
Physics 618 Third Lecture Jan. 24, 2017

Homework 2 has been posted and is due on Feb. 2. Solutions to homework
1 will be posted Thursday night (assuming you all get your homeworks in on
time). They will be accessible from the homeworks page, but only if you log
on with username physics618 and the password I will tell you now.

Review

Last time we discussed some more properties of a group. We discussed
isomorphisms between groups, and the idea that such groups are consid-
ered equivalent and not counted separately when we count groups. We also
discussed homomorphisms, maps from one group into another, not nec-
essarily onto, and defined the kernal of the homomorphism as the subset
mapped into the identity, and observed that that is a subgroup, indeed a
normal subgroup.

We discussed conjugacy, B ∼ C if ∃A ∋ A−1BA = C. We ob-
served that conjugacy is an equivalence relation and divides the group
into disjoint conjugacy classes. We also discussed left cosets of a sub-
group H ⊂ G with respect to an element g ∈ G as the the subset

gH := {gh|h ∈ H}

and similarly for right cosets Hg. These are also each an equivalence relation,
dividing the group into disjoint cosets, the number of which is called the
index of H in G, and, for finite groups,

index of H in G = order(G)/order(H).

In particular, this says the order of a subgroup must divide the order of the
group. Here the order of a finite group is the number of elements in the
group.

If the left cosets are the same as the right cosets, H is a normal sub-

group. Then we can also define the quotient group G/H whose elements
are the cosets gH with composition law

xH ⊙ yH = xyH.

We also defined the direct product of two groups, the elements of which
are pairs, one element from each group, and the composition law is just to
treat each half according to its group. We noted that in general,

G 6= (G/H) × H.

We briefly discussed the group Sn of permutations on n objects, giving
two notations for the elements, one in terms of onto maps Zn → Zn, and
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one as products of cycles. I claimed that every permutation could be written
as a product of 2-cycles, or transpositions, in many ways, but only as a
product of an even number or as a product of an odd number, depending
on the permutation. Thus we divided permutations into even ones and odd
ones, and observed that there is a homomorphism into Z2 according to even-
or odd-ness. The kernal of this map, the even permutations, forms a normal
subgroup called An, the alternating group. We also discussed cycles, and
that any permutation could be written as a product of disjoint cycles.

Today

If anyone wants me to clarify any points I speeded over on permutations
let’s do that first. We will cover permutations much more thoroughly just
after the midterm. Then, just to finish off the “Groups” chapter, we will list
all the groups of order ≤ 7.

Then we turn to the next chapter, exploring the concept of represen-

tations of the group. In our first class we discussed how the states of a
quantum system invariant under a symmetry group must decompose into
vector subspaces for each energy eigenvalue, and the group operates as linear
transformations on each subspace. If the subspace is finite-dimensional, as it
will be for bound states of a system, for example, the linear transformation
corresponding to each group element is represented as a finite matrix. If the
dimension of the subspace is ℓ, these matrices, or more precisely the map
from the group G into the set of ℓ × ℓ matrices, is called an ℓ-dimensional
representation of the group. We will begin exploring these properties today.

On the subspace of solutions to a bound-state quantum problem with a
given energy, the symmetries act as linear transformations, finite matrices.
These are called representations of the group. They are unitary if we
use orthonormal bases. It is possible that such a subspace can be divided
into separate subspaces which the symmetries do not mix, in which case the
representation is reducible, but often all the states in this subspace can be
mapped into each other with the symmetries, and we have an irreducible

representation. We will prove several theorems for finite groups.

• every representation is equivalent to a unitary one.

• (Schur’s First Lemma) Any matrix that commutes with all the repre-
sentatives of an irreducible representation is a multiple of 1I.

• (Schur’s Second Lemma) Two irreducible reps are either equivalent or
there is no matrix M other than zero for which MΓi(A) = Γj(A)M for
all A ∈ G.

We might then get to the Great Orthogonality Theorem and defin-
ing characters, which will be very strong aids in finding the irreducible
representations, but we might have to wait until next time for that.
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