveniently expressed in Rydberg units ($13.6 \mathrm{eV}=\hbar^{2} /\left(2 m a_{0}^{2}\right)$, a_{0} Bohr radius), in which $v_{q}=8 \pi / q^{2}$ and $\varepsilon_{\mathbf{k}}=k^{2}$, and all momentums are measured in $1 / a_{0}$.

- Show that the Fermi momentum $k_{F}=(9 \pi / 4)^{1 / 3} / r_{s}$, where $E_{F}=k_{F}^{2}$ in these units.
- Show that the kinetic energy per density is $E_{k i n} /\left(V n_{0}\right)=\varepsilon_{k i n}=\frac{3}{5} k_{F}^{2}$ or $\varepsilon_{k i n}=$ 2.2099/ r_{s}^{2}.
- Calculate the exchange (Fock) self-energy diagram and show it has the form

$$
\begin{equation*}
\Sigma_{\mathbf{k}}^{x}=-\frac{2 k_{F}}{\pi} S\left(\frac{k}{k_{F}}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
S(x)=1+\frac{1-y^{2}}{2 y} \log \left|\frac{1+y}{1-y}\right| \tag{3}
\end{equation*}
$$

Note that $S(x)$ can be obtained by the following integral

$$
\begin{equation*}
S(x)=\frac{1}{x} \int_{0}^{1} d u u \log \left|\frac{u+x}{u-x}\right| \tag{4}
\end{equation*}
$$

- Derive the expression for the effective mass of the system, which is defined in the following way

$$
\begin{equation*}
G_{\mathbf{k} \approx k_{F}}(\omega \approx 0)=\frac{Z_{k}}{\omega-\frac{k^{2}-k_{F}^{2}}{2 m^{*}}} \tag{5}
\end{equation*}
$$

Start from the definition of the Green's function $G_{\mathbf{k}}(\omega)=1 /\left(\omega+\mu-\varepsilon_{\mathbf{k}}-\Sigma_{\mathbf{k}}(\omega)\right)$ and Taylor's expression of the self-energy

$$
\begin{equation*}
\Sigma_{\mathbf{k} \approx k_{F}}(\omega \approx 0)=\Sigma_{k_{F}}(0)+\frac{\partial \Sigma_{k_{F}}(0)}{\partial \omega} \omega+\frac{\partial \Sigma_{k_{F}}(0)}{\partial k}\left(k-k_{F}\right) \tag{6}
\end{equation*}
$$

and define $Z_{k}^{-1}=1-\frac{\partial \Sigma_{k_{F}}(0)}{\partial \omega}$ and take into account the validity of the Luttinger's theorem (the volume of the Fermi surface can not change by interaction). Show that under these assumptions, the effective mass of the quasiparticle is

$$
\begin{equation*}
\frac{m}{m^{*}}=Z_{k}\left(1+\frac{m}{k_{F}} \frac{\partial \Sigma_{k_{F}}(0)}{\partial k}\right) \tag{7}
\end{equation*}
$$

- Use the exchange self-energy and show that within Hartee-Fock approximation the effective mass is vanishing. Is there any quasiparticle left at the Fermi level in this theory? What does that mean for the stability of the metal in this approximation? What is the cause of (possible) instability?
phoppeal $11 / 22 / 2022$ What is the form of the spectral function $A_{k}(\omega)$ near $k=k_{F}$ and $\omega=0$?
- Calculate the contribution to the total energy of the exchange self-energy, which is defined by

$$
\begin{equation*}
\Delta E_{t o t}=\frac{T}{2} \sum_{\mathbf{k}, \sigma, i \omega_{n}} G_{\mathbf{k}}\left(i \omega_{n}\right) \Sigma_{\mathbf{k}}\left(i \omega_{n}\right) \tag{8}
\end{equation*}
$$

Show that $\Delta E_{\text {tot }} /\left(n_{0} V\right)=-0.91633 / r_{s}$ is Rydberg units.

Note that the correction to the kinetic energy, which goes as $1 / r_{s}^{2}$ is large when r_{s} is large, i.e., when the density is small (dilute limit).

- Evaluate the higher order correction for self-energy of the RPA form, which is composed of the following Feynman diagrams
$\sum_{r}(i \omega)=$

Show that the self-energy can be evaluated to

$$
\begin{equation*}
\Sigma_{\mathbf{k}}\left(i \omega_{n}\right)=-\frac{1}{\beta} \sum_{\mathbf{q}, i \Omega_{m}} v_{q}^{2} G_{\mathbf{k}+\mathbf{q}}^{0}\left(i \omega_{n}+i \Omega_{m}\right) \frac{P_{q}\left(i \Omega_{m}\right)}{1-v_{q} P_{q}\left(i \Omega_{m}\right)} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{q}\left(i \Omega_{m}\right)=\frac{1}{\beta} \sum_{i \omega_{n}, \mathbf{k}, s} G_{\mathbf{k}}^{0}\left(i \omega_{n}\right) G_{\mathbf{k}+\mathbf{q}}^{0}\left(i \omega_{n}+i \Omega_{m}\right) \tag{10}
\end{equation*}
$$

- Show that the Polarization function $P_{q}\left(i \Omega_{m}\right)$ on the real axis $\left(i \Omega_{m} \rightarrow \Omega+i \delta\right)$ takes the following form

$$
\begin{equation*}
P_{q}(\Omega+i \delta)=-\frac{k_{F}}{4 \pi^{2}}\left(\mathcal{P}\left(\frac{\Omega}{k_{F}^{2}}+i \delta, \frac{q}{k_{F}}\right)+\mathcal{P}\left(-\frac{\Omega}{k_{F}^{2}}-i \delta, \frac{q}{k_{F}}\right)\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{P}(x, y)=\frac{1}{2}-\left[\frac{\left(x+y^{2}\right)^{2}-4 y^{2}}{8 y^{3}}\right]\left[\log \left(x+y^{2}+2 y\right)-\log \left(x+y^{2}-2 y\right)\right] \tag{12}
\end{equation*}
$$

- RPA contribution to the total energy is again

$$
\begin{equation*}
\Delta E_{t o t}=\frac{T}{2} \sum_{\mathbf{k}, s, i \omega_{n}} G_{\mathbf{k}}^{0}\left(i \omega_{n}\right) \Sigma_{\mathbf{k}}\left(i \omega_{n}\right) \tag{13}
\end{equation*}
$$

Show that within this RPA approximation the total energy takes the form

$$
\begin{equation*}
\Delta E_{t o t}=-\frac{V}{2} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \int \frac{d \Omega}{\pi} n(\Omega) \operatorname{Im}\left\{\frac{v_{q}^{2} P_{q}(\Omega+i \delta)^{2}}{1-v_{q} P_{q}(\Omega+i \delta)}\right\} \tag{14}
\end{equation*}
$$

The analytic expression for this total energy contribution can not expressed in a closed form, however, an asymptotic expression for small r_{s} has the form $\Delta E_{t o t} / n_{0} \approx-0.142+$ $0.0622 \log \left(r_{s}\right)$, which signals that the total energy is not an analytic function of r_{s} or density, hence perturbation theory in powers of v_{q} is bound to fail. Analytic solution of this problem is still not available, and only numerical estimates by QMC can be found in literature. Note that this total energy density is at the heart of the Density Functional Theory.

Homeworl: Drow all dignoms for relf-enengy (exclunding toed-ppees) up to the seconol order anol wite expresion in momentum freguency space.
order:

$$
\begin{aligned}
& \sum_{r=}^{(22)}(i \omega)=\frac{(-1)^{2}}{\beta^{2}}(-1) \sum_{\substack{\alpha^{2} / s^{\prime} \\
\omega^{\prime} \Omega}} v_{g}^{2} G_{2^{\prime}}^{0}\left(i \omega^{\prime}\right) G_{\Omega^{\prime}}^{0}\left(i \omega^{\prime}+i \Omega\right) G_{r+f}(i \omega+i \Omega) \Rightarrow \frac{-1}{\beta} \sum_{j^{\prime}, \Omega} v_{g}^{2} P_{f}^{0}(i \Omega) G_{r+g}(i \omega+i \Omega)
\end{aligned}
$$

Define polarization $P_{f}^{0}(i \Omega) \equiv$ firs $^{2}=\frac{1}{\beta} \sum_{x^{\prime} w_{1}, S^{\prime}} G_{n^{\prime}}^{0}(i w) G_{R^{2}+\rho}^{0}(i \omega+i \Omega)$

Homework: Calculate the symmetry factor of the following diagrams: Dram the diagram for G that ane generated by $\frac{\delta \ln z}{\delta G^{\circ}}$.

Homenor 3 on $\cup E G$

$$
\text { and } r_{2}=\left(\frac{9 \pi}{4}\right)^{1 / 3} \frac{1}{r_{s}}
$$

$$
E_{F}=\frac{\hbar^{2} \hat{F}_{F}^{2}}{2 m}=(\underbrace{\left(\frac{\hbar^{2}}{2 m} \bar{\theta}_{0}^{2}\right.}_{1 R_{j}})\left(\frac{R_{F}}{\alpha_{0}}\right)^{2} \Rightarrow \frac{E_{F}}{1 R_{y}}={\tilde{K_{F}^{2}}}^{2}
$$

$$
\frac{1}{v} \sum_{\sigma}=\int \frac{d^{3} j}{(2 \pi)^{3}}
$$

- Calculate the exchange contribution to self energy

$\xrightarrow{\text { shopped }} \quad \frac{k}{r_{F}}=y$

$$
\sum_{r}^{x}=-\frac{2 k_{F}}{\pi} S\left(\frac{r_{r}}{r_{F}}\right)
$$

What is effective mars of electron within HF theory.?

$$
\begin{aligned}
& z_{2} \equiv \frac{1}{1-\frac{\partial \Sigma_{2}}{\partial w}} \\
& \approx \frac{Z_{r}}{\omega-\frac{\left(r-r_{F}\right) \sum_{F_{2}}}{m} z_{2}\left[1+\frac{m}{k_{F}} \frac{\partial \Sigma_{k_{r}}(0)}{\partial r_{r}}\right]} \\
& G_{R}(\omega) \approx \frac{z_{z}}{\omega-\frac{\left(2-z_{E}\right) r_{F}}{m^{*}}} \approx \frac{z_{r}}{\omega-\frac{z^{2}-m^{2}}{2 m^{*}}} \\
& \frac{m}{m^{*}} \equiv z_{2}\left[1+\frac{m}{k_{F}} \frac{\partial \Sigma_{2}}{\sum_{R}(0)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{r}^{x}=\frac{(-1)}{\beta V_{\rho, i \Omega}} \sum_{\alpha} v_{r+g}^{0}(i \omega+i \Omega)=-\frac{1}{V} \sum_{\alpha} v_{\alpha} M_{r+g}=-\int \frac{d^{3} g}{(2 \pi)^{3}} M_{\alpha} v_{g-r}=-\int \frac{d^{3} g}{(2 \pi)^{3}} f\left(\varphi_{g}\right) \frac{8 \pi}{|\vec{g}-\vec{\varepsilon}|^{2}} \\
& \xrightarrow{T=0}=-\int_{0}^{r_{F}} d g \frac{2 \pi g^{2}}{(2 \pi)^{3}} \int_{-1}^{1} d(\cos v) \frac{8 \pi}{g^{2}+r^{2}-2 r g \cos \theta}=\frac{2}{\pi} \int_{0}^{r_{F}} d g g^{2} \int_{-1}^{1} \frac{d x}{g^{2}+r^{2}-2 \pi g x}=\left.\frac{2}{\pi} \int_{0}^{r_{F}} d g^{2} \frac{1}{2 \pi g} \ln \left(g^{2}+r^{2}-2 \operatorname{rg} x\right)\right|_{1} ^{-1}=\frac{2}{1} \frac{1}{2 r} \int_{0}^{r_{k}} d g g \ln \left(\frac{(g+r)^{2}}{(g-r)^{2}}\right) \\
& =-\frac{2}{\pi z} \int_{0}^{r_{F}} d y g \ln \left|\frac{q+r}{f-2}\right|=-\frac{2 r_{F}}{\pi y} \int_{0}^{1} d \mu u \ln \left|\frac{\mu+y}{\mu-y}\right| \\
& S(y) \equiv \frac{1}{y} \int_{0}^{1} d u \mu \ln \left|\frac{\mu+y}{\mu-y}\right| \\
& \frac{2}{r_{F}}=\mu ; \quad \frac{r_{r}}{R_{F}}=y \\
& S(y)=1+\frac{1-y^{2}}{2 y} \ln \left|\frac{1+y}{1-y}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E_{\operatorname{arm}}}{1 R_{y}}=V \frac{24 \pi}{8 \pi^{3}} \int_{0}^{r_{F}} d r r^{2} r^{2}=\frac{V}{\pi^{2}} \frac{r_{F}^{5}}{5}=\left(\frac{V}{\pi^{2}} \frac{r_{F}^{3}}{3}\right)\left(\frac{3}{5} r_{F}^{2}\right)=V m_{0} \frac{3}{5} r_{F}^{2} \Rightarrow \frac{E \sin }{V M_{0}}=\frac{3}{\sqrt{5}\left(\frac{9 \pi}{4}\right)^{1 / 3} \frac{1}{r_{s}^{2}}, ~}
\end{aligned}
$$

For HF: $\quad \frac{m^{*}}{m}=\frac{1}{1+\frac{m}{s_{F}} \frac{d \sum_{2 F}}{d r}} \quad \frac{d \Sigma_{2_{F}}}{d r}=-\frac{2}{\pi} s^{\prime}(1)=\infty$
$\frac{m^{*}}{m}=0 \quad$ which means infinite bandinith \rightarrow metal unstable

$$
\varepsilon_{z}=\frac{\hbar^{2} r^{2}}{2 m}=\left(\frac{\hbar^{2}}{2 m a_{0}^{2}}\right) a_{0}^{2} r^{2}=1 R_{y}\left(a_{0} r\right)^{2}
$$

What is the spectral function near the fermi level?

$$
A_{r}(\omega)=-\frac{1}{\pi} y_{m} G_{k_{2}}(\omega)=-\frac{1}{\pi} y_{m}\left(\frac{1}{\omega-\left(k-r_{k}\right) 2 r_{F}\left(1-\frac{1}{2 k_{F}} \frac{2}{\pi} s^{\prime}(1)\right]+i \delta}\right) \rightarrow 0 \quad \text { near } k \sim k_{F} \operatorname{and} \omega=0
$$

Total energy: We proved before that $E_{y_{0} t}=T \sum_{p_{1} w_{m}}\left[\varepsilon_{r} x_{x}+\frac{1}{2} \sum_{p}\left(i w_{n}\right)\right] G_{p}(i w)$
For \sum^{x} me have $\Delta E_{r o t}=\frac{1}{2} \frac{1}{\beta} \sum_{i \omega} \sum_{r}^{x} G_{r}(i \omega)=\sum_{r} \frac{1}{2} \sum_{r}^{x} M_{R}$

$$
\begin{aligned}
& \frac{3}{5}\left(\frac{9 \pi}{4}\right)^{2 / 3} \frac{1}{r_{s}^{2}} \quad \frac{3}{2 \pi}\left(\frac{9 \pi}{n}\right)^{1 / 3} \frac{1}{\sqrt{s}} \\
& \frac{E_{\text {tot }}}{\mathbb{R}_{y} \cdot V M_{0}}=\frac{3}{5} \cdot\left(\frac{3 \pi}{4}\right)^{2 / 3} \frac{1}{r_{s}^{2}}-\frac{3}{2 \pi}\left(\frac{9 \pi}{4}\right)^{1 / 3} \frac{1}{r_{s}}=\frac{2.2099}{r_{s}^{2}}-\frac{0,91633}{r_{s}} \\
& \text { Note: } \int_{0}^{1} d x x^{2} S(x)=\frac{1}{2}
\end{aligned}
$$

Note also: $M \equiv \frac{3}{4 \pi s_{0}^{2} r_{s}^{3}}=2 \int \frac{d_{2}^{3}}{(2 \pi)^{3}} m_{2}=2 \int_{0}^{\frac{r_{2}}{k_{2}} \frac{2 \pi}{8 \pi^{2}}}=\frac{1}{\pi^{2}} \frac{r_{2}^{3}}{3} \quad$ hence $r_{F}=\left(\frac{9 \pi}{4}\right)^{1 / 3} \frac{1}{Q_{0} r_{s}}$
we tour $\frac{\hbar^{2}}{2 m a_{0}^{2}}=1 R_{y}=13.6 \mathrm{aV}$ hence $\varepsilon_{q}=\frac{\hbar^{2} r^{2}}{2 m}$ in R_{y} is $\varepsilon_{e}=1 R_{y} \cdot e_{0}^{2} r^{2}$

Evoluate Feynam diegroms of the form.'
David Rimes and Bohn

$$
\sum_{r}(i w)=\underset{n+\rho}{\underset{\sim}{s}\}}
$$

one more orden, entabor
ore more loro, huma +1
where: $\quad P_{g}(i \Omega)=\frac{1}{\beta} \frac{1}{V} \sum_{i \omega, i_{1} s} G_{2}^{0}(i \omega) G_{2+2}^{0}$ (iw +i $\left.\Omega\right)$

$$
\begin{aligned}
& P_{g}(i \Omega)=\frac{1}{\beta v} \sum_{\substack{k, i \omega}} \frac{1}{i \omega-\varphi_{x}} \frac{1}{i \omega+i \Omega-\varphi_{n+g}}=\frac{1}{\beta v} \sum_{\substack{n_{i}, s \\
i \omega}}\left(\frac{1}{i \omega-\varphi_{z}}-\frac{1}{i \omega+i \Omega-\varphi_{n+g}}\right) \frac{1}{i \Omega+\varphi_{z}-\varphi_{k+g}} \\
& =\frac{1}{V} \sum_{z_{1}, s} \frac{f\left(y_{p}\right)-f\left(\xi_{k+f}\right)}{i \Omega+y_{z}-y_{k+f}}
\end{aligned}
$$

$$
\begin{aligned}
& P_{f}(\Omega+i \delta)=\frac{2}{8 \pi^{3}} 2 \pi \int_{0}^{r_{c}} d r r^{2} \int_{-1}^{1} d x\left[\frac{1}{\Omega+r^{2}-\left(r^{2}+\rho^{2}+2 \pi g x\right)+i \delta}-\frac{1}{\Omega+\left(r^{2}+y^{2}-2 r g x\right)-r^{2}+i \delta}\right] \\
& P_{\rho}(\Omega+i \delta)=\frac{1}{2 \pi^{2}} \int_{0}^{r_{F}} d r r^{2} \int_{-1}^{1} d x\left[\frac{1}{\Omega-\rho^{2}-2 r \rho x+i \delta}-\frac{1}{\Omega+\rho^{2}-2 k \rho x+i \delta}\right] \\
& P_{\rho}(\Omega+i \delta)=\frac{1}{2 \pi^{2}} \int_{0}^{x_{F}} d r r^{2}\left[-\frac{1}{2 k g} \ln \left(\Omega-\rho^{2}-2 r g x+i \delta\right)+\frac{1}{2 \pi g} \ln \left(\Omega+\rho^{2}-2 r g x+i \delta\right)\right]_{-1}^{1} \\
& P_{g}(\Omega+i \delta)=\frac{1}{4 \pi^{2} g} \int_{0}^{R_{F}} d r s\left[\ln \left(\frac{\Omega-g^{2}+2 r q+i \delta}{\Omega-g^{2}-2 r g+i \delta}\right)+\ln \left(\frac{\Omega+g^{2}-2 r q+i 5}{\Omega+j^{2}+2 r g+i \delta}\right)\right] \\
& \frac{\Omega}{r_{F^{2}}} \equiv x \quad \frac{p}{3_{T}}=y \quad \frac{k}{k_{F}}=\mu \\
& \left.P\left(y=\frac{g}{k_{k}}\right) x=\frac{\Omega+i^{5}}{k_{F}^{2}}\right)=\frac{k_{F}}{h \pi^{2}} \frac{1}{y} \int_{0}^{1} d u \mu\left[\ln \left(\frac{-x+y^{2}-2 y \mu}{-x+y^{2}+2 y \mu}\right)+\ln \left(\frac{x+y^{2}-2 y \mu}{x+y^{2}+2 y \mu}\right)\right] \\
& -\frac{1}{y} \int_{0}^{1} d \ln \mu \ln \left(\frac{x+y^{2}-2 y \mu}{x+y^{2}+2 y \mu}\right)=\frac{x+y^{2}}{2 y^{2}}-\frac{\left(x+y^{2}\right)^{2}-4 y^{2}}{8 y^{3}}\left[\ln \left(x+y^{2}+2 y\right)-\ln \left(x+y^{2}-2 y\right)\right] \\
& \begin{array}{l}
=\frac{x}{2 y^{2}}+\frac{1}{2}-\frac{\left(x+y^{2}\right)^{2}-4 y^{2}}{8 y^{3}}\left[\ln \left(x+y^{2}+2 y\right)-\ln \left(x+y^{2}-2 y\right)\right] \\
=\frac{x}{2}+P
\end{array} \\
& =\frac{x}{2 y^{2}}+P(x, y) \\
& P(x, y) \equiv \frac{1}{2}-\left[\frac{\left(x+y^{2}\right)^{2}-4 y^{2}}{8 y^{3}}\right]\left[\ln \left(x+y^{2}+2 y\right)-\ln \left(x+y^{2}-2 y\right)\right] \\
& P\left(y=\frac{\rho}{R_{F}}, x=\frac{\Omega+i \delta}{k_{F_{F}}^{2}}\right)=-\frac{\lambda_{F}}{4 \pi^{2}}\left[P\left(-\frac{\Omega+i \delta}{k_{F}^{2}}, \frac{\rho}{2_{F}}\right)+P\left(\frac{\Omega+i_{i} \delta}{k_{F}^{2}}, \frac{g}{R_{F}}\right)\right]
\end{aligned}
$$

