
Chapter 1

More SSB, then Higgs

1.1 An example: SSB for SO(N)

Consider a quantum field theory with a multiplet of N real scalar fields with
Lagrangian density

L =
N
∑

j=1

(∂νφj)(∂
νφj) +

1

2
µ2

N
∑

j=1

φ2
j −

λ

4

(

N
∑

j=1

φ2
j

)2

.

This lagrangian is, of course, invariant under SO(N), rotations of φ in the N -
dimensional internal space. φj(x) → Ojkφk(x), with O an orthogonal matrix,
which leaves

∑

φ2 invariant. Notice that the mass term has the wrong sign.
Had that sign been minus, with a + in the potential energy, the potential’s
absolute minimum would have been at ~φ = 0, the classical vacuum would be
at ~φ = 0, and the rotational symmetry would be intact. But with the plus
in the lagrangian, ~φ = 0 is a local maximum of the potential energy, and
not a classical ground state. Instead a classical lowest energy state will have
~φ = ~φ0 with φ0 := |~φ0| = µ/

√
λ. To get a state of lowest energy, we need not

only that V (φ) is minimized at each point x, but also that the kinetic energy

(~∇φ)2 is minimized, which means vanishing. So although the potential only

tells us that ~φ(x) should lie on a sphere of radius φ0, minimizing the energy

means it has to be the same ~φ throughout space.
If we apply a global SO(N) transformation, we get a new state which is

of the same energy as our state ~φ0, but which has an overlap with ~φ0(x) at
every point which is less that one, so that raised to the infinite power from

1
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the infinite number of points ~x, there is zero overlap! A system in one of
these ground states can never get to another, equivalent, ground state.

In all our field-theoretic considerations so far, we have assumed the vac-
uum arises somehow from the classical state where the fields are all zero.
We know there are vacuum fluctuations, but they are fluctuations about the
φ = 0 state. But if there is a classical state of lower energy (or, more accu-
rately, energy density), we should expect our vacuum and our low excitations
from it to be based on this lowest-energy state, not the φ = 0 state.

How to proceed? We can rewrite our fields ~φ(x) = ~φ0 + ~η(x). We can

choose our ~φ0 to be anywhere on the minimal surface, so let us choose it in the
N direction, φ0 = (0, · · · , 0, µ/

√
λ). As ~φ0 is a constant, the kinetic energy

term in L is just
∑N

j=1(∂νηj)(∂
νηj). The potential energy as a function of η

is now

V (η) = −µ
2

2

(

N−1
∑

j=1

η2
j + (ηN + µ/

√
λ)2

)

+
λ

4

(

N−1
∑

j=1

η2
j + (ηN + µ/

√
λ)2

)2

.

As ηN is now being treated differently, let’s call it σ. We have

V (η) = −µ
4

2λ
− µ3

√
λ
σ − µ2

2
σ2 − µ2

2
η2

j +
λ

4

(

η2
j + σ2 + 2

µ√
λ
σ +

µ2

λ

)2

= −µ
4

4λ
+

(

− µ3

√
λ

+
µ3

√
λ

)

σ +

(

−1

2
+ 1 +

1

2

)

µ2σ2 + (−1 + 1)
µ2

2
η2

j

+µ
√
λσ3 + µ

√
λση2

j +
λ

4

(

η2
j

)2
+
λ

4
σ4 +

λ

2
σ2η2

j

where the sums ηj now have j = 1..N − 1, with η2
j :=

∑N−1
j=1 η2

j .
Notice the linear term in σ vanishes, as it must, because the minimum is

at σ = 0, ηj = 0. Notice also that the ηj has lost its quadratic term, so these
N − 1 degrees of freedom have become massless. Finally, notice that the σ
has developed a mass

√
2µ with the correct positive sign in the potential.

Our lagrangian has now become

L =
1

2
(∂νηj)

2 +
1

2
(∂νσ)2 − 1

2
(2µ2)σ2 −

√
λµσ3 −

√
λµσ(ηj)

2

−λ
4
σ4 − λ

2
σ2η2

j −
λ

4
(η2

j )
2.

We have quartic terms for all the fields, with the correct signs to keep energy
bounded from below, though we now have cubic interactions, of the σ with
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the η’s and with itself. The theory still has a symmetry under rotations in
the N − 1 dimensional space j = 1..N − 1, but it has lost symmetry under
rotations which include the N ’th dimension. It also does not have symmetry
under σ ↔ −σ.

