
Physics 618 Twenty-third Lecture April 14, 2017

Last time, after finishing up our discussion of gauge groups on a lattice
and motivating the group-invariant Hurwitz measure, we briefly described
lattice translational symmetry, phonons and Bloch functions, and then be-
gan the discussion of spontaneous symmetry breaking. For a single particle
Hamiltonian with a symmetry, we know that the eigenstates will be described
by irreducible representations of the symmetry group, and even if the classi-
cal lowest energy states are not symmetric, the ground state of the quantum
system will be. In particular, if we consider the wine-bottle potential

V (φ) = −1

2
µ2φ2 +

λ

4
φ4,

which has minimum energy states at φ = ±|µ|/
√

λ, the lowest energy quan-
tum states are the symmetric or antisymmetric superposition of wave func-
tions centered around those two points, but with a slight energy difference
depending on the overlap of the two wave functions.

If, however, we consider a lattice of such coordinates φ~n with nearest
neighbor couplings which discourage differences (as the discretization of (~∇)2

would give), the classical ground states would need all sites to have φ in the
same direction, and the overlap of the state with all N sites up with that
with all states down would be proportional to the small single-site overlap
raised to the N ’th power, and for an infinite lattice would be zero. That
means that if initially the state of the system is finitely perturbed from the
all-up state, there is zero overlap with the ones connected to the all-down
state, and one might as well disregard all states from the Hilbert space, and
the symmetry of the Hamiltonian is not reflected in the states we need to
consider.

The model we just discussed with a single real field φ is essentially the
Ising model, and its behavior in two dimensions, solved by Onsager, is a great
triumph of mathematical physics. But I want to discuss a different consid-
eration, considering a field φ which is not a single real variable but rather
transforms non-trivially under a symmetry group, for example SO(N), with
the φ at each site transforming as under eiωb(~x)Lb . The pure kinetic energy
term 1

2
m

∑
~x
(φ̇(~x))2 and the potential term

∑
~x
V (φ2(~x)) are invariant under

both global and local rotations of φ, but the nearest neighbor coupling (or the
gradient term in the continuum limit) will pick up an energy proportional

to (~∇ω)2, and local symmetry is violated. This will lead us to Goldstone
bosons, which in this case are spin waves. We will consider more generally
a Hamiltonian which is invariant under a Lie group with Lie algebra G, but
with a lowest energy state which is invariant only under a subgroup K with
algebra K. We will find there is a Goldstone boson, that is a massless particle,
for each direction in the coset space G/K
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The same thing applies to a field theory. We first consider a simple global
SO(N) scalar theory with the wrong sign for the quadratic (mass) term, and
we see how all the component fields but one become massless. This gives a
model which is sometimes used to describe pions.

Then we look into the magic that occurs when the symmetry group is a
gauge group, so we have massless vector particles in our Lagrangian. But
if there is spontaneous symmetry breaking in the matter fields, the mass-
less Goldstone bosons can get eaten by the corresponding massless gauge
particles, making them fat (massive). This is the Higgs mechanism, respon-
sible for the large masses of the W± and Z0 weak interaction mesons of the
Salam-Weinberg model of electroweak interactions.
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