Note $\int_{0}^{r_{F}} d r r[\ln (a+b r)-\ln (a-b r)]=\frac{a}{b} r_{F}+\frac{a^{2}-r_{F}^{2} b^{2}}{2 b^{2}}\left[\ln \left(a-r_{F} b\right)-\ln \left(a+r_{F} b\right)\right]$

$$
\begin{aligned}
& \text { hence } \\
& \begin{array}{ll}
a=\Omega-g^{2} & a=\Omega+f^{2} \\
h=2 q &
\end{array} \\
& h=-2 g \\
& P_{g}(\Omega+i \delta)=\frac{1}{4 \pi^{2} g}\left[\frac{\Omega-g^{2}}{2 g} z_{F}+\frac{\left(\Omega-g^{2}\right)^{2}-4 g^{2} k_{F}^{2}}{8 g^{2}} \ln \left(\frac{\Omega-g^{2}-2 k_{F} g}{\Omega-g^{2}+2 r_{F} g}\right)+\frac{\Omega+g^{2}}{-2 g} r_{F}+\frac{\left(\Omega+g^{2}\right)^{2}-4 g^{2} k_{F}^{2}}{8 g^{2}} \ln \left(\frac{\Omega+g^{2}+2 k_{F} g}{\Omega+g^{2}-2 k_{F} g}\right)\right] \\
& P_{f}(\Omega+i \sigma)=\frac{1}{4 \pi g}\left[-g R_{F}+\frac{\left(\Omega-g^{2}\right)^{2}-4 g^{2} k_{F}^{2}}{8 g^{2}} \ln \left(\frac{\Omega-g^{2}-2 k_{F} g}{\Omega-g^{2}+2 k_{F} g}\right)+\frac{\left(\Omega+g^{2}\right)^{2}-4 g^{2} k_{F}^{2}}{8 g^{2}} \ln \left(\frac{\Omega+g^{2}+2 k_{2} q}{\Omega+g^{2}-2 k_{F} g}\right)\right] \\
& P_{f}(\Omega+i \sigma)=-\frac{k_{F}}{4 \pi^{2}}\left[1-\frac{\left(\Omega-g^{2}\right)^{2}-4 g^{2} k_{F}^{2}}{8 g^{3} \mu_{F}} \ln \left(\frac{\Omega-g^{2}-2 k_{F} g}{\Omega-j^{2}+2 k_{F} g}\right)-\frac{\left(\Omega+g^{2}\right)^{2}-4 g^{2} k_{F}^{2}}{8 g^{3} k_{F}} \ln \left(\frac{\Omega+g^{2}+2 k_{F} q}{\Omega+g^{2}-2 k_{F} g}\right)\right] \\
& P_{g}(\Omega+i \sigma)=-\frac{R_{F}}{4 \pi^{2}}\left[1-\frac{1}{8 r_{F} g}\left\{\left[\frac{\left(\Omega-g^{2}\right)^{2}}{g^{2}}-4 \lambda_{F}^{2}\right] \ln \left(\frac{\Omega-g^{2}-2 k_{F} g}{\Omega-j^{2}+2 k_{F} g}\right)+\left[\frac{\left(\Omega+g^{2}\right)^{2}}{g^{2}}-4 \lambda_{F}^{2}\right] \ln \left(\frac{\Omega+g^{2}+2 k_{F} g}{\Omega+g^{2}-2 k_{F} g}\right)\right]\right. \\
& P_{g}(\Omega+i \sigma)=-\frac{R_{F}}{4 \pi^{2}}\left[1-\frac{1}{8 r_{F} g}\left\{\left[\frac{\left(\Omega-g^{2}\right)^{2}}{g^{2}}-4 \lambda_{F}^{2}\right] \ln \left(\frac{\Omega-g^{2}-2 k_{F} g}{\Omega-g^{2}+2 k_{F} g}\right)+\left[\frac{\left(\Omega+g^{2}\right)^{2}}{g^{2}}-4 \lambda_{F}^{2}\right] \ln \left(\frac{\Omega+g^{2}+2 k_{F} g}{\Omega+g^{2}-2 k_{F} g}\right)\right]\right]
\end{aligned}
$$

$$
\Delta E_{\text {tot }}=\frac{T}{2} \sum_{r_{i}, \omega} G_{i s s}^{0}(i \omega) \sum_{z s}(i \omega)
$$

\triangle Note G other than G !
Reval: $\sum_{z}(i \omega)=-\frac{1}{\beta i} \sum_{f_{1} i \Omega} v_{f}^{2} G_{n+y}^{0}(i \omega+i \Omega) \frac{P_{g}(i \Omega)}{1-V_{\gamma} P_{\alpha}(i \Omega)}$
Hence

$$
\begin{aligned}
& \Delta E_{\text {tot }}=-\frac{1}{2 \beta} \sum_{f i \Omega} N_{f}^{2} \frac{P_{f}^{2}(i \Omega)}{1-v_{f} P_{f}(i \Omega)} \\
& =-\frac{1}{2} \sum_{f} \oint \frac{d z}{2 \pi} \cdot m(z)\left[\frac{v_{f}^{2} P_{f}^{2}(z)}{1-v_{f} P_{f}(z)}\right] \\
& =-\frac{1}{2} \sum_{f} \int \frac{d x}{\pi} \mu(x) j_{m}\left[\frac{v_{f}^{2} P_{f}^{2}(x)}{1-v_{f} P_{f}(x)}\right] \\
& \Delta E_{\text {tot }}=-\frac{V}{2} \int \frac{d^{3} g}{(2 \pi)^{3}} \int \frac{d y}{\pi} \mu(x) \operatorname{I}_{n}\left[\frac{v_{y}^{2} P_{y}^{2}(x)}{1-v_{y} P_{f}(x)}\right] \\
& P_{j}(\Omega+i \delta) \equiv-\frac{\lambda_{F}}{n \pi^{2}}\left[P\left(\frac{\Omega}{R_{F}}+i \delta, \frac{g}{\lambda_{F}}\right)+P\left(-\frac{\Omega}{R_{F}^{2}-i}, \frac{g}{\mu_{F} F}\right)\right] \\
& P(x, y) \equiv \frac{1}{2}-\left[\frac{\left(x+y^{2}\right)^{2}-4 y^{2}}{8 y^{3}}\right]\left[\ln \left(x+y^{2}+2 y\right)-\ln \left(x+y^{2}-2 y\right)\right]
\end{aligned}
$$

$$
=-\frac{v}{2} \int_{0}^{\infty} \frac{d g 4 \pi j^{2}}{8 \pi^{3}} \int_{-\infty}^{\infty} \frac{d \Omega}{\pi} m(\Omega) \operatorname{H}_{m}\left\{\frac{v_{f} P_{g}(\Omega+i \sigma)}{1-v_{f} P_{f}(\Omega+i \delta)}-v_{f} P_{f}(\Omega+i,)\right]
$$

$$
\begin{aligned}
v_{j} P_{j}(\Omega) & =\frac{\frac{\rho \pi}{f^{2}}}{f^{2}}\left(-\frac{r_{F}}{4 \bar{T}^{2}}\right)\left[P\left(\frac{\Omega}{r_{F}}+i \delta, \frac{q}{r_{F}}\right)+P\left(-\frac{\Omega}{r_{F}^{2}}-i \delta, \frac{\rho}{r_{F}}\right)\right] \\
& =-\frac{2}{\pi} \frac{r_{F}}{f^{2}}\left[P\left(\frac{\Omega}{r_{F}^{2}}+i \delta, \frac{p}{r_{F}}\right)+P\left(-\frac{\Omega}{r_{F}}-i \delta, \frac{\rho}{r_{F}}\right)\right]
\end{aligned}
$$

Bold Expansion (Skip)

$$
\sum_{l}^{i} \sim K_{R}^{i}-j \xrightarrow{\xi \Sigma_{i j}[\varphi v]} i
$$

where s_{α} is symmity factor, wuch that $\frac{\delta \phi_{N \alpha}}{\delta G}=\sum_{m \alpha}$ hence $\sum_{M \alpha} \phi_{M \alpha}^{\text {reben }}\left(1-\lambda_{\alpha}\right)=\phi^{\text {rebebtor }}-\operatorname{Tr}(\Sigma G)$

$$
\begin{aligned}
& \langle m\rangle=\sum_{m=0}^{\infty} \int D\left[x^{+} y\right] e^{\int_{0}^{0} \psi\left[\left[c_{0}^{\prime}-\Sigma\right] x\right.} \frac{(-1)^{\prime \prime}}{m!}(\Delta s-\psi+x)^{m} n \\
& =\left\langle\Delta S-x+\sum \psi\right\rangle \\
& \frac{1}{\beta}\left(\operatorname{Tr}(\Delta a)-\operatorname{Tr}\left(\sum_{p} a_{p}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& z=\int D[x+x] e^{\int \psi+\left[\left[G^{0}\right]^{-1}-\Sigma\right] \psi-\int\left(\varphi \Delta \psi-y \Sigma[g v] \psi^{+} \psi\right) d \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \ln z=\ln z^{(0)}+\sum_{m=1, \alpha}^{\infty} D_{m \alpha}[G, \Delta \mathscr{y}, \Sigma] \\
& \ln Z=\operatorname{Tr} \ln G+\sum_{m=1, \alpha}^{\infty} \phi_{m \alpha}^{\text {sreltion }} \times\left(1-s_{\alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{i, i_{2}}\left(\bar{T}_{1}-T_{2}\right) \sum_{m=0}^{\infty} \int D\left[\psi^{+} \psi\right] e^{\int_{0}^{3} \psi^{+}\left[G^{0}\right]^{-1} \psi-\Delta S(v)} \quad \psi_{i j}\left(\pi_{1}\right) \psi_{i 2}^{+}\left(\frac{\pi}{2}\right) \\
& =\sum_{m=0}^{\infty} \int D\left[\psi^{+} \psi\right] e^{\int_{0}^{B} \psi+\left(\left(C_{i}^{0}\right]^{-1}-\Sigma\right) \psi-\int_{0}^{B}\left(\xi \frac{1}{2} v_{i j L e} \psi_{i}^{+} \psi_{j}+\psi_{2} \psi_{e}-\xi \Sigma_{i j}[\xi \nu] \psi_{i}+\psi_{i}\right) \psi_{i}(\pi) \psi_{i-}^{+}(\bar{z})}
\end{aligned}
$$

Homogeneous electron jos: Plasma theory of interacting electrons
We have interacting electrons in a uniform positive backround with charge $M_{0}=\frac{N_{e}}{V}$ where N_{e} is umber of electrons and V is volume.
This background charge reaps overal charge neutrality and ensures electron demity n_{0} to be uniform in space.
$V_{c}\left(\vec{r}-\vec{r}^{\prime}\right)=\frac{2}{\left|\vec{r}-\vec{r}^{\prime}\right|}$ (in Remits) then $v_{g}=\frac{8 \pi}{g^{2}}$

$$
\begin{aligned}
& S[\psi]=\int_{0}^{3} d r \sum_{2} \int d^{3} r \psi_{2\left(\vec{r}_{1} T\right)}^{+}\left(\frac{\partial}{\partial T}-\mu-\frac{\nabla^{2}}{2 m}\right) \psi_{2}\left(\vec{r}_{1}\right)+\int_{0}^{3} d r \sum_{22^{\prime}} d^{3} d^{3} d^{3} r^{\prime} \frac{1}{2} \psi_{2}^{+}(\vec{r}) \psi_{2^{\prime}}^{+}\left(\vec{r}^{\prime}\right) \psi_{2^{\prime}}\left(\vec{r}^{\prime}\right) \psi_{2}(\vec{r}) v_{c}\left(\vec{r}-\vec{r}^{\prime}\right) \\
& \psi_{2}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\mathcal{L}} e^{i \vec{r} \vec{r}} \psi_{m 2}(T) \\
& -\int_{0}^{3} d r \int_{0}^{3} d^{3} d^{\prime} r^{\prime} \psi_{2}^{+}(\vec{r}, T) \psi_{2}(\vec{r}, T) M_{0}\left(\vec{r}^{\prime}\right) V_{c}\left(\vec{r}-\vec{r}^{\prime}\right) \\
& V_{c}(\vec{r})=\frac{1}{V} \sum_{\alpha} v_{\alpha} e^{i \cdot \vec{g} \cdot \vec{r}} \\
& +\int_{0}^{n} d i \int^{3} d^{3} r d^{3} r^{\prime} \frac{1}{2} M_{0}(\vec{r}) M_{0}\left(\vec{v}^{\prime}\right) v_{c}\left(\vec{r}-\vec{r}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } \mathrm{f}=0: \frac{1}{2 \mathrm{~V}} v_{\mathrm{f}=0} \mathrm{~N}_{l}^{2}
\end{aligned}
$$

Conclusion: the three term exactly canal: we are left with

$$
S[\psi]=\int_{0}^{3} d r \sum_{r, 2} \psi_{r 2}^{+}(T)\left(\frac{\partial}{\partial T}-\mu-\frac{r^{2}}{2 m}\right) \psi_{r 2}(T)+\int_{\substack{2 z^{\prime} \\ r r^{\prime}}}^{B} d \tau \sum_{\substack{ \\g \neq 0}} \frac{1}{2 V} N_{\mathcal{L}} \psi_{r+g^{2}}^{+} \psi_{r^{\prime}-0 z^{\prime}}^{+} \psi_{r^{\prime} 2^{\prime}} \psi_{r 2}
$$

We did peaturhatine calculation for the homemas. Here we will use Functional integral to accomplish the same:

For the seconal homanors me desired the effective electron-electron interaction from election phonon coupling. Here we wont to accomplish the opposite. Given electon-electon interaction, we mont to reside it in terms of election-loson interaction. This is accomplished by Hubband-strotornavich transformation.
We start by identity $I=\int D\left[\phi^{+} \phi\right] e^{-\frac{1}{2}} \sum_{\delta} \int_{0}^{B} d \phi_{f}^{+}\left(r V_{g}^{-1} \phi_{f}(r)=\right.$
contains perfection $D\left(\phi^{+} \phi\right]=\frac{\pi d\left(\phi_{f}, \phi_{f}\right)}{\pi^{\pi} D+\left(y_{f}\right)}$
We will we $\phi(r, i) \in R$, hence $\phi_{f}^{+}=\phi_{-\rho}$
Next, serfs variable $\phi_{f} \rightarrow \phi_{f}+i V_{\alpha} \rho_{d} \quad$ (mote, me med i for repulsive)

$$
\begin{aligned}
& \phi_{f}^{+}=\phi_{-g} \rightarrow \phi_{-g}+i V_{-j} \rho_{-g} \\
& I=\int D\left[\phi^{+} \phi\right] e^{-\frac{1}{2 B} \sum_{g \Omega_{m}}\left(\phi_{g m}^{+}+i \rho_{-2 m} V_{-g}\right) V_{g}^{-1}\left(\phi_{g+n}+j V_{f} \rho_{f^{\prime}}\right)} \\
& -\frac{1}{2 \beta}\left[\phi_{f^{m}}^{+} V_{f}^{-1} \phi_{g^{m}}+i \rho_{f^{-m}} \phi_{g^{m}}+i \phi_{f_{m}}^{+} \rho_{f^{m}}-V_{2} \rho_{f^{m}-m} \rho_{j^{\prime m}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Lo exchund } \rho=0 \text {, me } \\
\text { net } \theta_{t 00}=0!
\end{array} \\
& \text { net } \phi_{f 0}=0 \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{s} \sum_{i J_{m}} e^{i S_{m}\left(\tau-j^{\prime}\right)}=\delta\left(\tau-J^{\prime}\right) \\
& =\frac{1}{2} \int_{0}^{3} d^{1} \sum_{\substack{22^{\prime} \\
22^{\prime}}} \psi_{2+22^{\prime}}^{+(\tau)} \psi_{22^{2}(\tau)} \psi_{2^{\prime}-2^{\prime}}^{+}(\tau) \psi_{2^{\prime} 2^{\prime}(\tau)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { to not } \mathrm{g} \neq \mathrm{om} \mathrm{~mm}^{2} \mathrm{l} \\
& \operatorname{arsman} \phi_{f=0}=0 \\
& S_{\text {eff }}=\frac{1}{\beta} \sum_{x 2 m} \psi_{z z m}^{+}\left(-i \omega_{m}-\mu^{+}+\varepsilon_{2}\right) \psi_{z 2 m}+\frac{1}{\beta} \sum_{f^{m}}\left(\frac{1}{2} \phi_{j-f-m} V_{f}^{-1} \phi_{f m}+i \phi_{f, m} \rho_{j f-m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{9 m}=\sum_{\substack{\sum_{2,2} \\
m m}} \psi_{n+g, 2, m+m}^{+} \psi_{2,1, m} \frac{1}{\frac{1}{\beta}} \underbrace{\int_{0}^{B+i\left(\omega_{m}+\Omega_{m}\right) \tau-i \omega_{m} T-i \Omega_{m} T}}_{1}
\end{aligned}
$$

Now we hare only quadratic forms for fermions. We can integrate fermions out.
We have interaction mediated by boons, instead of divest Coulombs. Note: $-i \phi_{f}$ is become V_{f} is repulsive

- bosons hove no dynamical form $\phi_{f}^{+}\left(\frac{\partial}{\partial T}+\omega_{f}\right) \phi_{\mathcal{L}}$ hence interaction is
- Is Hubbarol-Stratonomich decoupling of interaction unique? No.

There ore three decouphings:

- density-denity channel
- Copper channel
- For - exchange channel

$$
\begin{aligned}
& \rho_{g}=\sum_{r, 2} \psi_{r+\rho}^{+} \psi_{r a} \\
& \Delta_{r+r^{\prime}}=\sum_{22^{\prime}} \psi_{r^{\prime} c^{\prime}} \psi_{r 2} \varphi_{\substack{2 r^{\prime} \\
\uparrow}}^{\tau}
\end{aligned}
$$

needed for $S C$.
Mingles / triplet channel

- May is H.S. useful? We want to find better saddle point approximations. The sarthe pain approximation in original fermion only formulation is the Hartree Fork opprocimation.
Namely: $\frac{\delta S}{\delta \psi_{(r, T)}^{+}}=O=\left(\frac{\partial}{\partial T}-\mu-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) \psi_{2}\left(\vec{r}_{1}, T\right)+\underbrace{\iint_{2^{\prime} r^{\prime}}^{\sum_{2^{\prime}} \psi_{2^{\prime}}^{+}\left(\vec{r}^{\prime}\right) v\left(\vec{r}^{-} \vec{r}^{\prime}\right)} \psi_{2^{\prime}}\left(\vec{r}^{\prime}\right) \psi_{2}(\vec{r})}_{\text {mean field }}$

$$
\begin{aligned}
& \int d^{3} r^{\prime} v_{c}\left(\vec{r}^{-}-\vec{r}^{\prime}\right) \psi_{2}(\vec{r})\left\langle\psi_{2^{\prime}}^{+}\left(\vec{r}^{\prime}\right) \psi_{2^{\prime}}\left(\vec{r}^{\prime}\right)\right\rangle \\
- & \int d^{3} r^{\prime} v_{c}\left(\vec{r}^{-} \vec{r}^{\prime}\right) \psi_{2^{\prime}}\left(\vec{r}^{\prime}\right)\left\langle\psi_{2^{\prime}}^{+}\left(\vec{r}^{\prime}\right) \psi_{2}(\vec{r})\right\rangle
\end{aligned}
$$

hence $\quad\left(\left(\frac{\partial}{\partial T}-\mu-\frac{\hbar_{1}^{2} \nabla^{2}}{2 m}+N_{H}(\vec{r})\right) \delta\left(\vec{r}-\vec{r}^{\prime}\right)-N_{x}\left(\vec{r}^{\prime}, \vec{r}\right)\right) \psi_{\sigma}\left(\vec{r}^{\prime}, \tau\right)=0$
where $\left.\begin{array}{rl} & V_{H}(\vec{r})=\int d^{3}{ }^{\prime} V^{\prime} V_{C}\left(\vec{r}-\vec{r}^{\prime}\right) M\left(\vec{r}^{\prime}\right) \\ & V_{X}\left(\vec{r}^{\prime}, \vec{r}\right)=V_{C}\left(\vec{r}^{-} \vec{r}^{\prime}\right) M\left(\vec{r}^{\prime}, \vec{r}\right)\end{array}\right]$ Hortree-Fors

By changing the varicblesto electrom-voson interaction we will generate different saddle point approximation.