The model we have just considered is called the linear sigma model. With
N = 4, we are left with 3 massless fields. This was taken in the ’60’s as a
model describing the isotriplet of pi mesons, which are light compared to all
other hadrons. The pions are made of the (u, d) isodoublet ψ of quarks and
their antiquarks, we would have an isospin SU(2) symmetry with charges
1
2

∫

ψ†~τψ, but if the quarks are massless, there is also a chiral SU(2) symme-
try with additional charges 1

2

∫

ψ†γ5~τψ, together forming an SU(2)×SU(2) ≡
SO(4) symmetry group. If we imagine that this symmetry is somehow spon-
taneously broken, and in addition there is a small explicit breaking due to
small quark masses, it might explain both the near masslessness of the pions
and also the correction to that, connected to the not-quite-conservation of
the axial vector current in weak interactions.

1.2 The Higgs Mechanism

Last time we discussed spontaneous symmetry breaking with a more general
symmetry, a theory with a multiplet of scalar fields φ transforming as a
unitary irreducible representation of a symmetry group G. The Lagrangian
was invariant under G, but possibly the lowest energy state (vacuum), about
which we do perturbation theory, was not invariant. The vacuum expectation
value φ0 may be left invariant under a subgroup K ⊂ G, and the dimensions
in the Lie Algebra G of G which do not leave φ0 invariant (G/K, generators of
the cosets of G/K) give rise to massless scalar particles known as Goldstone
Bosons.

But in chapters 12-13, we developed the magnificant gauge theories with
local symmetry, where the matter fields φ can be transformed independently
at each space-time point, but at the expense of adding gauge fields Aµ tak-
ing values in G to the theory. These fields entered the lagrangian both by
modifying the gradient operator into a covariant derivative, but also with
a self-interaction −1

4

∑

d F
(d)
µν F (d) µν . We saw that these particles described

massless vector particles, each having only two physical degrees of freedom
despite having four components µ. So if we combine these two ideas, we seem
to be building up a theory with both massless vectors and massless scalars.
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But things are more interesting than that.

1.2.1 The Abelian Higgs Model

Our first example will be a simple U(1) theory with a complex scalar φ. As
with electromagnetism, this means we have one gauge field Aν and a local
phase symmetry φ→ e−iα(x)φ, Aν → Aν + 1

q
∂να(x). We take the lagrangian

density to be

L = (Dνφ)†Dνφ− 1

4
FνρF

νρ + µ2φ†φ− λ

4
(φ†φ)2. (1.1)

Were it not for the mass term having the wrong sign, this would be simply
a theory of a charged scalar interacting with photons. There would be the
two scalar degrees of freedom from φ, and the two transverse polarizations
of the photon, for a total of four. But note that the mass term does have the
wrong sign, so we will have spontaneous symmetry breaking. The classical
minimum of the potential has φ†φ = 2µ2

λ
, so we choose our vacuum to be at

φ = v/
√

2 where v is real1 and v = 2µ/
√
λ > 0. We need to reexpress the

two φ degrees of freedom. Rather than doing this with cartesian coordinates,
let’s write φ in terms of a radial coordinate coordinate |φ| = v+h(x) and an
angular coordinate or phase angle θ/v. Thus

√
2φ(x) = (v + h(x)) e−iθ(x)/v.

When the classical vacuum state has all fields at zero, the particle content is
found by looking at quadratic terms in the Lagrangian, which give linear wave
equations for free particles with masses determined by the term quadratic in
the fields without derivatives. Thus the terms in (Dνφ)†Dνφ which involve
the gauge field Aµ as well as some φ’s give interactions but don’t affect
the “free particle” masses of φ or A. But if the symmetry is broken and
the low-lying states are expanded about φ0 = v/

√
2, the covariant term

[(∂ν − iqAµ)φ†][(∂µ + iqAµ)φ includes a term q2AµAµφ
†φ ∼ 1

2
q2v2AµAµ which

is a mass term, giving the photon a mass qv.
Things are actually a bit more complicated than this, because gauge in-

variance involves taking the φ field away from our chosen vacuum state. To
actually understand the particle content, or physical degrees of freedom, we
need to recall that choosing a gauge condition removes some of these. Given

1The funny
√

2 factors are because we define
√

2φ = φ1 − iφ2, so φj,0 = (v, 0).
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an arbitrary initial Aµ and complex φ, we could have chosen the gauge to
make φ real everywhere, which would eliminate the Goldstone boson compo-
nent. This is called the unitary gauge. But using our gauge freedom this way
means we don’t have it available for the Lorenz gauge choice or the Feynman-
’t Hooft gauge, and the Ward identity then does not make the longitudinal
and time components of the Aµ field vanish. Thus we see, in the unitary
gauge, that the photon has eaten the Goldstone boson and become massive.

1.2.2 Broken Non-Abelian Gauge Theory

Let us consider the simplest non-Abelian example, with the group G =SU(2).
This has a three-dimensional Lie algebra and so we begin with three gauge
particles Aa

µ. Our scalar particles will need to transform under some rep-
resentation of SU(2). First let’s consider the isospin 1/2 representation, a
complex doublet φ. The algebra is represented by La = τa/2, so the covariant
derivative is

Dµφ = (∂µ − iqAa
µτa/2)φ.

With the φ in (1.1) now refering to this complex doublet, we still see the
minimum of the potential requires 2φ†φ = v, but now we choose φ0 not only
to be real but to have zero upper component,

φ0 =
1√
2

(

0
v

)

.

Then the |Dµφ|2 term quadratic in A is

g2

8
(0, v)τaτb

(

0
v

)

Aa
µA

b µ =
g2v2

8
Aa

µA
a µ,

where the symmetry of Aa
µA

b µ under a ↔ b enabled us to replace τaτb by
1
2
{τa, τb} = δab. Thus each of the three gauge particles develops a mass mA =
gv/2, and there are no massless vectors left. We will have one remaining
massive real scalar left, coming from the oscillations around v/

√
2 of the real

part of the lower component of the doublet. The other degrees of freedom
have been eaten, fixed to be zero by choice of gauge (called unitary gauge).

Now we might have chosen φ to transform differently. For example, we
might have chosen an isospin 1 real field, with three real components. This
transforms under the adjoint representation of SU(2), so now

(Dµφ)a = ∂µφa + gǫabcA
b
µφc,
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and the A2 term in the lagrangian comes from 1
2
(Dµφ)2 = g2

2
(ǫabcA

b
µφ0 c)

2.
The theory has spherical symmetry, so if the V (φ) term takes its minimum
value for |φ| = v 6= 0, it can be anywhere on a sphere of radius v, and we can
choose that to be along the third axis, so φ0 = (0, 0, v), and (ǫabcA

b
µφ0 c)

2 =
v2ǫab3A

b
µǫac3A

c µ = v2[(A1
µ)2 +(A2

µ)
2]. Thus two of the gauge particles develop

masses, m1 = m2 = gv, but the third remains massless. And φ3 becomes the
sole surviving massive real scalar.

In both of these examples, any point that could be the minimum of V (φ)
was equivalent to any other under the symmetry, but that is not always the
case. One example2 is an SU(3) gauge group with an octet scalar. If φ0

is in the λ8 direction, the SU(3) is broken into SU(2)×U(1), so those four
gauge particles remain massless, while the other four develop equal positive
masses. But if φ0 is in the λ3 direction, only A3 and A8 remain massless,
the symmetry is broken to U(1)×U(1), and four of the other vector particles
develop a mass M and the other two a mass 2M .

1.2.3 A Side Comment on g

When the Killing form is positive definite, as it is for the semisimple groups
we are considering, it presents a natural way to normalize the basis vectors
of the Lie algebra. This gives a natural metric in group space, and such
groups are compact sets, so they have a natural size. But the symmetries
act linearly on the scalar or spinor fields, so there is no natural strength by
which a gauge field should act on a matter field, so we have a parameter, a
kind of charge, g, which we have always seen in our covariant derivatives of
matter fields. The strengths by which the different gauge fields act on the
matter fields is, however, determined by the matter-field representation, if it
is irreducible.

If, however, the gauge group is a direct product of two groups, the covari-
ant derivative will be a sum over gauge fields from the two different groups,
and the strength with which each couples will not be constrained. So there
will be separate coupling constants for the two components.

2Peskin and Schroeder, pp. 696-697.
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1.2.4 SU(2)×U(1) Gauge Theory with Isodoublet Higgs

Now let us consider the group which will give us the Glashow-Salam-Weinberg
model of the electroweak interactions, which is a major component of the
standard model. The group is SU(2)×U(1). The gauge particles are three
~Wµ’s for SU(2) and one Bµ for U(1). The field strength for the W ’s will be
called F

~Fµν = ∂µ
~Wν − ∂ν

~Wµ − g ~Wµ × ~Wν ,

and that for B will be called Bµν ,

Bµν = ∂µBν − ∂νBµ.