The steps we meed to tore:

1) Integrate out fermions
2) Consider sedolle point in bionic variables
3) Cher fluctuations aromol the saddle point

$$
\begin{aligned}
& \operatorname{Definc}\left[\mathcal{G}_{2}^{-1}[\phi]\right]_{p_{1}, m_{1}, p_{2} m_{2}}=\left(i \omega_{m_{2}}+j-\varepsilon_{p_{2}}\right) \delta_{p_{1}, p_{2}} \delta_{m_{1}-m_{2}}-i \phi_{p_{2}-p_{1}, m_{2}-m_{1}}
\end{aligned}
$$

$\ln \operatorname{Det} A=\operatorname{Tr} \ln A$ become in rigenberis $\ln D+t A=\ln \left(\prod_{\lambda_{i}} \ln \lambda_{i}\right)=\sum_{\lambda_{i}} \ln \lambda_{i}$

$$
z=\int D\left[\phi^{+} \phi\right] e^{\left.-\frac{1}{n} \sum_{j^{m}} \frac{1}{2} \phi_{g^{\prime}}^{+} V_{g}^{-1} \phi_{g^{m}}+\operatorname{Tr} \ln \left(-\operatorname{cg}_{2}^{-1} \phi \phi\right]\right)}
$$

and $\left.S_{\text {eff }}[\phi]=\frac{1}{\hbar} \sum_{\delta^{m}} \frac{1}{2} \phi_{\delta^{m}}^{+} V_{f}^{-1} \phi_{\rho^{m}}-\operatorname{Tr} \ln \left(-\varphi_{2}^{-1} c \phi\right]\right)$
Up to here this is exact. Now we start making opprotimations.
This is highly mon linear problem in bromic ϕ varices.
2) Sodolle point: $\frac{\delta S_{e r p}[\phi]}{\delta \phi_{g m}}=0=V_{g}^{-1} \phi_{g m}^{+}-\frac{\delta}{\delta \phi_{g m}} \operatorname{Tr} \ln \left(-\varphi^{-1}(\phi]\right)$

$$
V_{g}^{-1} \phi_{g m}^{+}-\operatorname{Tr}\left(\xi \frac{\delta \zeta^{-1}}{\delta \phi_{f m}}\right)
$$

$$
\begin{aligned}
& {\left[\varphi_{\sigma}^{-1}[\phi]\right]_{p_{1}, m_{1} p_{2} m_{2}}=\left(i \omega_{m_{2}}+\mu-\varepsilon_{p_{2}}\right) \delta_{p_{1}, p_{2}} \delta_{m_{1}-m_{2}}-i \phi_{p_{2}-p_{1} m_{2}-m_{1}}} \\
& \frac{\delta g_{j}^{-1}}{\delta \phi_{g m}}=-i \delta_{p_{2}-p_{1}=f} \delta_{m_{2}-m_{1}=m} \\
& \operatorname{Tr}\left(\varphi_{2} \frac{\delta \mathscr{g}_{2}^{-1}}{\delta \phi_{g}} \underset{\substack{m}}{ }\right)=\sum_{\substack{m_{1}, m_{2} \\
p_{2}, p_{2}}} \varphi_{p_{1} m_{2} ; p_{2} m_{2}} \delta_{m_{1}-m_{2}=m} \delta_{p_{1}-p_{2}=\rho}(-i)
\end{aligned}
$$

Sedate point E_{g} :

$$
\underset{\substack{p_{g}^{2} \\ \frac{p^{2}}{8 \pi}}}{V_{g}^{-1}} \phi_{g m}^{+}=-i \sum_{m_{1}, p_{1}} \varphi_{p_{1} m_{1} ; p_{1}-g, m_{1}-m}
$$

Gers solution:
For $g \neq 0 \quad \phi_{g}=0$ is a solution became $\varphi[\phi=0]=\varphi_{0}^{0}$ which me know is tremblationally Invariant, hence $\delta_{p_{2}}=p_{1}$ and ravishes atfin'te g. The point $f=0$ is reclused from the model, became uniform back loomed.
3) Fluctuations around saddle point:

Define $G^{0}=i \omega_{m}+\mu-\varepsilon_{p}$ lance $\left[\mathcal{G}_{2}^{-1}\right]_{p_{1} m_{1}, p_{2} m_{2}}=\left(G_{0}^{0}\right)^{-1} \cdot I-i \phi_{p_{2}-p_{1}, m_{2}-m_{1}}$
Define $\bar{\phi}_{p m_{1}, p_{2} m_{2}}=\phi_{p-p_{1}, m_{2}-m_{1}}$

$$
=\left(G^{0}\right)^{-1} I-i \bar{\phi}
$$

$$
\begin{aligned}
& S_{\text {eff }}[\phi]=\frac{1}{B} \sum_{\alpha^{m}} \frac{1}{2} \phi_{g^{m}}^{+} V_{g}^{-1} \phi_{g^{m}}-\operatorname{Tr} \ln \left(-\left(G^{0}\right)^{-1}\left(I-i G^{0} \bar{\phi}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.S_{\text {eff }}[\phi]=S^{0}+\frac{1}{3} \sum_{f^{m}} \frac{1}{2} \phi_{g^{m}}^{+} V_{f}^{-1} \phi_{g^{m}}-\frac{1}{2} \operatorname{Tr}\left(G_{F}^{0} \Phi G^{0} \Phi\right)-\frac{i}{3} T r\left(G^{0} 0\right)^{3}\right)+\frac{1}{h} \operatorname{Tr}\left(G^{0} \phi\right)^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{\text {eff }}[\phi]=S^{0}+\frac{1}{B} \sum_{\mathcal{J}^{m}} \frac{1}{2} \phi_{g^{m}}^{+} V_{f}^{-1} \phi_{g m}-\frac{1}{2} \operatorname{Tr}\left(G_{7}^{0} \Phi G^{0} \Phi\right)-\frac{i}{3} \operatorname{Tr}\left(\left(\left.G^{0} \phi\right|^{3}\right)+\frac{1}{4} \operatorname{Tr}\left(\left(G^{0} \phi\right)^{3}\right)\right. \\
& -\frac{1}{2} \frac{1}{\beta^{2}} \sum_{\substack{p p^{\prime}, 2}} G_{p m, p m}^{0} D_{p^{\prime}-p, m^{\prime}-m}^{0} G_{p^{\prime} m^{\prime}, p^{\prime} m^{\prime}}^{0} \Phi_{p-p^{\prime}, m-m^{\prime}}
\end{aligned}
$$

ports of Tr when in imaginary fegency
$p-p^{\prime}=\rho \quad m-m^{\prime}=m$

$$
S_{e f f}[\phi]=S^{0}+\frac{1}{B} \sum_{f^{m}} \frac{1}{2} \phi_{-j^{\prime}-m} \phi_{f^{m}}\left[V_{f}^{-1}-\frac{1}{B} \sum_{p, m, 2} G_{p}^{0}\left(i \omega_{m}\right) G_{p-j}^{0}\left(i \omega_{m}-i \Omega_{m}\right)\right]-\frac{i}{3} \frac{1}{\beta^{2}} \sum G_{p}^{0} G_{p+f}^{0} G_{p+f+f^{\prime}}^{0} \phi_{f} \phi_{f^{\prime}} \phi_{-j-f^{\prime}}
$$

Define: $\quad P_{g}(i \Omega) \equiv \frac{1}{\beta} \sum_{p, m, 2} G_{p}^{0}\left(i \omega_{m}\right) G_{p-g}^{0}\left(i \omega_{m}-i \Omega_{m}\right)$
Then

$$
S_{e p t}[\phi]=S^{0}+\frac{1}{B} \sum_{f m} \frac{1}{2} \phi_{-1,-m} \phi_{f m} \underbrace{V_{f}^{-1}\left[1-V_{f} P_{f}(i \Omega)\right]}
$$

This is screened conlonts interaction

$$
\begin{aligned}
W_{f}^{-1} & \equiv V_{f}^{-1}\left[1-V_{f} P_{f}(i \Omega)\right] \\
& =\frac{g^{2}}{8 \pi}\left[1-\frac{8 \pi}{f^{2}} P_{f}(i \Omega)\right]
\end{aligned}
$$

We define $\frac{V_{p}}{\varepsilon_{f}}=W_{f}$,ie., is the screened repulsion, hence $\varepsilon_{f}=1-V_{f} P_{f}(i \Omega)$ so that electromagnetic response in a medium is screened $D_{f} \omega=\varepsilon_{f \omega} E_{f \omega}$

$$
\begin{aligned}
& z=\int D[\phi+\phi] e^{-\operatorname{Seff}[\phi]}=z_{0}\left(\operatorname{Det}\left[V_{f}^{-1}-P_{f}(i \Omega)\right]\right)^{-\frac{1}{2}} \quad \operatorname{losonic} \text { and real } \phi \\
& \ln z=\ln z_{0}-\frac{1}{2} \ln \operatorname{Det}\left(V_{f}^{-1}-P_{f}(i \Omega)\right)=\ln z_{0}-\frac{1}{2} \operatorname{Tr} \ln \left(V_{f}^{-1}-P_{f}(i \Omega)\right) \\
& \ln z=\ln z_{0}-\frac{1}{2} \sum_{f, \Omega} \ln \left(1-V_{f} P_{f}(i \Omega)\right) \quad-\frac{1}{2} \sum_{i \Omega}\left(\ln V_{f}^{-1}+\ln \left(1-V_{f} P_{f}(i \Omega)\right)\right) \\
& -\beta F=-\beta F_{0}-\frac{1}{2} \sum_{i \Omega} \ln \left(1-V_{f} P_{f}(i \Omega)\right) \\
& F=F_{0}+\frac{T}{2} \sum_{i \Omega g} \ln \left(1-V_{f} P_{f}(i \Omega)\right)
\end{aligned}
$$

To make connection with perturbative RPA results from the homanors we note that the interaction energy me used mas

$$
\begin{aligned}
E_{\text {pot }}=\frac{1}{2} \operatorname{Tr}\left(\Sigma G^{0}\right) & =\frac{1}{2}[\underbrace{2}_{2}+\cdots \\
& =\frac{1}{2}[?]
\end{aligned}
$$

We know that

$$
z=\operatorname{Tr}\left(e^{-\beta H}\right)=\operatorname{Tr}\left(e^{-\beta\left(H_{0}+V\right)}\right)
$$

Ne unltiply each interaction by coupling constant λ and take derivative mu th respect to λ, i.e.,

$$
\begin{aligned}
& \frac{\delta}{\delta \lambda} \ln Z_{\lambda}=\frac{\delta}{\delta \lambda} \ln \operatorname{Tr}\left(e^{-\beta\left(H_{0}+\lambda V\right)}\right)=\frac{1}{Z_{\lambda}} \operatorname{Tr}\left(e^{-\beta H}(-\beta V)\right)=-\frac{\beta}{\lambda} \frac{\operatorname{Tr}\left(e^{-\beta H} \lambda V\right)}{e^{-\beta F}}=\ln Z \\
& \frac{\delta F}{\delta \lambda}=-\frac{1}{\beta} \frac{\delta \ln Z_{\lambda}}{\delta \lambda}=\frac{1}{\lambda}\left\langle E_{p t t}(\lambda)\right\rangle \text { then } F=F^{0}+\int_{0}^{1} \frac{d \lambda}{\lambda}\left\langle E_{p o t}\right\rangle
\end{aligned}
$$

Hence

$$
\begin{aligned}
F-F^{0} & =\frac{1}{2} \int_{0}^{1} \frac{d \lambda}{\lambda}\left[\lambda \infty+\lambda^{2}\left\{\lambda^{3} ?+\cdots\right]\right. \\
& =\frac{1}{2}\left[\infty+\frac{1}{2}+\infty\right]
\end{aligned}
$$

Hence $F-F^{0}=-\frac{T}{2} \sum_{f_{1} \Omega_{m}} V_{f} P_{f}(i \Omega)+\frac{1}{2}\left[V_{f} P_{f}(i \Omega)\right]^{2}+\frac{1}{3}\left[V_{f} P_{f}(i \Omega)\right]^{3}+\ldots=\frac{T}{2} \sum_{f i \Omega_{m}} \ln \left(1-V_{f} P_{f}\left(i \Omega_{m}\right)\right)$

$$
-\frac{1}{2}\left[x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots\right]=\frac{1}{2} \ln (1-x)
$$

hence identical result for free energy and hence the same G and dielectric response.

Skip this in class, let yest for your information.
This is actually approximation on top of RPA approximation, and would not war if we were to systematically improve on the self-evengy.

$$
E_{\text {pot }}=\frac{1}{2} \operatorname{Tr}(\Sigma \cdot G) \quad \operatorname{lence}
$$

thesis G and not G° as me used for comenors and in plasma thong

$$
-=-+\underline{\rho^{\prime} \cdots Q_{\}}}+\underline{\left\{\cdots Q _ { \{ } \left\{\cdots Q_{1}\right.\right.}+\cdots
$$

Define $\Sigma=-0 \xrightarrow{0 \cdots}$

Conclusion: Saddle point approtimation on Hubband-Stratonouich field, which couples to the density, gives RPA approximation.
$I_{n} \frac{P_{f}(\Omega)}{1-V_{f} P_{f}(\Omega)}=X_{g}(\Omega)$ - charge or spin susceptililing

plasmon satisfies $V_{f} P_{f}=1$ and $\xi_{g}=1-V_{f} P_{f}=0$ and $W_{g} \rightarrow \infty$
particle hole
excitations

$$
\begin{array}{ll}
P_{g}(\Omega+i \delta) \equiv-\frac{\lambda_{F}}{4 \pi^{2}}\left[P\left(\frac{\Omega}{\lambda_{F}^{2}}+i \delta, \frac{g}{\lambda_{F}}\right)+P\left(-\frac{\Omega}{\lambda_{F}^{2}}-i \delta, \frac{g}{2_{F}}\right)\right] \quad \frac{\Omega}{r^{2}}=x \text { and } \frac{g}{2_{F}}=y & \varepsilon=1-v_{j} p_{j} \\
P(x, y) \equiv \frac{1}{2}-\left[\frac{\left(x+y^{2}\right)^{2}-4 y^{2}}{8 y^{3}}\right]\left[\ln \left(x+y^{2}+2 y\right)-\ln \left(x+y^{2}-2 y\right)\right] ; &
\end{array}
$$

$$
y \rightarrow 0 \text { with } x \gg y \quad P \approx-\frac{x}{2 y^{2}}+\frac{4}{3 x}-\frac{4(5 x-4)}{\hat{r} \rightarrow y^{2}} \underset{\text { odd } \operatorname{in} \Omega}{\substack{15 x^{3} \\-\frac{4}{3} y^{2} x^{2} \\ \text { even in } \Omega}}
$$

$$
\lim _{f \rightarrow 0} \operatorname{Re} P_{f}
$$

hence $V_{f} P_{p}=1$ when $\Omega_{p}^{2}=16 \pi M_{0}$ long lined oricetions plasma frepury.
plasma fugurency ${ }^{2}$ proportional to demarity.

> hence $\lim _{f \rightarrow 0} V_{f} P_{f}=\frac{8 \pi}{f^{2}} \frac{f^{2}}{\Omega^{2}}\left(\frac{2}{3} \frac{r_{2}^{3}}{\pi^{2}}\right)=\frac{16}{3 \pi} \frac{r_{F}^{3}}{\Omega^{2}}=\frac{16 \pi}{\Omega^{2}}\left(\frac{r_{\mu}{ }^{3}}{3 \pi^{2}}\right)$ $M^{\prime \prime}$

Electron phonon interaction in metals of Sepperconductin'ty
Recall homenvor problem $\quad H_{e-;}=\delta \sum_{g, v} \frac{i g_{v}}{\sqrt{2 M \omega_{\rho}}}\left(\phi_{\rho v}+\phi_{j v}^{+}\right) \rho_{\rho}$ When phowons are integrated out, we get

$$
S_{r p f}\left[\psi^{+}, \psi\right]=\sum_{r=2} \psi_{r 2}^{+}\left(-i \omega_{m}+\varepsilon_{r}\right) \psi_{r 2}-\sum_{r g^{m}} \frac{r^{2}}{2 M} \frac{\rho^{2}}{\omega_{g}^{2}+\Omega_{m}^{2}} \hat{M}_{f^{m}} \hat{M}_{-\gamma^{1-m}}
$$

Historic introduction to SC
Cooper instability $\uparrow \xrightarrow{r} \mathbb{N}^{r+f}$

If $V_{g}<0$, cooper noticed hot something dramatic occurs, i.e., metal is unstable. Comider the ladder diagrams

the interaction is approximated with a constant for simplicity. The constant is negative

$$
B_{\alpha}(i \Omega)=\frac{1}{\beta} \sum_{\substack{i \omega_{m^{\prime \prime}} \\ r^{\prime \prime}}} g_{-r^{\prime \prime}}\left(-i \omega_{m}^{\prime \prime}\right) g_{k^{\prime \prime}+j}\left(i \omega_{m^{\prime \prime}}+i \Omega\right)
$$

Woke: ladders have opposite sign as bubbles (became no new fernionic loop) lat hare $g<0$, so the overall sign seems the rome as in RPA. But ${\underset{\sigma}{\alpha}}^{B_{\alpha}}(\Omega)$ is very different from $P_{g}(\Omega)$

Frou HWII jump to *

$$
\begin{aligned}
& B_{\alpha}(i \Omega)=\frac{1}{\beta} \sum_{\substack{i \omega_{m^{\prime \prime}}^{\prime \prime} \\
r^{\prime}}} g_{-r^{\prime \prime}}\left(-i \omega_{m}^{\prime \prime}\right) \operatorname{g}_{\varepsilon^{\prime \prime}+g}\left(i \omega_{m^{\prime \prime}}+i \Omega\right)=\frac{1}{B} \sum_{\substack{i \omega \\
x}} \frac{1}{-i \omega_{m}-\xi_{-}} \frac{1}{i \omega_{m}+i \Omega-\xi_{n+j}}= \\
& =\frac{1}{B} \sum\left(\frac{1}{-i \omega_{m}-\xi_{-\Omega}}+\frac{1}{i \omega_{m}+i \Omega-\xi_{n+j}}\right) \frac{1}{i \Omega-\varphi-y}=\sum \frac{f\left(\xi_{n+j}\right)-f\left(-\xi_{-\Omega}\right)}{1-f(\xi-\infty)} \\
& B_{f}(i \Omega)=-\sum_{2} \frac{1-f\left(\varphi_{-2}\right)-f\left(\varphi_{\Omega+g}\right)}{i \Omega-\varphi_{2+y}-\varphi_{-2}} *
\end{aligned}
$$

Let's essume inversion symunetry $\xi_{-r}=\zeta_{2}$

$$
B_{g \rightarrow 0}(i \Omega)=-\sum_{2} \frac{1-2 f\left(\varphi_{k}\right)}{i \Omega-2 \varphi_{2}}=-\int d \varepsilon D(\varepsilon) \frac{1-2 f(\varepsilon)}{i \Omega-2 \varepsilon}
$$

Here we introduce dewity of stotes, i.e.,

$$
\begin{aligned}
& D(\varepsilon)=\sum_{r} \delta\left(\varepsilon-\varepsilon_{2}\right)
\end{aligned}
$$

Betfer approtimation

Finally $\quad \Gamma=\frac{g}{1-g D_{0} \ln \frac{\omega_{D}}{T}}$
$B_{f=0}(\Omega=0) \approx D(0) \int_{T}^{\omega_{D}} \frac{d \varepsilon}{\varepsilon}=D(0) \ln \frac{\omega_{A}}{T}$ ω_{D} is the evengy up to whin'h interation is attrochive.

Note the rign is ruch thot there is a pole in Γ ot $T_{\text {a }}$
In RPA $W=\frac{V_{0}}{1-V_{g} P_{g}}$ hut $P_{g \sim 0}(\Omega \sim 0)<0$ hence no imstalidity only at $\Omega \gg \rho P_{f}>0$ and whe get plarmon.

Conchrion: We have special temperature $1=g D_{0} \ln \frac{\omega_{D}}{T_{C}}$ and $T_{C}=\omega_{D} e^{-\frac{1}{f D_{0}}}$ at which effective interaction between electrons is diverging!
-r. $2 \uparrow \longrightarrow\}\left\{\right.$ interaction inglinitly song at T_{c} !
Since we expect a phase transition, we can not continue perturbation occros the boundary. We need to set up perturbation around a different mean field state, which is BCS mean field state. The lowest order perturbation gives Migdal-Elliashberg E_{g}, which ore state of the ant E_{f}. for conventional superconductors. But first wee need new mean field state.

BCS Theory as a mean field theory
We consider only the part of the interaction which gives six to diverging interaction (for simplicity), repulsion gie independent, i.., static and local.

Neigety different hut egaindent chic of momenta
consider neon filed decamping of interaction
 This decoupling in perticle-partidechonnal nusully vanishes. However we are mot considering nominal state.

Let's consider many holy ground state wave function $|\Omega\rangle$, for which me have nonzers expectation value

$$
\begin{aligned}
& \Delta=\frac{q}{V} \sum_{z}\langle\Omega| C_{-z \downarrow} C_{2 \uparrow}|\Omega\rangle \text { and consegmently } \\
& \Delta^{+}=\frac{g}{V} \sum_{z}\langle\Omega| C_{2 \uparrow}^{+} C_{-z \downarrow}^{+}|\Omega\rangle
\end{aligned}
$$

For now this is purely mathematical comideration. Not clear if it is stable. A plays the role of the order parameter, which cleanly vanishes in nomad state, and if nonusers below T_{C} gives new ground state.

BCS Homiltamien only keeps $f=0$ part of the interaction, which is relevant in the equilibrium and I being nonzero only in the intawal $-\omega_{D}<\varepsilon_{E}<\omega_{D}$ where $\varepsilon_{E}=\frac{r^{2}}{2 m}-\frac{r_{E}^{2}}{2 m}$

$$
H=\sum_{2} \varepsilon_{2} C_{2 s}^{+} C_{2 s}-\frac{g}{W} \sum_{\substack{2,2^{\prime} \\ s}} C_{2}+C_{-2 \downarrow}^{+} C_{-2^{\prime} \downarrow} C_{2 \uparrow \uparrow}
$$

then $H^{M F}=\sum_{2} \varepsilon_{2} C_{2 s}^{+} C_{2 s}-\sum_{2} \Delta^{+} C_{-k \downarrow} C_{2 \uparrow}+C_{2 \uparrow}^{+} C_{-2 \downarrow}^{+} \Delta$

$$
=\sum_{z}(\underbrace{C_{2 \uparrow}^{+}, C_{-2 \downarrow}})\left(\begin{array}{lll}
\varepsilon_{2} & 1 & -\Delta \\
-\Delta^{+} & 1 & -\varepsilon_{-r}
\end{array}\right)\binom{C_{2 \uparrow}}{C_{-2 \downarrow}^{+}}+\varepsilon_{-r}
$$

Bugalinhov HamiCtunien has a form of quadratic Hamictomion, hence sobable

$$
H^{M F}=\sum_{2} \psi_{r}+H_{r} \psi_{r}+\operatorname{con} \alpha
$$

What are commutation relations of ψ ?

$$
\left[\psi_{2}, \psi_{2}^{+}\right]_{+}=\left[\binom{c_{2 \uparrow}}{C_{-2 \downarrow}^{+}},\left(C_{2 \uparrow}^{+}, c_{-2 \downarrow}\right)\right]_{+}=\left(\begin{array}{l}
{\left[c_{2 \uparrow,} c_{21}^{+}\right]_{+},\left[\begin{array}{cc}
c_{2 \uparrow}, & \left.c_{-2 \downarrow}\right]_{+} \\
{\left[c_{-2 \downarrow 1}^{+}\right.} & \left.c_{2 \uparrow}^{+}\right]_{+},
\end{array} c_{-2 \downarrow}^{+}, c_{-2 \downarrow+}\right]}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

hence ψ_{E} behave line nomad femiomic operators.
Diogomalization $\phi_{j}=u_{j} \psi_{j}$ with $u_{f} u_{f}^{+}=1$, hence unitary tromsformotion

Compare that with bosonic problem for mognons in AF M:

$$
\phi_{f}=u_{f} \psi_{f} \quad u_{j} z_{3} u_{f}^{+}=z_{3}
$$

for fermions

$$
\phi_{f}=u_{j} \psi_{j} \quad u_{f} u_{f}^{+}=1
$$

$$
H^{M F}=\sum_{r} \psi_{r}+H_{r} \psi_{r}=\sum_{r} \phi_{r}^{+} \underbrace{u_{r} H_{r} u_{r}^{+}} \phi_{r}
$$

$$
\left.\begin{array}{rl}
\operatorname{Det}\left(\begin{array}{cc}
\varepsilon_{2}-\lambda_{2}, & -\Delta \\
-\Delta^{+}, & 1
\end{array}\right)=\varepsilon_{-r}-\lambda_{2}
\end{array}\right)=0 \quad-\left(\varepsilon_{2}-\lambda_{r}\right)\left(\varepsilon_{-2}+\lambda_{r}\right)-|\Delta|^{2}=0 \quad \begin{gathered}
\\
\\
\lambda_{r}^{2}-\varepsilon_{2}^{2}-|\Delta|^{2}=0 \\
\\
\\
\lambda_{r}= \pm \sqrt{\varepsilon_{2}^{2}+|\Delta|^{2}}
\end{gathered}
$$

To determine v_{r}, we note $\mu_{r} H_{2} U_{r}^{+}=\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & -\lambda_{r}\end{array}\right)$ with $\lambda_{r}=\sqrt{\varepsilon_{2}^{2}+|\Delta|^{2}}$ then $H_{r}=U_{2}^{+}\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & -\lambda_{2}\end{array}\right) U_{r}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
c, & \Delta \\
\Delta, & -c
\end{array}\right)\left(\begin{array}{cc}
\lambda & 0 \\
0 & -\lambda
\end{array}\right)\binom{c_{1}}{\Delta_{1}-c}=\left(\begin{array}{cc}
\varepsilon_{1} & -\Delta \\
-\Delta, & -\varepsilon
\end{array}\right) \\
& \binom{\left(c^{2}-\Delta^{2}\right) \lambda, 2 c \Delta \cdot \lambda}{2 c \Delta \cdot \lambda,-\left(c^{2}-\Delta^{2}\right) \lambda}=\binom{\varepsilon,-\Delta}{-\Delta,-\varepsilon} \text { hence } \cos ^{2} v_{\varepsilon}-\sin ^{2} v_{\varepsilon}=\frac{\varepsilon_{2}}{\sqrt{\varepsilon_{\varepsilon}^{2}+\Delta^{2}}}=\cos 2 v_{k}
\end{aligned}
$$

Solution $H^{M F}=\sum_{\varepsilon}\left(\phi_{r \uparrow}^{+} \phi_{-r \nu}\right)\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & -\lambda_{2}\end{array}\right)\binom{\phi_{2 \uparrow}}{\phi_{2}}+\varepsilon \quad 2 \cos v_{2} \sin v_{z}=-\frac{\Delta}{\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}}=\sin 2 v_{z}$

$$
\begin{aligned}
& H^{\mu F}=\sum_{r} \lambda_{2}\left(\phi_{2 \uparrow}^{+} \phi_{2 \uparrow}-\phi_{-2 \nu} \phi_{-2 \downarrow}^{+}\right)+\varepsilon_{2} \\
& H^{M F}=\sum_{\varepsilon} \lambda_{\varepsilon}\left(\phi_{2 \uparrow}^{+} \phi_{2 \uparrow}+\phi_{-2 \psi}^{+} \phi_{-\varepsilon \nu}\right)+\left(\varepsilon_{\varepsilon}-\lambda_{\varepsilon}\right) \\
& H^{M F}=\sum_{i s} \lambda_{2} \phi_{r s}^{+} \phi_{i s}+\sum_{n}\left(\varepsilon_{\varepsilon}-\lambda_{\varepsilon}\right)
\end{aligned}
$$

The ground state of $H^{" E}$ hamictomion is the vecuum state of ϕ_{z} operators, such that $\phi_{r_{i}}|\Omega\rangle=0$ for eng r, end hence $H^{\mu F}|\Omega\rangle=0$ and $\phi_{z_{i}}^{+}|\Omega\rangle$ creates excitations ont of vacuum stele.

The voccum state hence is
$|\Omega\rangle=\prod_{\pi} \phi_{2_{1}} \phi_{-2 v}$ ($\underbrace{\text { normal state } g . s .}\rangle$

Conreguently the ground state energy is

$$
\begin{aligned}
& H\left|\Omega_{B C S}\right\rangle=\sum_{i} \lambda_{\varepsilon} \phi_{2 S}^{+} \underbrace{\phi_{2 S} \prod_{2} \phi_{2_{\uparrow}} \phi_{-\varepsilon^{i}}}_{\|}\left|n_{f} s\right\rangle+\sum_{2}\left(\varepsilon_{2}-\lambda_{z}\right)\left|\Omega_{B C S}\right\rangle \\
& E_{0}=\langle\Omega
\end{aligned}
$$

$$
E_{0}=\left\langle\Omega_{B C S}\right| H\left|\Omega_{B C S}\right\rangle={ }^{11} \sum_{2} \varepsilon_{2}-\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}<0 \text { this stake is lower in envipy }
$$ then nounal state

Whose are the cooper pains?

$$
\begin{array}{ll}
\left|\Omega_{B C S}\right\rangle= & \prod_{|2|>s_{F}}\left(\cos v_{2}-\sin v_{2} C_{21}^{+} C_{-2 v}^{+}\right) \\
\cos v_{\varepsilon}=\sqrt{\frac{1}{2}\left(1+\frac{\varepsilon_{2}}{\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}}\right)} & \times \prod_{|2|\left\langle s_{4}\right.}\left(\sin v_{2}+\cos v_{2} C_{-2 v} c_{2 \uparrow}\right)|\operatorname{mgs}\rangle \\
\sin v_{2}=-\sqrt{\frac{1}{2}\left(1-\frac{\varepsilon_{2}}{\sqrt{\varepsilon_{2}+\Delta^{2}}}\right)} & \varepsilon_{2}\left\langle\varepsilon_{F}\right. \\
\left.\varepsilon_{2}\right\rangle E_{F} \\
& \cos v_{2}
\end{array}
$$

There an no cooper pain for from E_{F}, be rome didtuction between $C P$ and elector for from E_{F} are mon-existant: Only near E_{p} the districhion is visible and beech to gop opening.

$$
\begin{aligned}
& \prod_{2<r_{F}} C_{2 \downarrow}^{+} C_{2 \uparrow}^{+}|O\rangle \equiv|\mathrm{Mgs}\rangle \\
& \binom{\phi_{2 \uparrow}}{\phi_{-2 \psi}^{+}}=\binom{\cos v_{2}, \sin \theta_{\varepsilon}}{\sin v_{2,}-\cos \theta_{2}}\binom{C_{2 \eta}}{C_{-2 \downarrow}^{+}}=\binom{\cos v_{2} C_{2 \uparrow}+\sin \theta_{2} C_{-2 \iota}^{+}}{\sin \theta_{2} C_{2 \uparrow}-\cos \theta_{2} C_{2 \psi}^{+}}^{2<r_{1}} \\
& \phi_{-2 b}=\sin v_{2} C_{2 \uparrow}^{+}-\cos v_{2} C_{-2 \phi} \\
& \left.|\Omega\rangle=\prod_{2} \phi_{-2 v} \phi_{2 \uparrow} \mid \mathrm{mg} s\right)=\prod_{k}\left(\operatorname{\mu n} v_{2} c_{2 \uparrow}^{+}-\cos v_{2} C_{-2 \downarrow}\right)\left(\cos v_{2} C_{2 \uparrow}+\min v_{2} C_{-26}^{+}\right)|m g s\rangle
\end{aligned}
$$

stopped Deus 812022
are started with mean field ansate $\Delta=\frac{9}{V} \sum_{z}\langle\Omega| C_{-2 \downarrow} C_{2 \uparrow}|\Omega\rangle$ which we now need to verify is stable.
We derived before $\binom{\phi_{2 \uparrow}}{\phi_{-2 \downarrow}^{+}}=\binom{\cos \theta_{2} C_{2 \uparrow}+\sin \theta_{2} C_{-2 \iota}^{+}}{\sin \theta_{2} C_{2 \uparrow}-\cos \theta_{2} C_{-2 \downarrow}^{+}} \quad \begin{aligned} & C_{2 \uparrow}=\cos \theta_{2} \phi_{2 \uparrow}+\sin \theta_{2} \phi_{-2 \iota}^{+} \\ & C_{-2 \downarrow}^{+}=\sin \theta_{2} \phi_{2 \uparrow}-\cos \theta_{2} \phi_{-2 \iota}^{+} \\ & C_{-2 L}=\sin \theta_{2} \phi_{2 \uparrow}^{+}-\cos \theta_{2} \phi_{-r \downarrow}\end{aligned}$
It follows:

$$
\Delta=\frac{q}{V} \sum_{2}\left\langle\Omega_{B C S}\right| \underset{\substack{\prime \prime}}{\left(\sin _{2} \theta_{2} \phi_{2+}^{+}-\cos \theta_{2} \phi_{-\varepsilon \downarrow}\right)\left(\cos \theta_{2} \phi_{2 T}+\sin \theta_{2} \phi_{-q \downarrow}^{+}\right)\left|\Omega_{B C S}\right\rangle}
$$

finally $\Delta=-\frac{q}{r} \sum_{\varepsilon} \cos v_{2} \sin \theta_{z}\langle\underbrace{\left.\Omega_{B c s}\left|\phi_{-\varepsilon, L} \phi_{-\varepsilon_{i}}^{+}\right| \Omega_{B C s}\right\rangle}_{i}$

$$
\Delta=-\frac{g}{v} \sum_{\varepsilon} \frac{1}{2} \sin 2 v_{\varepsilon}=\frac{g}{2 V} \sum_{q} \frac{\Delta}{\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}}
$$

Recall:

$$
-\frac{\Delta}{\sqrt{\varepsilon_{n}^{2}+\Delta^{2}}}=\sin 2 v_{n}
$$

We arrived at BCS gop E_{g} : $\quad \Delta=\frac{q}{2 v} \sum_{2} \frac{\Delta}{\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}}$

$$
\begin{aligned}
& \Delta \approx \frac{g}{2} \int_{-\omega_{D}}^{\omega_{D}} D(\varepsilon) \frac{\Delta d \varepsilon}{\sqrt{\varepsilon^{2}+\Delta^{2}}} \approx \frac{g}{2} D(0) \Delta \int_{-\omega_{D / \Delta}}^{\omega_{D / \Delta}} \frac{d \mu}{\sqrt{\mu^{2}+1}} \\
& \int \frac{d u}{\sqrt{n^{2}+1}}=\operatorname{Ash}(\mu) \\
& 1=g D_{0} \operatorname{Ash}\left(\frac{\omega_{D}}{\Delta}\right) \Rightarrow \Delta=\frac{\omega_{D}}{\operatorname{sh}\left(\frac{1}{g D_{0}}\right)} \underset{f D_{0} \ll 1}{ } \frac{\omega_{D}}{\frac{1}{2} e^{\frac{1}{g D_{0}}}}=2 \omega_{D} e^{-\frac{1}{g D_{0}}}
\end{aligned}
$$

At $T=0$ the fop is $\Delta \approx 2 \omega_{\Delta} e^{-\frac{1}{f D_{0}}}$, the rems cole es the instability temperatime of the nona state.

Excitations in BCS state

- Mn terns of guosiparticle states ϕ_{2} ?

$$
\begin{gathered}
\tilde{G_{r}}=-\left\langle T_{T} \phi_{r s}(T) \phi_{r s}^{+}(0)\right\rangle \text { i Here } H_{B C s}=\sum_{z} \lambda_{r} \phi_{2 s}^{+} \phi_{2 s}-E_{0} \\
E_{0}=\sum_{2}\left(\lambda_{r}-\varepsilon_{2}\right)
\end{gathered}
$$

This is a non-interacting problem with solution $\widetilde{G}_{2}=\frac{1}{\omega-\lambda_{r}}$, bane spectrum is

there is a gap for excitations, i.e., no nero energy excitation that could destabilize the state.

$$
\begin{aligned}
& \widetilde{A}_{g}(\varepsilon)=-\frac{1}{\pi} M_{m} \tilde{G}_{2}=\delta\left(\varepsilon-\lambda_{z}\right) \\
& D(\omega)=\sum_{2} \widetilde{A}_{2}(\omega)=\sum_{2}\left(\omega-\lambda_{\varepsilon}\right)=\left.\int d \varepsilon D(\varepsilon) \delta\left(\omega-\sqrt{\varepsilon^{2}+\Delta^{2}}\right) \approx D(0) \frac{\sqrt{\varepsilon^{2}+\Delta^{2}}}{\varepsilon}\right|_{\omega=\sqrt{\varepsilon^{2}+\Delta^{2}}}=D(0) \frac{\omega}{\sqrt{\omega^{2}-\Delta^{2}}}
\end{aligned}
$$

Left for Homensir
Excitations in term of electrons (what ARPES meaner) (HW)

$$
\begin{aligned}
G_{k}(T) & =-\left\langle T_{T} \psi_{2}(T) \psi_{2}^{+}(0)\right\rangle=-\left\langle T_{T}\binom{C_{2 \uparrow}(T)}{C_{-2 \downarrow}^{+}(T)} \cdot\left(C_{2 \uparrow}^{+}(0), C_{-2 \downarrow}(0)\right)\right\rangle= \\
& =-\left(\begin{array}{ll}
\left\langle T_{T} C_{2 \uparrow}(T) C_{2 \uparrow}^{+}(0)\right\rangle & ,\left\langle C_{2 \uparrow}(T) C_{-2 \downarrow}(0)\right\rangle \\
\left\langle C_{-2 \downarrow}^{+}(T) C_{2 \uparrow}^{+}(0)\right\rangle & \left\langle C_{-2 \downarrow}^{+}(T) C_{-2 \downarrow}(0)\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
G_{2 \uparrow}(T) & 1 F_{2 k}(T) \\
F_{2}^{+}(T T) & 1-G_{-2 \downarrow}(-T)
\end{array}\right)
\end{aligned}
$$

We parted with $H_{B C S}=\sum_{\varepsilon} \psi_{\varepsilon}+\binom{\varepsilon_{\varepsilon},-\Delta}{-\Delta,-\varepsilon_{-2}} \psi_{r} \quad$ which is quadratic, hence

$$
\begin{aligned}
& G_{2}^{-1}=I\left(i \omega+j_{11}^{\mu}\right)-H_{B C S}=\left(\begin{array}{ccc}
i \omega & -\varepsilon_{2}, & \Delta \\
\Delta & , i \omega+\varepsilon_{-2}
\end{array}\right) \quad \text { and } \\
& C_{z_{2}}=\underbrace{\frac{1}{\left(\omega-\varepsilon_{z}\right)\left(i \omega+\varepsilon_{-2}\right)-\Delta^{2}}}\left(\begin{array}{cc}
i \omega+\varepsilon_{-z} & 1,-\Delta \\
-\Delta & , i \omega-\varepsilon_{2}
\end{array}\right) \\
& (i \omega)^{2}-\varepsilon_{2}^{2}-\Delta^{2} \\
& G_{2 \uparrow}(i \omega)=\frac{i \omega+\varepsilon_{2}}{(i \omega)^{2}-\left(\varepsilon_{\varepsilon}^{2}+\Delta^{2}\right)} ; \quad F_{r}(i \omega)=-\frac{\Delta}{(i \omega)^{2}-\left(\varepsilon_{2}^{2}+\Delta^{2}\right)} \\
& -G_{-2 \downarrow}(-i \omega)=\frac{i \omega-\varepsilon_{2}}{(i \omega)^{2}-\left(\varepsilon_{2}^{2}+\Delta^{2}\right)} \Rightarrow G_{2 \downarrow}(i \omega)=\frac{i \omega+\varepsilon_{2}}{(i \omega)^{2}-\left(\varepsilon_{2}^{2}+\Delta^{2}\right)} \\
& G_{r s}(i \omega)=\frac{\cos ^{2} \theta_{2}}{i \omega-\lambda_{2}}+\frac{\sin ^{2} \theta_{2}}{i \omega+\lambda_{2}} ; \text {; cur : } \frac{i \omega+\lambda_{x}\left(\widehat{\cos ^{3} \theta_{2}-\sin ^{2} \theta_{2}}\right)}{(i \omega)^{2}-\lambda_{2}^{2}} \\
& A_{r_{s}}(i \omega)=\cos ^{2} \theta_{2} \delta\left(\omega-x_{2}\right)+\sin ^{2} \theta_{2}\left(\omega+\lambda_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cos v_{\varepsilon}=\sqrt{\frac{1}{2}\left(1+\frac{\varepsilon_{2}}{\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}}\right)} \\
& \sin v_{2}=-\sqrt{\frac{1}{2}\left(1-\frac{\varepsilon_{2}}{\sqrt{\varepsilon_{2}^{2}+\Delta^{2}}}\right)}
\end{aligned}
$$

Superconductivity from the field integral
we mill add EM field through minimal coupling

$$
\begin{array}{cl}
\vec{p} \rightarrow \vec{p}-e \vec{A} ; & \vec{B}=\vec{\nabla} \times \vec{A} \\
\frac{\partial}{\partial T} \rightarrow \frac{2}{\partial T}+i e \phi ; & \vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t} \\
& \\
& \text { ide to immofimany time }
\end{array}
$$ interaction is laval

$$
\begin{aligned}
& V\left(\vec{r}-\vec{r}^{\prime}\right)=-\varphi \delta(\vec{v}-\vec{r}) \\
& \text { and constant }
\end{aligned}
$$

We check below that such coupling is gauge invariant, i, e., EM field gauge I wartonce trandates into phase invariance of ψ operators.

$$
S_{B C S}=\int_{0}^{3} d T \int^{3} d^{3}\left\{\psi_{s}^{+}(\vec{r}, T)\left[\frac{2}{\partial T}-\mu+\frac{(-i \vec{\nabla}-e \vec{A})^{2}}{2 m}+i e \phi\right] \psi_{s}(\vec{r}, T)-g \psi_{\uparrow}^{+}(\vec{r}, T) \psi_{\downarrow}^{+}(\vec{r}, T) \psi_{d}(\vec{r}, T) \psi_{\uparrow}(\vec{r}, T)\right\}
$$

changing phone to $\psi(\vec{r}, T)$:
if $\psi(\vec{r}, T) \rightarrow e^{i \theta(\vec{r}, T)} \psi(\vec{r}, T)$ then $(-i \vec{\nabla}-e \vec{A})^{2} e^{i \theta} \psi=$

If $\psi(\vec{r}, T)$ has different phase, we pet:

$$
\begin{aligned}
& (-i \vec{\nabla}-e \vec{A}) e^{i \vartheta}(-i i \vec{\nabla} \vartheta-i \vec{\nabla}-r \vec{A}) \psi \\
& (-i \vec{\nabla}-e \vec{A}) e^{i \vartheta}(-i \vec{\nabla} \vartheta-i \vec{\nabla}-r \vec{A}) \psi \\
& e^{i \vartheta}(-i \vec{\nabla}-e \vec{A}+\vec{\nabla} v)^{2} \psi
\end{aligned}
$$

$$
\psi+e^{-i v}\left[\vec{O}-\mu+\frac{(-i \vec{\nabla}-\vec{e} \vec{A})^{2}}{2 m}+i \varepsilon \phi\right] e^{i v} \psi \rightarrow \psi^{+}\left[\frac{\partial}{\partial r}+i \dot{v}-\mu+\frac{(-i \vec{\nabla}-e \vec{A}+\vec{\nabla} v)^{2}}{2 m}+i e \phi\right] \psi
$$

herne $\begin{aligned} & \vec{A} \rightarrow \vec{A}+\frac{\vec{\nabla} v}{e} \\ & \vec{\phi} \rightarrow \vec{\phi}-\frac{\dot{v}}{l}\end{aligned} \begin{aligned} & \text { sotiofied due to } \\ & \text { sponge invoriona. }\end{aligned}$
Conclusion: different ganges con be achieved by changing the phase of ψ field!?

We will wre Hubberd-Stretonowich, in which SC-stete mill be soddle point approximation, and fluctuctions will give Meissur effect.

Hublend-Stratowaich:

$$
\left.e^{g \int d \tau d^{1} r \psi_{r}^{+} \psi_{i}^{+} \psi_{\uparrow} \psi_{v}}=\int D\left[\Delta^{+}, \Delta\right] e^{-\int d r \int d^{3} r\left[\Delta^{+} \frac{1}{g} \Delta-\Delta^{+} \psi_{\nu} \psi_{\uparrow}-\Delta \psi_{\uparrow}^{+} \psi_{i}^{+}\right.}\right]
$$

chere ey shifteng variable $\left(\Delta^{+}-\psi_{\uparrow}^{+} \psi_{v}^{+} g\right) \frac{1}{g}\left(\Delta-\psi_{\Delta} \psi_{\uparrow} g\right)-g \psi_{\uparrow}^{+} \psi_{v}^{+} \psi_{\downarrow} \psi_{\uparrow}$

Dfine $\psi_{(r, r)}=\binom{\psi_{r}(\vec{r} r)}{\psi_{0}^{+}(r)}$

ripe clange in dexinotires beromu $\psi+$ has opposite phore to ψ.
D.finn $G^{-1}[\Delta](\vec{r}, i \omega)=\left(\begin{array}{cc}i \omega+\mu-\frac{P^{2}}{2 m-i e \phi}, & \Delta \\ \Delta^{+} & , i \omega-\mu+\frac{\rho^{2}}{2 m}+i e \phi\end{array}\right)$

Yuteyrating out ferniom:

$$
z=\int D\left[\Delta^{t}, \Delta\right] \int D[x+x] e^{-\int x^{+}\left(-G^{-1}\right) \psi-\int \frac{|\Delta|^{2}}{g}}=\operatorname{Det}\left(-G^{-1}\right) e^{-\int \frac{|\Delta|^{2}}{g}}=e^{\operatorname{Tr} \ln \left(-G^{-1}\right)-\int \frac{|\Delta|^{2}}{g}}
$$

Fonnolly:

$$
S=-\operatorname{Tr} \ln \left(-G^{-1}\right)+\int d r d^{-1} r \frac{\left.\Delta \Delta\right|^{2}}{g}
$$

Saddle point approximation correspond to new mean-field, ie., BCS state. Our guess for the solution is $\Delta=$ cont in \vec{r} and Tend hance $\Delta=\Delta^{+}$ sodille pain $\frac{\delta S}{\delta \Delta^{+}}=\frac{\delta^{\prime}}{\delta \Delta}\left(\int d^{i} d^{3} r \frac{|\Delta|^{2}}{g}-\operatorname{Tr}\left(G \frac{\delta G^{-1}}{\delta \Delta}\right)\right)$

$$
\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

$$
\frac{\Delta}{g}=G_{12} \quad \text { fins net } \vec{A}=\phi=0 \text { then } \Delta=\text { com st }
$$

$$
\frac{\Delta}{j}=\frac{1}{\beta v} \sum_{i \omega, k}\left[\left(\begin{array}{cc}
i \omega+\mu-\frac{z^{2}}{2 m}, & \Delta \\
\Delta^{+}, & i \omega-\mu+\frac{r^{2}}{2 m}
\end{array}\right)_{12}^{-1}=-\frac{1}{\beta V} \sum_{r, i \omega} \frac{\Delta}{(i \omega)^{2}-\left(\varepsilon_{2}^{2}+\Delta^{2}\right)}\right.
$$

$$
\left(\begin{array}{cc}
i \omega-\varepsilon_{2}, & \Delta \\
\Delta^{+}, & i \omega+\varepsilon_{2}
\end{array}\right)^{-1}=\frac{1}{(i \omega)^{2}-\varepsilon_{2}^{2}-\Delta^{2}}\left(\begin{array}{cc}
i \omega+\varepsilon_{2},-\Delta \\
-\Delta^{+}, & i \omega-\varepsilon_{e}
\end{array}\right)
$$

$$
\frac{1}{g}=-\frac{1}{B V} \sum_{\varepsilon, i \omega} \frac{1}{(i \omega)^{2}-\lambda_{z}^{2}}=-\frac{1}{B V} \sum_{\varepsilon, i \omega}\left(\frac{1}{i \omega-\lambda_{z}}-\frac{1}{i \omega+\lambda_{k}}\right) \frac{1}{2 \lambda_{2}}=\frac{1}{V} \sum_{k} \frac{\left[-f\left(\lambda_{k}\right)+f\left(-\lambda_{2}\right)\right]}{2 \lambda_{z}}
$$

BCS gop E_{g} ot finite temp: $\frac{1}{g}=\frac{1}{V} \sum_{z} \frac{1-2 f\left(\lambda_{n}\right)}{2 \sqrt{\varepsilon_{\varepsilon}^{2}+\Delta^{2}}}$

At $T=T_{c} \Delta \rightarrow 0$ end $x \rightarrow 0$ hence:

$$
\begin{aligned}
& \frac{1}{f D_{0}}=\int_{0}^{\frac{\omega_{D}}{2 T}} \frac{t h(x)}{x} d x=\int_{0}^{\Lambda} \frac{\operatorname{th}(x)}{x} d x+\int_{-\Lambda}^{\frac{\omega_{D}}{2 T_{P}}} \frac{t h(x)}{x} d x=\int_{0}^{\mu} \frac{t h(x)}{x}-\ln \Lambda+\ln \frac{\omega_{D}}{2 T_{c}}=\ln \frac{\omega_{D}}{T_{c}} \times 1.13 \\
& t h(\sum_{\ln (1.13 \times 2)}^{T_{t h}(\text { for } \Lambda \gg 1} \underbrace{0} \quad T_{c}=1.13 \omega_{\Delta} e^{-\frac{1}{g_{0}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{g}=\int_{-\omega_{D}}^{\omega_{D}} D(\varepsilon) \frac{\operatorname{th}^{\frac{\beta \lambda_{c}}{2}}}{\frac{1-2 f\left(\lambda_{\varepsilon}\right)}{2 \sqrt{\varepsilon^{2}+\Delta^{2}}} d \varepsilon} d \int_{-\omega_{D}}^{\omega_{D}} D(\varepsilon) \frac{t h\left(\beta \lambda_{\varepsilon}\right)}{2 \lambda_{\varepsilon}} d \varepsilon \approx \frac{2}{2} D_{0} \int_{0}^{\omega_{D}} \frac{\operatorname{th}\left(\beta \lambda_{\varepsilon}\right)}{\lambda_{\varepsilon}} d \varepsilon=D_{0} \int_{0}^{\omega_{D}} \frac{t h\left(\frac{\sqrt{\varepsilon^{2}+\Delta^{2}}}{2 \tau}\right)}{\sqrt{\varepsilon^{2}+\Delta^{2}}} d \varepsilon=D_{0}^{\frac{\omega_{D}}{2 T}} \frac{t h\left(\sqrt{x^{2}+k^{2}}\right)}{\sqrt{x^{2}+\mu^{2}}} d t \\
& \frac{\varepsilon}{2 T}=x \text { and } H=\left(\frac{\Delta}{2 T}\right)
\end{aligned}
$$

Homework

- gop dependence around T_{C} :
from.
previous
calculation

$$
-\frac{T_{c}-T}{T}=\int_{0}^{\frac{\omega_{p}}{2 T}}\left(\frac{t h\left(\sqrt{x^{2}+x^{2}}\right)}{\sqrt{x^{2}+x^{2}}}-\frac{t h(x)}{x}\right) d x
$$

Estimation: $\int_{0}^{\mu}(\underbrace{\left.\frac{t\left(\sqrt{x^{2}+x^{2}}\right)}{\sqrt{x^{2}+x^{2}}}-\frac{t h(x)}{x}\right)} d x+\int_{-\Omega}^{\frac{\omega_{p}}{2 T}}\left(\frac{1}{x^{2}+x^{2}}-\frac{1}{x}\right) d x$

$$
\begin{aligned}
& \int_{0}^{r}\left(-\frac{x^{2}}{3}+\frac{4 k^{2}}{15} x^{2}+\cdots\right) d x \\
& \frac{1}{x}\left(\left(1+\left(\frac{x}{x}\right)^{2}\right)^{-1}-1\right) \\
& \frac{1}{x}\left(-\frac{x^{2}}{2 x^{2}}+\frac{3}{\left.\frac{3}{3}\left(\frac{1}{x}\right)^{4}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{T_{c}-T}{T}=H^{2}(\underbrace{\frac{\Omega}{3}\left(1-\frac{4}{5} \Lambda^{2}+\cdots\right)+\frac{1}{h}\left(\frac{1}{\Lambda^{2}}-\left(\frac{2 \pi}{\omega_{0}}\right)^{2}\right)}_{\frac{1}{2}} \approx \frac{1}{2}\left(\frac{\Delta}{2 T}\right)^{2} \Rightarrow \Delta \pi \sqrt{8 T_{c}\left(T_{c}-T\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\triangle \text { et } T=0 \text { : } \\
& \Delta \text { at } T=0: \quad \frac{1}{2 T} \rightarrow \infty \quad \frac{1}{f D_{0}}=\int_{0}^{\frac{\omega_{D}}{2 T}} \frac{t h\left(\sqrt{x^{2}+\mu^{2}}\right)}{\sqrt{x^{2}+H^{2}}} d x \approx \int_{0}^{\frac{\omega_{0}}{2 T}} \frac{d x}{\sqrt{x^{2}+x^{2}}}=\left.\ln \left(x+\sqrt{x^{2}+H^{2}}\right)\right|_{0} ^{\frac{\omega_{0}}{2 T}}=\ln \left(\frac{\omega_{D}}{2 T}+\sqrt{\left(\frac{\omega_{0}}{2 T}\right)^{2}+\left(\frac{\Delta}{2 T}\right)^{2}}\right)-\ln \left(\frac{\Delta}{2 T}\right) \\
& e^{-\frac{1}{\delta D_{0}}}=\frac{\Delta_{0}}{\omega_{D}+\sqrt{\omega_{D}^{2}+\Delta^{2}}} \approx \frac{\Delta \omega_{0}}{2 \omega_{D}} \Rightarrow \Delta_{0}=2 \omega_{D} e^{-\frac{1}{\gamma_{0}}} \\
& \text { while } T_{c}=1.13 \omega_{D} e^{-\frac{1}{\delta_{0}}}
\end{aligned}
$$

hence $\frac{\Delta_{0}}{T_{c}}=\frac{2}{1.13}$ end $\frac{T_{c}}{\Lambda_{0}} \approx 0.57$

$$
\text { or } \frac{\Delta}{2 T_{c}} \sim 1
$$

We fimished saddle point, which gove us BCS equations.
We conld stundy fluctuations around soddle point (in the cbence of EM-fielod) aup could desine Geindzburg Lendon theong (give explicit meaning and rahes tos phenomenological coefficimp).
But we mill lure concontate on interaction of EM field mith superconductor, i.e., derine Meissmer effect.
There are tho types of fluctuctions of field Δ avound mean fielol salue of constent: $\quad \Delta=|\Delta| e^{i v}$

- functurations of the manguitu de $|\Delta|$
- functuations of the phase $v\left(\vec{r}_{1}, T\right)$

The batter is a soft mode (Goldstone mode), becanse it costs no energy.
The grounts state of a bulk suparonductor spontoneausly breass that symmetry and picss certeim phase (nonally enamadiv = 0) inside buls sepperconduton this is known as rifididy of the global phase of the condemate.
If the phore chouges in space, i,l., $\nabla v \neq 0$ then condensate is floming mith monzero supercurnent and B filld is nonsero. This con hoppen only on the surface.
We mill showr that there is a Golartone mode due to gange frecolon of the EM-field. Any phase conlol be pieket by the condensate in primciple.
We will integrate over this gange freedon V, and berame of that Goldstom mode the gange field \vec{A} mill ecguines a masstermp which expells maguatic fielb from the nerperconductor. This nechanizen is called Anderon-Itiogs mechonism.

Starting with general action in EM field:
Repetition of:

$$
S=\int_{0}^{3} \int_{0} d^{3} r\left(\psi_{\uparrow}^{+}, \psi_{\downarrow}\right)\binom{\frac{\partial}{\partial r}-\mu+\frac{(-i \vec{\nabla}-\ell \vec{A})^{2}}{2 m}+i \ell \phi,-\Delta_{0} e^{2 i v(\vec{r}, \tau)}}{-\Delta_{0}^{+} e^{-2 i v(\vec{r}, r)}, \frac{\partial}{\partial r}+\mu-\frac{(i \vec{v}-2 \vec{A})^{2}}{2 m}-i \ell \phi}\binom{\psi_{\uparrow}}{\psi_{\downarrow}^{+}}+\underbrace{\int_{0}^{3} d r \int_{0}^{3} d^{3} \frac{\left(\left.\Delta\right|^{2}\right.}{g}}_{-G^{-1} \Gamma \Delta T}
$$

We integrate out ψ fields, to obtain

$$
\begin{aligned}
& Z=\int D\left(\psi^{+} \nsim\right] e^{-\left(\psi^{+}\left(-G^{-1}\right) \psi\right.}=\operatorname{Det}\left(-G^{-1}\right)=e^{\operatorname{Tr} \ln \left(-G^{-1}\right)} \text { enence } \\
& S=-\operatorname{Tr} \ln \left(-G^{-1}[\Delta]\right)+\tilde{S}_{0}
\end{aligned}
$$

In edatition to phase fluctuation, we also hare massive fluctuation $\delta|\Delta|$ which are expensive and less important. So integral over Δ will be only over its phase v !
We intatuce uniting transformation $\hat{U}=\left(\begin{array}{cc}e^{-i v} & 0 \\ 0 & e^{i v}\end{array}\right)$ ant change G^{-1} with teris transformation, which cen not change action $\hat{U}\left(\begin{array}{cc}G_{11}^{-1} & G_{12}^{-1} \\ G_{21}^{-1} & G_{22}^{-1}\end{array}\right) U^{+}$
This is egnivelut of changing phase of $\psi_{s} \rightarrow \psi_{s} e^{i v}$, which does not change action and can be freely pied.
We next show that this unitary \hat{U} leads to action mithonth the phase $\Delta=\Delta_{0}$.

$$
\hat{U} \cdot\left(\begin{array}{ll}
G_{11}^{-1}, & G_{12}^{-1} \\
G_{21}^{\prime}, & G_{22}^{-1}
\end{array}\right) \cdot \hat{U}^{+}=\left(\begin{array}{cc}
e^{-i v} G_{11}^{-1} e^{i v}, & e^{-2 i v} G_{12}^{-1} \\
e^{2 i v} & G_{21}^{-1},
\end{array} e^{i v} G_{22}^{-1} e^{-i v}\right)
$$

$$
\begin{aligned}
& \text { - } e^{-2 i v} G_{12}^{-1}=-\Delta_{0} \\
& \text { - } e^{-i v} G_{11}^{-i} e^{i v}=e^{-i v}\left(\frac{\partial}{\partial T}-\gamma+\left(-\frac{-\vec{\sigma}-\varepsilon \vec{A}}{2 m}\right)^{2}+i e \phi\right) e^{i v}= \\
& =e^{-i v} e^{i v}\left(\frac{\partial}{\partial \gamma}+i \hat{v}-\gamma+\frac{(-\vec{\nabla}+(\vec{\nabla} \theta)-r \vec{A})^{2}}{2 m}+i e \phi\right) \\
& =\left(\frac{\partial}{\partial r}-\mu+\frac{(-\vec{\nabla}-\Omega \vec{A})^{2}}{2 m}+i e \phi\right)
\end{aligned}
$$

became we hove gauge freedom in choosing (\vec{A}, ϕ) and tren.femention $\left.\vec{A} \rightarrow \vec{A}+\frac{\vec{\nabla} v}{e} \right\rvert\,$ removes $\vec{\nabla} v$ and \dot{v}. $\vec{\phi} \rightarrow \vec{\phi}-\frac{\dot{v}}{\imath}$

We just proved that the phase $\Delta_{0} e^{2 i v}$ does not change action s and coots no energy, hence if is a Goldstone moot.

Since v con be chooser arbitrary, Δ con not be experimentally measurable quantity. Δ is not gauge independent guoudity, hence con not he measured.
While $v(r, T)$ can be orlitronily chooses by the condensates, the phase cen not change in space or time, ie., we hove a spontaneous symmetry breakup that picks one phase out of infine number of ponthlities (for example $v=0$).
We will show later that $S[v=0, \vec{A}]=e^{2} \int_{0}^{\beta} d \int_{0}^{3} d^{3}\left[D_{0}[\phi(\vec{r}, i)]^{2}+\frac{M_{S}}{2 m}[\vec{A}(\vec{r}, T)]^{2}\right]$ where D_{0} is $D(\omega=0)$ end M_{s} is suparfan'd tensity
It follows that under gange tramformation the action is

$$
S[v, \vec{A}]=e^{2} \int_{0}^{B} d i r \int d^{3} r\left[D_{0}\left(\phi+\frac{\dot{v}}{e}\right)^{2}+\frac{M_{s}}{2 m}\left(\vec{A}-\frac{\vec{\nabla} v}{e}\right)^{2}\right]
$$

hence variation of v in spore leads to finite \vec{A} field.'
Messier Effect v is arlitrory end is pent of Δ_{y}, hence $f D[\Delta]$ repuines integral over v and over ($\delta \Delta$). The latter is higher in energy and less impotent. Hence me mill integrate over v :
Free fill: $S^{0}=\int d^{3} r \int d, \frac{e^{2}}{2} B^{2}$ in our units $\left(\frac{B^{2}}{2 g^{0}}\right)$
total S:

$$
S[v]=e^{2} \beta \int d^{3} r\left[\frac{m_{s}}{2 m}(\vec{A}-\vec{\nabla} v)^{2}+\frac{1}{2}(\vec{\nabla} \times \vec{A})^{2}\right] \text { free fill }
$$

Fourier tremform

$$
S[v]=e^{2} \frac{\beta}{2} \sum_{j} \frac{m_{s}}{m}\left(\vec{A}_{f}-i \vec{g} v_{f}\right)\left(\vec{A}_{f}+i \vec{g} v_{g}\right)+\underbrace{i \overrightarrow{A_{j}}}_{g^{2} \vec{A}_{f} \cdot \vec{A}_{-j}-\left(\vec{g} \cdot \vec{A}_{j}\right)\left(\vec{g} \cdot \vec{A}_{g}\right)}(-i) \vec{g} \times \vec{A}_{g} \quad(\vec{e} \times \vec{l}) \cdot(\vec{c} \times \vec{d})=\vec{a} \cdot \vec{c} \vec{l} \cdot \vec{d}-\vec{a} \cdot \vec{d} \vec{l} \cdot \vec{a}
$$

$$
\begin{aligned}
& S[v]=e^{2} \frac{\beta}{2} \sum_{j} \frac{m_{s}}{m}\left[g^{2} v_{j} v_{-f}+i \vec{g}\left(\vec{A}_{f} v_{-j}-\vec{A}_{f} \cdot v_{f}\right)+\vec{A}_{f} \cdot \vec{A}_{f}\right]+g^{2} \vec{A}_{f} \cdot \dot{A}_{j}-\left(\vec{g} \cdot \vec{A}_{f}\right)\left(\vec{f} \cdot \vec{A}_{f}\right) \\
& g^{2}(\underbrace{\vec{A}_{j} \cdot \vec{A}_{g}-\left(\vec{e}_{g} \cdot \vec{A}_{g}\right)\left(\vec{e}_{g} \cdot \vec{A}_{f}\right)})=g^{2} \vec{A}_{g}^{+} \vec{A}_{-\vec{g}}^{\perp}
\end{aligned}
$$

define trenmerx com count $\vec{A}_{j}^{\perp} \equiv \vec{A}_{g}-\left(\vec{C}_{g} \cdot \vec{A}_{g}\right) \vec{C}_{g}$
To cony out gaurs integral:

$$
\begin{aligned}
& z=\int D[v] e^{-S[v]} ; \quad S \equiv v_{f} A v_{-f}-j_{j} v_{-f}-j_{j}^{+} v_{g} \quad \int D\left[v_{f,} v_{-j}\right] e^{-S}=\frac{\pi^{N}}{\operatorname{Det}(A)} e^{\vec{j}_{j}^{+} A^{-1} \vec{j}_{j}} \\
& \left.\begin{array}{l}
A=e^{2} \frac{m}{2} \frac{m_{c}}{m} g^{2} \cdot I \\
\vec{j}_{g}=e^{2} \frac{\Omega}{2} \frac{m_{s}}{m} i \vec{g}^{\prime} \cdot \vec{A}_{f}
\end{array}\right\} \quad j_{f}^{+} A^{-1} j_{f}=-i\left(\vec{j}_{f} \cdot \vec{A}_{-j}\right) \frac{1}{g^{2}} i\left(\vec{g}_{f} \cdot \vec{A}_{g}\right) e^{2} \frac{B}{2} \frac{M_{s}}{m} \\
& =\frac{\left(\vec{q}_{f} \cdot \vec{A}_{f}\right)\left(\vec{g}_{f} \cdot \vec{A}_{-f}\right)}{f^{2}} e^{2} \frac{\beta}{2} \frac{M_{s}}{m} \\
& S_{e f f}=e^{2} \frac{B}{2} \sum_{f}-\underbrace{\frac{m_{s}}{\left.\frac{(\vec{f}}{} \cdot \vec{A}_{f}\right)\left(\vec{f}^{2} \cdot \vec{A}_{-f}\right)}}_{\frac{m_{s}}{m} \vec{A}_{f}^{+} \cdot \vec{A}_{-g}^{\perp}}+\frac{M_{s}}{m} \vec{A}_{f} \vec{A}_{-g}+\underbrace{f^{2} A_{f}^{\perp} A_{f}^{\perp}}_{\text {free field }}=e^{2} \frac{B}{2} \sum_{f} \underbrace{\left(\frac{M_{s}}{m}+g^{2}\right.}) \vec{A}_{f}^{\perp} \cdot \vec{A}_{-g}^{\perp}
\end{aligned}
$$

In real apace: $S_{\text {eff }}=\frac{e^{2}}{2} \int_{0}^{B} \int_{0}^{3} d^{3} r \vec{A}(\vec{r})\left(\frac{M_{s}}{m}-\nabla^{2}\right) \vec{A}(\vec{r})$

The goldstone made v was integrated out and the gauge field \vec{A}_{f}, which was morales $\left(S \alpha g^{2} A_{f}\right)$ aconined a mas term $\left(S \alpha\left(f^{2}+\lambda\right) A_{f}\right)$.

Anderon-Higgs mechanism
Even long range $(g \rightarrow 0)$ compounst of the field are expensive \rightarrow staticfields expelled Saddle point:

$$
\begin{aligned}
& \frac{\delta S_{\text {ff }}}{\delta A(\vec{r})}=\left(\frac{m_{s}}{m}-\nabla^{2}\right) \vec{A}(\vec{r})=0 \quad \text { London } E_{y} . \\
& B(z)=B_{0} e^{-z / \lambda} \quad \frac{M_{s}}{m}=\frac{1}{\lambda^{2}} \text { and } \lambda=\sqrt{\frac{m}{M_{s}}}
\end{aligned}
$$

magnetic field does not penetrate into the $S C$ sowpl
current $\vec{f}=\frac{\delta S_{\text {eff }}}{\delta \vec{A}} ; \quad \vec{f}=e^{2}\left(\frac{m_{s}}{m}-\nabla^{2}\right) \vec{A}$ super comment free spore

Proof that current $\vec{j}=\frac{\sigma S}{5 \vec{A}}$

$$
\begin{aligned}
& S=S_{0}+\int \psi^{+} \frac{1}{2 m}(-i \vec{\nabla}-e \vec{A})^{2} \psi=S_{0}+ \int \psi^{+\frac{1}{2 m}}(-\nabla^{2}+i e(\underbrace{\vec{\nabla} \cdot \vec{A}+\vec{A} \cdot \vec{\nabla}})+e^{2} \vec{A} \cdot \vec{A}) \psi \\
& \int \psi^{+} \frac{1}{2 m}\left(-\nabla^{2}+i e \vec{A} \cdot \vec{\nabla}+e^{2} \vec{A} \cdot \vec{A}\right) \psi-\int\left(\vec{\nabla} \psi^{+}\right) \frac{i l}{2 m} \vec{A} \psi \\
&\frac{\zeta S}{\delta \vec{A}}=\psi^{+} \frac{1}{2 m}\left(i e \vec{A}+2 e^{2} \vec{A}\right) \psi-\frac{i e}{2 m}\left(\vec{\nabla} \psi^{+}\right) \psi=-\frac{i e}{2 m}[\underbrace{[(\vec{\nabla} \psi+}_{j \text { pore }}) \psi-\psi^{+} \vec{\nabla} \psi]+\frac{e^{2}}{m} \underbrace{\psi^{+}}_{\mu} \psi \vec{A}
\end{aligned}
$$

Inside superconductor there is mo \vec{B} field and no current \vec{f}
$\sum-$ Current on the surface in depth $\lambda=\sqrt{\frac{m}{M_{s}}}$
Why is thane no resistance? $\quad \vec{j}_{s}=e^{2} \frac{m_{s}}{\mathrm{~m}} \vec{A}$
$\frac{d \vec{j}_{s}}{d t}=e^{2} \frac{M_{s}}{m} \frac{d \vec{A}}{d t}=e^{2} \frac{M_{3}}{m} \vec{E}$ nonce current is orrounng in the presence of \vec{E} field.

Here we mil ret $v=0$ end derive the effective action

$$
\begin{aligned}
S[v=0, \vec{A}]= & \underbrace{}_{\text {this pert is interesting }}
\end{aligned}
$$

Lets split G^{-1} into three parts. (we tare into account $v=0$ and $\Delta_{0}^{+}=\Delta_{0}$)

$$
G^{-1}=\underbrace{-\frac{2}{j T} I+\left(\mu+\frac{\nabla^{2}}{2 m}\right) Z_{3}+\partial_{1} \cdot \Delta_{0}}_{G_{0}^{-1}}-\underbrace{i e \phi \partial_{3}-\frac{i e}{2 m}\left[\vec{\nabla}_{1} \vec{A}\right] I}_{x_{1}}-\underbrace{\frac{e^{2}}{2 m} \vec{A}^{2} Z_{3}}_{x_{2}}
$$

no EM field
linear infielols quadratic in fields

$$
\begin{aligned}
& S-\tilde{S}_{0}=-\operatorname{Tr} \ln \left(-G^{-1}[\Delta]\right)=-\operatorname{Tr} \ln (-G_{0}^{-1}\left(I-G_{0}\left(x_{1}+x_{2}\right)\right)=\underbrace{-\operatorname{Tr} \ln \left(-G_{0}^{-1}\right)}_{S_{00}}-\operatorname{Tr} \ln \left(I-G_{0}\left(x_{1}+x_{2}\right)\right) \\
& -\ln (1-x) \approx x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3} \\
& S-\underbrace{\widetilde{S}_{0}-S_{00}}_{S_{0}}=\operatorname{Tr}\left(G_{0}\left(x_{1}+x_{2}\right)\right)+\frac{1}{2} \operatorname{Tr}\left(G_{0}\left(x_{1}+x_{2}\right) G_{0}\left(x_{1}+x_{2}\right)\right)+\cdots= \\
& S_{0}=\operatorname{Tr}\left(G_{0} x_{1}\right)+\operatorname{Tr}\left(G_{0} x_{2}\right)+\frac{1}{2} \operatorname{Tr}\left(G_{0} x_{1} G_{0} x_{1}\right)+O\left(\left\{A_{1}^{2} \phi^{2}\right\}\right) \\
& G_{p_{1} p_{2}}^{0}=\left(i \omega_{2} I+\left[\left(\mu-\frac{p_{2}^{2}}{2 m}\right) \tau_{3}+\tau_{1} \cdot \Delta_{0}\right]\right)^{-1} \delta_{p_{1}-p_{2}} \delta_{\omega_{1}-\omega_{2}} \Rightarrow \delta_{p_{1} p_{2}} G_{p_{1}}^{0} \\
& \left(X_{1}\right)_{p_{1}, p_{2}}=\left(i e \phi 2_{3}+i \frac{e}{2 m}\left\{\overrightarrow{v_{1}} \vec{A}\right\} \cdot I\right)_{p_{1} p_{2}}=i e \phi_{p_{2}-p_{1}} Z_{3}+\frac{i \ell}{2 m} i\left(\vec{p}_{p}+\vec{p}_{2} \cdot \vec{A}_{\vec{p}_{1}-\vec{p}_{1}} \cdot I=i e \phi_{\vec{p}_{2}-\vec{p}_{1}} Z_{3}-\frac{\ell}{2 m}\left(\vec{p}_{1}+\vec{p}_{2}\right) \vec{A}_{p_{1}-\vec{p}_{1}} \cdot I\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(G_{0} X_{1}\right)=\sum_{p_{1}} \operatorname{Tr}\left(G_{02 p_{1} p_{1}} X_{1} p_{1} p_{1}\right)=\operatorname{Tr}_{2_{2}}\left(\frac{1}{\beta} \sum_{i \omega_{1} p} G_{0 p}(i \omega)\left[i e \phi_{f=0} \partial_{3}-\frac{2}{2 m} \vec{p} A_{f=0} \cdot I\right]\right. \\
& \frac{1}{B V} \sum_{i \omega_{1} p} \operatorname{Tr}(G_{o p} \text { (in) }(i e \phi_{f=0} 2_{3}-\underbrace{\frac{\ell}{2 m} \vec{P} \vec{A}_{f=0}}_{\text {odd wm } \vec{p}} . I)) \\
& =\left(\frac{1}{\beta v} \sum_{i \omega_{1 p}}\left[G_{o p}(i \omega)\right]_{11}-\left[G_{o p}(i \omega)\right]_{22}\right) \text {, ie } \phi_{\rho=0} \\
& (\frac{1}{V} \sum_{p}[\underbrace{G_{0 p}\left(T=0^{-}\right)}]_{11}-\left[G_{o p}\left(T=0^{-}\right)\right]_{2 L}) ; i e \phi_{g=0} \\
& \frac{1}{v} \sum_{p}\left\langle\psi_{p r}^{+} \psi_{p p}\right\rangle-\left\langle\psi_{\nu p} \psi_{\nu p}^{+}\right\rangle \\
& N_{1}+N_{\iota}
\end{aligned}
$$

$\operatorname{Tr}\left(G_{0} \cdot X_{1}\right)=$ ie $M_{t+t} \cdot \phi_{\rho=0}=$ ie $\int d^{3} r M(\vec{r}) \phi(\vec{r}) \quad$-electrostatic potential of electrons in $E \cdot$ filed The ion charge should give equal and opposite constant which should concalthis term. Hence neglect.

$$
\begin{aligned}
& \frac{1}{2} \operatorname{tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=\frac{1}{2} \operatorname{Tr}_{2 \times 2}\left(G_{p_{1}\left(i w_{1}\right)}^{\substack{p_{1}-p-\frac{-1}{2}}} X_{1 p_{1} p_{2}} G_{p_{2}}^{\substack{p_{2}=p+\frac{p}{2}}}\left(i w_{2}\right) X_{1 p_{2} p_{1}}\right)= \\
& =\frac{1}{2} \operatorname{Tr}_{2 \times v}\left(G_{p-\frac{-2}{2}}^{0}\left(i e \phi_{g} \partial_{3}-\frac{e}{m} \cdot \vec{p} \cdot \vec{A}_{g} \cdot I\right) G_{p+\frac{g}{2}}^{0}\left(i e \phi_{j} \tau_{3}-\frac{e}{m} \vec{p} \cdot \vec{A}_{j} \cdot \cdot I\right)\right)= \\
& =\frac{1}{2} \operatorname{Tr}\left(G_{p-\frac{1}{2}}^{0} Z_{3} G_{p+\frac{1}{2}}^{0} \cdot Z_{3}\right) \cdot\left(-e^{2} \phi_{f} \phi_{-j}\right)+\frac{1}{2} \operatorname{Tr}\left(C_{p-\frac{1}{2}}^{0} G_{p+\frac{1}{2}}^{0}\right)\left(\frac{e}{m}\right)^{2} \vec{p}^{2} \cdot \vec{A}_{g} \vec{p} \cdot \vec{A}_{-j}+\underbrace{\operatorname{Tr}\left(G_{p+\frac{2}{2}}^{0} Z_{3} G_{\vec{p}}^{0} \cdot I\right)}_{\text {even in } \vec{p}} i e \underbrace{\phi_{-j}\left(-\frac{e}{m}\right) \vec{p} \cdot \vec{A}_{f}}_{\text {ord in } \vec{p}} \rightarrow 0
\end{aligned}
$$

We are interested in the limit of small \vec{f} hence mus will approximate $G_{p \pm \pm}^{0} \approx G_{p}^{0}$

$$
\begin{aligned}
& \frac{1}{2} \operatorname{tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=-\frac{e^{2}}{2} \phi_{j} \phi_{-\alpha} \frac{1}{B} \sum_{i \omega 1}\left[\left(G_{p}^{11}(i \omega)\right)^{2}+\left(G_{p}^{22}(i \omega)\right)^{2}-2 G_{p}^{12}(i \omega) G_{p}^{21}(i \omega)\right] \\
& +\frac{e^{2}}{2 m^{2}} \sum_{\vec{p}} \underbrace{\left(\vec{p}_{j} \cdot \vec{A}_{f}\right)\left(\vec{p}^{2} \cdot \vec{A}_{-j}\right) \frac{1}{乃}}_{\vec{A}_{f} \cdot \vec{A}_{-j} \cdot \vec{p}^{2}} \sum_{i \omega}\left[\left(G_{p}^{\prime \prime}(i \omega)\right)^{2}+\left(G_{p}^{22}(i \omega)\right)^{2}+2 G_{p}^{\prime 2}(i \omega) G_{p}^{21}(i \omega)\right]
\end{aligned}
$$

This identity is satisfied for any notationally invariant $R\left(p^{2}\right)$:

$$
\sum_{\vec{p}}\left(\hat{p}^{\prime} \cdot \vec{A}_{f}\right)\left(\vec{p} \cdot \vec{A}_{g}\right) R\left(p^{2}\right)=\frac{1}{3} \vec{A}_{f} \cdot \vec{A}_{-f} \sum_{\vec{p}} p^{2} R\left(p^{2}\right)
$$

chase $A_{f} \| A_{g} \Rightarrow \int \underbrace{2 \pi \rho^{2} d \rho}_{\frac{2}{3}} \underbrace{\left.\int_{-1}^{1} d \omega \theta\right) \omega^{2} \theta} p^{2} A_{j}^{2} R\left(p^{2}\right)=\frac{1}{3} \int \pi \pi p^{2} d p p^{2} R\left(p^{2}\right) A_{g}^{2} /$

We previounly derived

$$
\begin{aligned}
& G_{2}(i \omega)=\left(\begin{array}{cc}
i \omega+\varepsilon_{2} & , \Delta \\
\Delta & , \\
i \omega-\varepsilon_{2}
\end{array}\right) \frac{1}{(i \omega)^{2}-\lambda_{2}^{2}}=\binom{\frac{\cos ^{2} v_{2}}{i \omega-\lambda_{2}}+\frac{\sin ^{2} \vartheta_{2}}{i \omega+\lambda_{2}}, \frac{\Delta}{2 \lambda}\left(\frac{1}{i \omega-\lambda}-\frac{1}{i \omega+\lambda}\right)}{\frac{\Delta}{2 \lambda}\left(\frac{1}{i \omega-\lambda}-\frac{1}{i \omega+\lambda}\right), \frac{\sin ^{2} v_{2}}{i \omega-\lambda_{2}}+\frac{\omega_{2}^{2} v_{2}}{i \omega+\lambda_{2}}} \\
& \left(G_{1}^{\prime \prime}\right)^{2}+\left(G^{22}\right)^{2}-2 G^{\prime 2} G^{21}=\frac{\left(i \omega+\varepsilon_{2}\right)^{2}+(i \omega-\varepsilon)^{2}-2 \Delta^{2}}{\left[(i \omega)^{2}-\lambda_{n}^{2}\right]^{2}}=2 \frac{(i \omega)^{2}+\varepsilon_{2}^{2}-\Delta^{2}}{\left[(i \omega)^{2}-\lambda_{2}^{2}\right]^{2}}=2 \frac{(i \omega)^{2}+\lambda_{2}^{2}-2 \Delta^{2}}{\left[(i \omega)^{2}-\lambda_{2}^{2}\right]^{2}} \\
& \left(G_{2}^{\prime \prime}\right)^{2}+\left(G^{22}\right)^{2}+2 G^{\prime 2} G^{21}=\frac{(i \omega+\varepsilon)^{2}+(i \omega-\varepsilon)^{2}+2 \Delta^{2}}{\left[(i \omega)^{2}-\lambda_{n}^{2}\right]^{2}}=2 \frac{(i \omega)^{2}+\varepsilon_{2}^{2}+\Delta^{2}}{\left[(i \omega)^{2}-\lambda_{2}^{2}\right]^{2}}=2 \frac{(i \omega)^{2}+\lambda_{2}^{2}}{\left[(i \omega)^{2}-\lambda_{2}^{2}\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \operatorname{tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=-\frac{e^{2}}{2} \phi_{f} \phi_{-j} \frac{1}{\beta} \sum_{i \omega, p}\left[2 \frac{(i \omega)^{2}+\lambda_{p}^{2}-2 \Delta^{2}}{\left[(i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}+\frac{e^{2}}{\left(2 \cdot m^{2}\right.} \vec{A}_{j} \vec{A}_{-\vec{f}} \sum_{\vec{p}} \frac{p^{2}}{\frac{1}{\beta}} \sum_{i \omega}\left(2 \frac{(i \omega)^{2}+\lambda_{p}^{2}}{\left[(i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}\right.\right. \\
& =-e^{2} \frac{1}{\beta} \sum_{i \omega, p} \frac{1}{\left[(i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}\left[\phi_{f} \phi_{f}\left((i \omega)^{2}+\lambda_{p}^{2}-2 \Delta^{2}\right)-\vec{A}_{f} \cdot \vec{A}_{j} \frac{p^{2}}{3^{2} / m^{2}}\left((i \omega)^{2}+\lambda_{p}^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\beta} \sum_{i \omega} \frac{1}{(i \omega)^{2}-\lambda_{p}^{2}}=\frac{1}{2 \lambda_{p}} \frac{1}{\beta} \sum_{i \omega}\left(\frac{1}{i \omega-\lambda_{p}}-\frac{1}{i \omega+\lambda_{p}}\right)=\frac{2 f\left(\lambda_{p}\right)-1}{2 \lambda_{p}} \text {; Notie: } \frac{d}{d \lambda_{p}}\left(\frac{1}{\beta} \sum_{i \omega} \frac{1}{(i \omega)^{2}-\lambda_{p}^{2}}\right)=\frac{1}{3} \sum_{i \omega} \frac{2 \lambda_{p}}{\left.(i \omega)^{2}-\lambda_{p}^{2}\right)^{2}}=\frac{f^{\prime}\left(\lambda_{p}\right)}{\lambda_{p}}-\frac{2 f\left(\lambda_{p}\right)-1}{2 \lambda_{p}^{2}} \\
& \frac{1}{B} \sum_{i \omega} \frac{(i \omega)^{2}+\lambda_{p}^{2}-2 \Delta^{2}}{\left((i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}=\frac{1}{\beta} \sum_{i \omega} \frac{(i \omega)^{2}-\lambda_{p}^{2}+2\left(\lambda_{p}^{2}-\Delta^{2}\right)}{\left[(\omega)^{2}-\lambda_{p}^{2}\right]^{2}}=\frac{1}{\beta} \sum_{i \omega} \frac{1}{(i \omega)^{2}-\lambda_{p}^{2}}+\frac{2\left(\lambda_{p}^{2}-\Delta^{2}\right)}{\left((i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}=\frac{2 f\left(\lambda_{p}\right)-1}{2 \lambda_{p}}+\frac{2\left(\lambda_{p}^{2}-\Delta^{2}\right)}{2 \lambda_{p}^{2}}\left[f^{\prime}\left(\lambda_{p}\right)-\frac{2 f\left(\lambda_{p}-1\right.}{2 \lambda_{p}}\right] \\
& \frac{1}{3} \sum_{i \omega} \frac{(i \omega)^{2}+\lambda_{p}^{2}-2 \Delta^{2}}{\left[(i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}=f^{\prime}\left(\lambda_{p}\right)\left(1-\frac{\Delta^{2}}{\lambda_{p}^{2}}\right)+\left[2 f\left(\lambda_{p}\right)-1\right] \frac{\Delta^{2}}{2 \lambda_{p}^{3}} \xrightarrow[{f^{\prime}\left(\sqrt{\xi_{p}^{2}+\Delta^{2}}\right) \approx} 0]{\text { for fimite } \Delta}-\frac{\Delta^{2}}{2 \lambda_{p}^{3}} \\
& f\left(\sqrt{\varepsilon_{p}^{2}+\Delta^{2}}\right) \approx 0 \\
& \frac{1}{\beta} \sum_{\text {iw }} \frac{(i \omega)^{2}+\lambda_{p}^{2}}{\left((i \omega)^{2}-\lambda_{p}^{2}\right]^{2}}=\frac{1}{\beta} \sum_{i \omega} \frac{1}{(i \omega)^{2}-\lambda_{p}^{2}}+\frac{2 \lambda_{p}^{2}}{\left((i \omega)^{2}-\lambda_{p}^{2}\right)^{2}}=\frac{2 f\left(\lambda_{p}\right)-1}{2 \lambda_{p}}+\frac{2 \lambda_{p}^{2}}{2 \lambda_{p}}\left[\frac{f^{\prime}\left(\lambda_{p}\right)}{\lambda_{p}}-\frac{2 f\left(\lambda_{p}\right)-1}{2 \lambda_{p}^{2}}\right]=f^{\prime}\left(\lambda_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(G_{0} X_{2}\right)+\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=e^{2} \varnothing_{\alpha} \phi_{-f} \sum_{p}+\frac{\Delta^{2}}{2 \lambda_{p}^{3}}+e^{2} A_{\dot{f}} A_{-\vec{j}}\left(\frac{m}{2 m}-\sum_{p} \frac{p^{2}}{3^{2} m^{2}} f^{\prime}\left(\lambda_{p}\right)\right) \\
& \sum_{p}+\frac{\Delta^{2}}{2 \lambda_{p}^{3}}=+\frac{1}{2} \int d \varepsilon D(\varepsilon) \frac{\Delta^{2}}{\left(\varepsilon^{2}+\Delta^{2}\right)^{3 / 2}} \approx+\frac{1}{2} D(0) \int_{-\infty}^{\infty} \frac{d q}{\left(x^{2}+1\right)^{3 / 2}}=+D(0) \\
& \frac{m}{2 m}+\sum_{p} \frac{p^{2}}{3 m^{2}} f^{\prime}\left(\lambda_{p}\right)=\frac{M}{2 m}+\sum_{p} \frac{2}{3 m}\left(\xi_{p}+\mu_{j}\right) \cdot f^{\prime}\left(\lambda_{p}\right)=\frac{m}{2 m}-\frac{2}{3 m} \frac{1}{2} \int_{\underset{\sim}{\sim}}^{\substack{0}} \underset{\sim}{D}(\varepsilon)(\varepsilon+\mu) \beta f\left(s \sqrt{\varepsilon^{2}+\Delta^{2}}\right) f\left(-s \sqrt{\varepsilon^{2}+\Delta^{2}}\right) d \varepsilon \\
& \frac{p^{2}}{2 m}-\mu=\xi_{p} \\
& f^{\prime}\left(\lambda_{p}\right)=-\beta f\left(\lambda_{p}\right) f\left(-\lambda_{p}\right) \\
& =\frac{m}{2 m}-\underbrace{\frac{\mu D(0)}{3 m}}_{2 \frac{m}{m}} \underbrace{\int d \varepsilon \beta f\left(\beta \sqrt{\varepsilon^{2}+\Delta^{2}}\right) f\left(-\Delta \sqrt{\varepsilon^{2}+\Delta^{2}}\right)}_{\alpha+T=0 \rightarrow 0} \\
& \text { at } T>T_{e} \rightarrow 1 \\
& =\frac{M}{2 m}(1-\int d \varepsilon \beta \underbrace{f\left(\beta \sqrt{\varepsilon^{2}+\Delta^{2}}\right) f\left(-\beta \sqrt{\varepsilon^{2}+\Delta^{2}}\right)}_{\text {ot } T=0 \rightarrow 0}) \equiv \frac{M_{s}}{2 m} \\
& \text { Chest relation between } D(0) \text { ant } M \text { : } \\
& \text { at } T=T_{c} \rightarrow 1
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{p}=\frac{p^{2}}{2 m} \\
& p=\sqrt{2 m \xi} \\
& \frac{m}{D(0)}=\frac{2}{3} \mu \Rightarrow \mu D(0)=\frac{3}{2} m \\
& d^{3} p=4 \pi\left(2 m \xi_{p}\right) \sqrt{2 m} \frac{d \xi_{p}}{2 \sqrt{\varepsilon_{p}}}=2 \pi(2 m)^{3 / 2} \sqrt{\varepsilon_{p}} d \varepsilon_{p} \\
& \operatorname{Tr}\left(G_{0} X_{2}\right)+\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{,}\right)=\sum_{j}\left(e^{2} D_{0} \varnothing_{f} \varnothing_{-f}+e^{2} \frac{m_{s}}{2 m} A_{\dot{f}} A_{-\vec{j}}\right) \\
& \text { We just proved } S[v=0, \vec{A}]=\operatorname{Tr} \ln \left(-G_{0}\right)+\operatorname{Tr}\left(\frac{|\Delta|^{2}}{g}\right)+e^{2} \int_{0}^{B} d r \int_{0}^{3} d^{3}\left[D_{0}[\phi(\vec{r}, i)]^{2}+\frac{M_{s}}{2 m}[\vec{A}(\vec{r}, T)]^{2}\right]
\end{aligned}
$$

Here we mant to derine that

$$
S[v=0, \vec{A}=0]=\operatorname{Tr} \ln \left(-G_{0}\right)+\operatorname{Tr}\left(\frac{|\Delta|^{2}}{g}\right) \approx\left(T-T_{0}\right)|\Delta|^{2}+c|\Delta|^{4}+\cdots
$$

$$
\begin{aligned}
& \operatorname{Tr} \ln \left(-G_{0}\right)=-\operatorname{Tr} \ln (-(\underbrace{\left.G_{0}(\Delta=0)\right]^{-1}}_{\substack{\text { Momal } \\
\text { state }}}+\underbrace{\left(\begin{array}{cc}
0 & \Delta \\
\Delta^{+} & 0
\end{array}\right)}_{\hat{\Delta}}))=\operatorname{Tr} \ln \left(-G_{00}\right)-\operatorname{Tr} \ln \left(1+G_{000} \hat{\Delta}\right) \\
& \begin{array}{cc}
\text { nonal } \\
\text { state } & \operatorname{Tr}\left(G_{000} \cdot \hat{\Delta}-\frac{1}{2}\left(G_{00} \hat{\Delta}\right)^{2}+\frac{1}{3}\left(G_{00} \cdot \hat{\Delta}\right)^{3}-\frac{1}{4}\left(G_{00} \cdot \hat{\Delta}\right)^{4}+\cdots\right) \\
\downarrow & \downarrow
\end{array}
\end{aligned}
$$

Here $G_{00}=\left(\begin{array}{cc}\frac{1}{i \omega-Y_{2}}, & 0 \\ 0, & \frac{1}{i \omega+\xi_{2}}\end{array}\right)$ and $\hat{\Delta}=\left(\begin{array}{cc}0, \Delta \\ \Delta^{+}, & 0\end{array}\right)$
becono Δ is of-diagol
G_{00} is diepond

$$
\begin{aligned}
& \operatorname{Tr} \ln \left(-G_{00}\right)=S_{00}+\sum_{n=1}^{\infty} \frac{1}{2 m} \operatorname{Tr}\left(G_{00} \cdot \hat{\Delta}\right)^{2 m}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left[\left(\begin{array}{cc}
G_{11} & 0 \\
0 & G_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & \Delta \\
\Delta^{+} & 0
\end{array}\right)\left(\begin{array}{cc}
G_{11} & 0 \\
0 & G_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & \Delta \\
\Delta^{+} & 0
\end{array}\right)\right]=G_{11} \Delta G_{22} \Delta^{+}+G_{22} \Delta^{+} G_{11} \Delta \\
& \operatorname{Tr}\left(\left(G_{00} \cdot \hat{\Delta}\right)^{2}\right)=\frac{1}{\beta^{2}} \sum_{\substack{i \omega_{1}, i \Omega, j}} \Delta_{g} \Delta_{-j}^{+} \frac{1}{i \omega-\varphi_{2}} \frac{1}{i \omega+i \Omega+\varphi_{x+f}}+\Delta_{g}^{+} \Delta_{j} \frac{1}{i \omega+\varphi_{2}} \frac{1}{i \omega+i \Omega-\varphi_{2+j}} \\
& \begin{array}{c}
=\frac{1}{\beta} \sum_{f^{\prime}, \Omega} \underbrace{\Delta_{g} \Delta_{i_{j}}^{+}}_{d} \frac{1}{\beta} \sum_{i \omega_{1}^{2}} \frac{1}{i \omega-\varphi_{2}} \frac{1}{i \omega+i, i \Omega+\varphi_{z+f}}+\frac{1}{i \omega+\varphi_{z}} \frac{1}{i \omega-i \Omega-\varphi_{2-g}} \\
{\left[f\left(\varphi_{z}\right)+f\left(\varphi_{z+y}\right)-1\right.}
\end{array} \\
& \underset{\substack{\text { external field } \\
\text { miturth } \\
\left|\Delta_{f}\right|^{2}=\left|\Delta_{-f}\right|^{2}}}{\underbrace{\frac{f\left(\xi_{k}\right)+f\left(\xi_{2+j}\right)-1}{i \Omega+\xi_{2}+\varphi_{k+j}}}_{-B_{f}(i r)}+f^{\leftrightarrow \leftrightarrow-f}]} \\
& =\frac{1}{\beta} \sum_{i, i f f}\left|\Delta_{f}\right|^{2} \cdot 2 B_{f}(i \Omega) \\
& S_{\text {eff }}=S_{0_{0}}+\frac{1}{\beta} \sum_{i, i g}\left|\Delta_{g}\right|^{2}\left(\frac{1}{g}-B_{f}(i \Omega)\right)+O\left(\Delta^{h}\right)=S_{00}+\sum_{j}|\Delta|^{2} \underbrace{D_{0}^{T_{0}}\left(T-T_{c}\right)}_{\frac{1}{2} r(T)}+c|\Delta|^{4}
\end{aligned}
$$ Ginaliblny Loudoer

Here we check what is $B_{f}(\Omega)$

$$
\begin{aligned}
& B_{f}(i \Omega)=\frac{1-f\left(\varphi_{2}\right)-f\left(\varphi_{2+y}\right)}{i \Omega+\varphi_{2}+\varphi_{2+g}} ; \sum_{\varepsilon} \delta\left(\omega-\varphi_{2}\right)=\int D(\varphi) d \xi
\end{aligned}
$$

Homework 4, 620 Many body

December 12, 2022

1) The excitations spectra of the superconductor: Calculate the excitations spectra of quasiparticles as well as the real electrons in the BCS state wave function.
In class we derived the BCS Hamiltonian

$$
H^{B C S}=\sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger}\left(\begin{array}{cc}
\varepsilon_{\mathbf{k}} & -\Delta \tag{1}\\
-\Delta & -\varepsilon_{-\mathbf{k}}
\end{array}\right) \Psi_{\mathbf{k}}+\varepsilon_{-\mathbf{k}}
$$

in which the $\Psi_{\mathbf{k}}$ spinor is

$$
\Psi_{\mathbf{k}}=\left(\begin{array}{c}
c \tag{2}\\
c_{\mathbf{k}, \uparrow} \\
c_{-\mathbf{k}, \downarrow}
\end{array}\right)
$$

The Hamiltonian is diagonalized with a unitary transformation in the form

$$
\hat{U}_{\mathbf{k}}=\left(\begin{array}{cc}
\cos \left(\theta_{\mathbf{k}}\right) & \sin \left(\theta_{\mathbf{k}}\right) \tag{3}\\
\sin \left(\theta_{\mathbf{k}}\right) & -\cos \left(\theta_{\mathbf{k}}\right)
\end{array}\right)
$$

where

$$
\begin{align*}
\cos \left(\theta_{\mathbf{k}}\right) & =\sqrt{\frac{1}{2}\left(1+\frac{\varepsilon_{\mathbf{k}}}{\sqrt{\varepsilon_{\mathbf{k}}+\Delta^{2}}}\right)} \tag{4}\\
\sin \left(\theta_{\mathbf{k}}\right) & =-\sqrt{\frac{1}{2}\left(1-\frac{\varepsilon_{\mathbf{k}}}{\sqrt{\varepsilon_{\mathbf{k}}+\Delta^{2}}}\right)} \tag{5}
\end{align*}
$$

and the quasiparticle spinors are

$$
\begin{equation*}
\binom{\Phi_{\mathbf{k}, \uparrow}}{\Phi_{-\mathbf{k}, \downarrow}^{\dagger}}=\hat{U}_{\mathbf{k}}\binom{c_{\mathbf{k}, \uparrow}}{c_{-\mathbf{k}, \downarrow}^{\dagger}} \tag{6}
\end{equation*}
$$

The diagonal BCS Hamiltonian has the form

$$
\begin{equation*}
H^{B C S}=\sum_{\mathbf{k}} \lambda_{\mathbf{k}} \Phi_{\mathbf{k}, s}^{\dagger} \Phi_{\mathbf{k}, s}-E_{0} \tag{7}
\end{equation*}
$$

with $E_{0}=\sum_{\mathbf{k}} \lambda_{\mathbf{k}}-\varepsilon_{\mathbf{k}}$ and $\lambda_{\mathbf{k}}=\sqrt{\varepsilon_{\mathbf{k}}^{2}+\Delta^{2}}$

- Show that the quasiparticle Green's function $\widetilde{G}_{\mathbf{k}}=-\left\langle T_{\tau} \Phi_{\mathbf{k}, s}(\tau) \Phi_{\mathbf{k}, s}^{\dagger}(0)\right\rangle$ has a gap with the size Δ. What is the spectral function corresponding to this Green's function? Show that the corresponding densities of states has the form $D(\omega) \approx$ $D_{0} \omega / \sqrt{\omega^{2}-\Delta^{2}}$, where D_{0} is density of states at the Fermi level of the normal state.
- Compute the physical Green's function (measured in ARPES)

$$
\begin{equation*}
G_{\mathbf{k}, s}=-\left\langle T_{\tau} c_{\mathbf{k}, s}(\tau) c_{\mathbf{k}, s}^{\dagger}(0)\right\rangle \tag{8}
\end{equation*}
$$

and its density of states. Show that the corresponding spectral function has the form

$$
\begin{equation*}
A_{\mathbf{k}, s}(\omega)=\cos ^{2} \theta_{\mathbf{k}} \delta\left(\omega-\lambda_{\mathbf{k}}\right)+\sin ^{2} \theta_{\mathbf{k}} \delta\left(\omega+\lambda_{\mathbf{k}}\right) \tag{9}
\end{equation*}
$$

Sketch the bands and their weight, and sketch the density of states.
2) In class we derived the BCS action, which takes the form

$$
S=\int_{0}^{\beta} d \tau \int d^{3} \mathbf{r} \Psi^{\dagger}(\mathbf{r})\left(\begin{array}{cc}
\frac{\partial}{\partial \tau}-\mu+\frac{(i \nabla+e \vec{A})^{2}}{2 m}+i e \phi & -\Delta \\
-\Delta^{\dagger} & \frac{\partial}{\partial \tau}+\mu-\frac{(i \nabla-e \vec{A})^{2}}{2 m}-i e \phi
\end{array}\right) \Psi(\mathbf{r})+s_{0}(10)
$$

where $s_{0}=\int_{0}^{\beta} d \tau \int d^{3} \mathbf{r} \frac{|\Delta|^{2}}{g}$
Show that the action can also be expressed by

$$
\begin{equation*}
S=s_{0}+\mathrm{Tr} \log (-G) \tag{11}
\end{equation*}
$$

where

$$
G^{-1}=\left(\begin{array}{cc}
i \omega_{n}+\mu-\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}-i e \phi, \Delta & \tag{12}\\
\Delta^{\dagger} & i \omega-\mu+\frac{(\mathbf{p}+e \mathbf{A})^{2}}{2 m}+i e \phi
\end{array}\right)
$$

Show that the transformation $U G^{-1} U^{\dagger}$, where U is

$$
U=\left(\begin{array}{cc}
e^{-i \theta} & 0 \tag{13}\\
0 & e^{i \theta}
\end{array}\right)
$$

leads to the following change of the quantities

$$
\begin{align*}
\Delta & \rightarrow e^{-2 i \theta} \Delta \tag{14}\\
\mathbf{A} & \rightarrow \mathbf{A}+\frac{1}{e} \nabla \theta \tag{15}\\
\phi & \rightarrow \phi-\frac{1}{e} \dot{\theta} \tag{16}
\end{align*}
$$

and otherwise the same form of the action. Argue that since this corresponds to the change of the EM gauge, the phase of Δ is arbitrary in BCS theory, and can always be changed. Moreover, the phase can not be experimentally measurable quantity.

In the absence of the EM field, derive the saddle point equations in field Δ, which are often written as $\Delta=g G_{12}$, and cam be expressed as

$$
\begin{equation*}
\frac{1}{g}=-\frac{1}{V \beta} \sum_{\mathbf{k}, n} \frac{1}{\left(i \omega_{n}\right)^{2}-\lambda_{\mathbf{k}}^{2}} \tag{17}
\end{equation*}
$$

Show that the same equation can also be expressed as

$$
\begin{equation*}
\frac{1}{g}=\frac{1}{V} \sum_{\mathbf{k}} \frac{1-2 f\left(\lambda_{\mathbf{k}}\right)}{2 \lambda_{\mathbf{k}}} \tag{18}
\end{equation*}
$$

and with D_{0} being the density of the normal state at the Fermi level, it can also be expressed as

$$
\begin{equation*}
\frac{1}{g} \approx D_{0} \int_{0}^{\frac{\omega_{D}}{2 T}} d x \frac{\tanh \left(\sqrt{x^{2}+\kappa^{2}}\right)}{\sqrt{x^{2}+\kappa^{2}}} \tag{19}
\end{equation*}
$$

where $x=\varepsilon /(2 T)$ and $\kappa=\Delta /(2 T)$.
Next, derive the critical temperature by taking the limit $\Delta \rightarrow 0(\kappa \rightarrow 0)$. Assuming that $\omega_{D} /(2 T) \gg 1$, break the integral into two parts $[0, \Lambda]$, and $\left[\Lambda, \frac{\omega}{2 T}\right]$. Here $\Lambda \gg 1$. In the second part set $\tanh (x)=1$, as x is large. Using numerical integration (in Mathematica or similar tool) verify that

$$
\begin{equation*}
\lim _{\Lambda \rightarrow \infty} \int_{0}^{\Lambda} d x \frac{\tanh (x)}{x}-\log (\Lambda) \approx \log (2 \times 1.13) \tag{20}
\end{equation*}
$$

Next, show that T_{c} is determined by

$$
\begin{equation*}
\frac{1}{g D_{0}} \approx \log (2 \times 1.13)+\log \left(\frac{\omega_{D}}{2 T_{c}}\right) \tag{21}
\end{equation*}
$$

and consequently

$$
T_{c} \approx 1.13 \omega_{D} e^{-1 /\left(g D_{0}\right)}
$$

Using Eq. 19 compute the size of the gap at $T=0$. Show that to the leading order in Δ / ω_{D} the gap size is

$$
\begin{equation*}
\Delta(T=0)=2 \omega_{D} e^{-1 /\left(g D_{0}\right)} \tag{22}
\end{equation*}
$$

Finally, show that within BCS there is universal ration $\Delta(T=0) /\left(2 T_{c}\right) \approx 1 / 1.13 \approx$ 0.88 .
3) Starting from action Eq. 10 derive the effective action for small EM field A, ϕ. Show that for a constant and time independent phase, the action takes the form

$$
\begin{equation*}
S_{e f f}=\operatorname{Tr} \log \left(-G_{A=0, \phi=0}\right)+\operatorname{Tr}\left(\frac{|\Delta|^{2}}{g}\right)+e^{2} \int_{0}^{\beta} d \tau \int d^{3} \mathbf{r}\left[D_{0}(\phi(\mathbf{r}, \tau))^{2}+\frac{n_{s}}{2 m}[\mathbf{A}(\mathbf{r}, \tau)]^{2}\right] \tag{23}
\end{equation*}
$$

Note that using EM gauge transformation, we arrive at an equivalent action

$$
\begin{equation*}
S_{e f f}=S_{0}+e^{2} \int_{0}^{\beta} d \tau \int d^{3} \mathbf{r}\left[D_{0}(\phi(\mathbf{r}, \tau)+\dot{\theta})^{2}+\frac{n_{s}}{2 m}[\mathbf{A}(\mathbf{r}, \tau)-\nabla \theta]^{2}\right] \tag{24}
\end{equation*}
$$

Below we summarize the steps to derive this effective action.
We start by splitting G^{-1} in Eq. 12 into $G_{A=0, \phi=0} \equiv G^{0}$ and terms linear and quadratic in EM-fields, i.e,

$$
G^{-1}=\left(G^{0}\right)^{-1}-X_{1}-X_{2}
$$

where

$$
\begin{align*}
X_{1} & =i e \phi \sigma_{3}+\frac{i e}{2 m}[\nabla, A]_{+} I \tag{25}\\
X_{2} & =\frac{e^{2}}{2 m} \mathbf{A}^{2} \sigma_{3} \tag{26}
\end{align*}
$$

and σ_{3}, σ_{1} are Pauli matrices. Show that action 11 can then be expressed as

$$
\begin{array}{r}
S=s_{0}+\operatorname{Tr} \log \left(-G^{0}\right)-\operatorname{Tr} \log \left(I-G^{0}\left(X_{1}+X_{2}\right)\right) \\
\approx S_{0}+\operatorname{Tr}\left(G^{0} X_{1}\right)+\operatorname{Tr}\left(G^{0} X_{2}\right)+\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)+O\left(X^{3}\right) \tag{28}
\end{array}
$$

where $S_{0}=s_{0}+\operatorname{Tr} \log \left(-G^{0}\right)$ (which vanishes at T_{c}), and the second term, which is linear in fields, while third and fourth are quadratic.
Next show that the form of G^{0} is

$$
\begin{equation*}
G_{\mathbf{p} n, \mathbf{p}^{\prime} n^{\prime}}^{0}=\delta_{\mathbf{p}, \mathbf{p}^{\prime}} \delta_{n n^{\prime}}\left(i \omega_{n} I-\left(\frac{p^{2}}{2 m}-\mu\right) \sigma_{3}+\Delta \sigma_{1}\right)^{-1} \tag{29}
\end{equation*}
$$

where the inverse is in the 2×2 space only, while G^{0} is diagonal in frequency\& momentum space. We will use $(\mathbf{p}, n)=p$ for short notation. Similarly, show that X_{1} is

$$
\begin{equation*}
\left(X_{1}\right)_{p_{1}, p_{2}}=\left(i e \phi \sigma_{3}+\frac{i e}{2 m}[\nabla, A]_{+} I\right)_{p_{1}, p_{2}}=i e \phi_{p_{2}-p_{1}} \sigma_{3}-\frac{e}{2 m}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \mathbf{A}_{p_{2}-p_{1}} \tag{30}
\end{equation*}
$$

Show that

$$
\operatorname{Tr}\left(G^{0} X_{1}\right)=\frac{1}{\beta} \sum_{\omega_{n}, \mathbf{p}} \operatorname{Tr}_{2 \times 2}\left(G_{\mathbf{p}}^{0}\left(i \omega_{n}\right)\left[i e \phi_{\mathbf{q}=0} \sigma_{3}-\frac{e}{m} \mathbf{p} \mathbf{A}_{\mathbf{q}=0}\right]\right)
$$

Argue that the second term vanishes when inversion symmetry is present, as it is odd in \mathbf{p} (with $G_{\mathbf{p}}^{0}$ even function). The first term than becomes nie $\phi_{\mathbf{q}=0, \omega=0}$ (n is total density), which describes the electron density in uniform electric field, which should cancel with the action between negative ions and the external field.
Next show that

$$
\operatorname{Tr}\left(G^{0} X_{2}\right)=\frac{e^{2}}{2 m} \frac{1}{\beta} \sum_{\omega_{n}, \mathbf{p}} \operatorname{Tr}_{2 \times 2}\left(G_{\mathbf{p}}^{0}\left(i \omega_{n}\right) \mathbf{A}_{q=0}^{2} \sigma_{3}\right)=\frac{e^{2}}{2 m} n \sum_{\mathbf{q}} \mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}}
$$

is standard diamagnetic term, which will be used later.

Finally, we address the term $\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)$. We find

$$
\begin{array}{r}
\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=\frac{1}{2} \sum_{p_{1}, p_{2}} \operatorname{Tr}_{2 \times 2}\left(G_{p_{1}}^{0}\left(X_{1}\right)_{p_{1}, p_{2}} G_{p_{2}}^{0}\left(X_{1}\right)_{p_{2}, p_{1}}\right) \\
\frac{1}{2} \sum_{p, q} \operatorname{Tr}_{2 \times 2}\left(G_{p-q / 2}^{0}\left(X_{1}\right)_{p-q / 2, p+q / 2} G_{p+q / 2}^{0}\left(X_{1}\right)_{p+q / 2, p-q / 2}\right) \\
=\frac{1}{2} \sum_{p, q} \operatorname{Tr}_{2 \times 2}\left(G_{p-q / 2}^{0}\left(i e \phi_{q} \sigma_{3}-\frac{e}{m} \mathbf{p A}_{\mathbf{q}}\right) G_{p+q / 2}^{0}\left(i e \phi_{-q} \sigma_{3}-\frac{e}{m} \mathbf{p} \mathbf{A}_{-\mathbf{q}}\right)\right) \\
=\frac{1}{2} \sum_{p, q}\left(-e^{2} \phi_{\mathbf{q}} \phi_{-\mathbf{q}} \operatorname{Tr}_{2 \times 2}\left(G_{p-q / 2}^{0} \sigma_{3} G_{p+q / 2}^{0} \sigma_{3}\right)+\frac{e^{2}}{m^{2}}\left(\mathbf{p} \mathbf{A}_{\mathbf{q}}\right)\left(\mathbf{p} \mathbf{A}_{-\mathbf{q}}\right) \operatorname{Tr}_{2 \times 2}\left(G_{p-q / 2}^{0} G_{p+q / 2}^{0}\right)\right) \tag{34}
\end{array}
$$

In the last line we dropped the cross-terms, which are odd in \mathbf{p} and vanish.
For any rotationally invariant function $R\left(\mathbf{p}^{2}\right)$, the following identity is satisfied

$$
\begin{equation*}
\sum_{\mathbf{p}}\left(\mathbf{p} \mathbf{A}_{\mathbf{q}}\right)\left(\mathbf{p} \mathbf{A}_{-\mathbf{q}}\right) R\left(\mathbf{p}^{2}\right)=\mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}} \sum_{\mathbf{p}} \frac{\mathbf{p}^{2}}{3} R\left(\mathbf{p}^{2}\right) \tag{35}
\end{equation*}
$$

We are interested in slowly varying fields (small q), hence $p \pm q / 2 \approx p$. We therefore arrive at

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=\frac{e^{2}}{2} \sum_{p, q}\left(-\phi_{\mathbf{q}} \phi_{-\mathbf{q}} \operatorname{Tr}_{2 \times 2}\left(G_{p}^{0} \sigma_{3} G_{p}^{0} \sigma_{3}\right)+\mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}} \frac{\mathbf{p}^{2}}{3 m^{2}} \operatorname{Tr}_{2 \times 2}\left(G_{p}^{0} G_{p}^{0}\right)\right) \tag{36}
\end{equation*}
$$

Next, show that

$$
\begin{align*}
& \operatorname{Tr}_{2 \times 2}\left(G_{p}^{0} \sigma_{3} G_{p}^{0} \sigma_{3}\right)=2 \frac{\left(i \omega_{n}\right)^{2}+\lambda_{\mathbf{p}}^{2}-2 \Delta^{2}}{\left(\left(i \omega_{n}\right)^{2}-\lambda_{\mathbf{p}}^{2}\right)^{2}} \tag{37}\\
& \operatorname{Tr}_{2 \times 2}\left(G_{p}^{0} G_{p}^{0}\right)=2 \frac{\left(i \omega_{n}\right)^{2}+\lambda_{\mathbf{p}}^{2}}{\left(\left(i \omega_{n}\right)^{2}-\lambda_{\mathbf{p}}^{2}\right)^{2}} \tag{38}
\end{align*}
$$

Next, carry out the frequency summations, and show that

$$
\begin{align*}
& \frac{1}{\beta} \sum_{\omega_{n}} \frac{\left(i \omega_{n}\right)^{2}+\lambda_{\mathbf{p}}^{2}-2 \Delta^{2}}{\left(\left(i \omega_{n}\right)^{2}-\lambda_{\mathbf{p}}^{2}\right)^{2}}=f^{\prime}\left(\lambda_{\mathbf{p}}\right)\left(1-\frac{\Delta^{2}}{\lambda_{\mathbf{p}}^{2}}\right)+\left(2 f\left(\lambda_{\mathbf{p}}\right)-1\right) \frac{\Delta^{2}}{2 \lambda_{\mathbf{p}}^{3}} \approx-\frac{\Delta^{2}}{2 \lambda_{\mathbf{p}}^{3}} \tag{39}\\
& \frac{1}{\beta} \sum_{\omega_{n}} \frac{\left(i \omega_{n}\right)^{2}+\lambda_{\mathbf{p}}^{2}}{\left(\left(i \omega_{n}\right)^{2}-\lambda_{\mathbf{p}}^{2}\right)^{2}}=f^{\prime}\left(\lambda_{\mathbf{p}}\right) \tag{40}
\end{align*}
$$

Here $f^{\prime}\left(\lambda_{\mathbf{p}}\right)=d f\left(\lambda_{\mathbf{p}}\right) / d \lambda_{\mathbf{p}}$ and we took only the leading terms at low temperature.
Combining all we learned so far, we get

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=e^{2} \sum_{q, \mathbf{p}}\left(\phi_{\mathbf{q}} \phi_{-\mathbf{q}}\left(\frac{\Delta^{2}}{2 \lambda_{\mathbf{p}}^{3}}\right)+\mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}} \frac{\mathbf{p}^{2}}{3 m^{2}} f^{\prime}\left(\lambda_{\mathbf{p}}\right)\right) \tag{41}
\end{equation*}
$$

Next we combine this result with the diamagnetic term, derived before, and we obtain

$$
\begin{equation*}
\operatorname{Tr}\left(G^{0} X_{2}\right)+\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)=e^{2} \sum_{q, \mathbf{p}} \phi_{\mathbf{q}} \phi_{-\mathbf{q}}\left(\frac{\Delta^{2}}{2 \lambda_{\mathbf{p}}^{3}}\right)+\mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}}\left(\frac{n}{2 m}+\frac{\mathbf{p}^{2}}{3 m^{2}} f^{\prime}\left(\lambda_{\mathbf{p}}\right)\right)(\tag{42}
\end{equation*}
$$

Next we show that

$$
\begin{array}{r}
\sum_{\mathbf{p}} \frac{\Delta^{2}}{2 \lambda_{\mathbf{p}}^{3}}=\int d \varepsilon D(\varepsilon) \frac{\Delta^{2}}{2\left(\varepsilon^{2}+\Delta^{2}\right)^{3 / 2}} \approx D_{0} \\
f^{\prime}\left(\lambda_{\mathbf{p}}\right)=-\beta f\left(\lambda_{\mathbf{p}}\right) f\left(-\lambda_{\mathbf{p}}\right) \tag{44}
\end{array}
$$

hence $S_{\text {eff }} \equiv \operatorname{Tr}\left(G^{0} X_{2}\right)+\frac{1}{2} \operatorname{Tr}\left(G^{0} X_{1} G^{0} X_{1}\right)$ becomes

$$
\begin{equation*}
S_{e f f}=e^{2} \sum_{q} \phi_{\mathbf{q}} \phi_{-\mathbf{q}} D_{0}+\mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}}\left(\frac{n}{2 m}-\beta \sum_{\mathbf{p}} \frac{\mathbf{p}^{2}}{3 m^{2}} f\left(\lambda_{\mathbf{p}}\right) f\left(-\lambda_{\mathbf{p}}\right)\right) \tag{45}
\end{equation*}
$$

Finally, we will prove that

$$
\begin{equation*}
\left(\frac{n}{2 m}-\beta \sum_{\mathbf{p}} \frac{\mathbf{p}^{2}}{3 m^{2}} f\left(\lambda_{\mathbf{p}}\right) f\left(-\lambda_{\mathbf{p}}\right)\right) \equiv \frac{n_{s}}{2 m} \tag{46}
\end{equation*}
$$

where n_{s} is superfluid density.
We see that

$$
\begin{array}{r}
\frac{n_{s}}{2 m}=\frac{n}{2 m}-\beta \sum_{\mathbf{p}} \frac{2}{3 m}\left(\varepsilon_{\mathbf{p}}+\mu\right) f\left(\lambda_{\mathbf{p}}\right) f\left(-\lambda_{\mathbf{p}}\right) \\
=\frac{n}{2 m}-\beta \frac{1}{2} \int d \varepsilon D(\varepsilon) \frac{2}{3 m}(\varepsilon+\mu) f\left(\lambda_{\varepsilon}\right) f\left(-\lambda_{\varepsilon}\right) \\
\approx \frac{n}{2 m}-\frac{D_{0} \mu}{3 m} \int d \varepsilon \beta f\left(\lambda_{\varepsilon}\right) f\left(-\lambda_{\varepsilon}\right) \tag{49}
\end{array}
$$

Note that here we used $D(\omega)=2 \sum_{\mathbf{p}} \delta\left(\omega-\varepsilon_{\mathbf{p}}\right)$, where 2 is due to spin. This is essential because n contains the spin degeneracy as well. It is straightforward to prove that $\mu D_{0}=\frac{3}{2} n$ in our approximation, because

$$
\begin{array}{r}
D_{0}=2 \sum_{\mathbf{p}} \delta\left(\mu-\frac{p^{2}}{2 m}\right)=c \sqrt{\mu} \\
n=2 \sum_{\mathbf{p}} \theta\left(\mu-\frac{p^{2}}{2 m}\right)=c(2 / 3) \mu^{3 / 2} . \tag{51}
\end{array}
$$

We thus conclude that

$$
\begin{equation*}
\frac{n_{s}}{2 m}=\frac{n}{2 m}\left(1-\int d \varepsilon \beta f\left(\sqrt{\varepsilon^{2}+\Delta^{2}}\right) f\left(-\sqrt{\varepsilon^{2}+\Delta^{2}}\right)\right) \tag{52}
\end{equation*}
$$

At low temperature $f\left(\sqrt{\varepsilon^{2}+\Delta^{2}}\right) \approx 0$, hence $n_{s}=n$ and all electrons contribute to the superfluid density. Above T_{c} we have

$$
\int d \varepsilon \beta f(\varepsilon) f(-\varepsilon)=1
$$

and therefore $n_{s}=0$ as expected. We interpret that n_{s} is the fraction of electrons that are parred up in superfluid, i.e., superfluid density, as promised.

We just proved that

$$
\begin{equation*}
S_{e f f}=e^{2} \sum_{q} \phi_{\mathbf{q}} \phi_{-\mathbf{q}} D_{0}+\mathbf{A}_{\mathbf{q}} \mathbf{A}_{-\mathbf{q}} \frac{n_{s}}{2 m}, \tag{53}
\end{equation*}
$$

which is equivalent to Eq. 23