All of the particle fields we know about, quarks and leptons, will be included,
but we concentrate for now on a doublet of complex scalars φ which will
spontaneously break the symmetry. Acting on φ, the covariant derivative is

Dµ = ∂µ + i
g

2
~σ · ~Wµ + i

g′

2
Bµ.

We are looking to have vector fields with charge, so the doublet needs to
have different charges for its two components, and we want the one that

develops a vacuum expectation value to be neutral, so we write φ =

(

φ+

φ0

)

and φ0 =

(

0

v/
√

2

)

. The general field configuration for φ can now be written

as √
2φ = e−i~θ·~σ/2v

(

0
v + h(x)

)

,

but we will immediately go to the unitary gauge, which undoes the exponen-
tial factor, leaving from φ only the real scalar Higgs field h(x) with a mass√

2µ = v
√

λ/2. But the |Dµφ|2 term now gives us a term

1

8
(0, v)[g~σ · ~Wµ + g′Bµ]

2

(

0
v

)

=
v2

8

[

g2(W 2
1 +W 2

2 ) + (gW3 − g′B)2
]

.

We see that mW1
= mW2

= gv/2, but the mass matrix is not diagonalized
by our choice of basis vectors for the other two gauge fields, and we need to
choose a new basis by rotating in the W3−B plane,

Zµ = cos θWW
µ
3 − sin θWB

µ

Aµ = sin θWW
µ
3 + cos θWB

µ
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where

cos θW =
g

√

g2 + g′ 2
, sin θW =

g′
√

g2 + g′ 2
.

Then the gauge field mass terms are 1
2
MW (W µ

1 W1 µ +W µ
2 W2 µ)+ 1

2
MZZ

µZµ,

with MW = gv/2, Mz = 1
2
v
√

g2 + g′ 2 = MW/ cos θW . We see that the A field
does not pick up any mass, so we identify it as the photon field.

Now look at the covariant derivative in terms of the new basis:

Dµφ = ∂µφ+
[

i
g

2
σ+W

− + i
g

2
σ−W

+

+i
g

2
(σ3(cos θWZ + sin θWA)

+i
g

2

sin θW

cos θW

(cos θWA− sin θWZ))
]

φ

= ∂µφ+
[

i
g

2
σ+W

−
µ + i

g

2
σ−W

+
µ + ig sin θW

1 + σ3

2
Aµ

+i
g

2 cos θW

(σ3 − (1 + σ3) sin2 θW )Zµ

]

φ

We see that the photon field Aµ couples only to the upper component of φ,
and with a charge e = g sin θW , which is therefore the unit of electromagnetic
charge e, that of a positron.

This constitutes the bosonic part of the standard electroweak theory of
the standard model, but so far we haven’t introduced any of the particles
that have electroweak interactions! So now it is time for us to introduce the
leptons and quarks into this model.

1.3 Adding Leptons and Quarks

In the last section we described the gauge group for the electroweak interac-
tions as SU(2)×U(1), broken by the complex Higgs doublet. We saw that the
neutral gauge particles W 0 and B mix, leaving an unbroken gauge symmetry
for electromagnetism and a neutral Higgs.

Now we will introduce the quarks and leptons, so we can actually describe
electromagnetic and weak interactions.

Fortunately, the doublet nature of weak interactions was apparent long
before the sophisticated nature of our model was known. The weak current,
being charged, connected pairs of particles with charges differing by one unit,
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and in fact looked like a collection of doublets, whether proton-neutron or
νe − e− or νµ −µ− or u−d quarks. The first and last, of course, are the origins
of hadronic isospin, and are only approximately the doublets we are going to
want for weak isospin. But all of the fundamental matter particles we will
want to introduce will be spinors, and their left-handed pieces will be doublets
under the SU(2) gauge, while their right-handed pieces will be singlets. These
spinors will be massless in the fundamental lagrangian, as we can’t have a
gauge-invariant mass term coupling a doublet and a singlet. There will be
three generations of leptons and three generations of quarks. The doublets all
interact with the ~Wµ with the strength g~σ/2, while the singlets, of course, do
not. The upper component of each doublet has a charge one unit higher than
the lower component, so ∆Q = ∆t3, where t and t3 are the weak isospin and
its third component. All multiplets interact with Bµ with a strength ig′y/2,
where the weak hypercharge y varies from multiplet to multiplet, −1 for the
left-handed leptons, −2 for the right-handed negatively charged leptons, 0
for the right-handed neutrinos (if they exist). The left-handed quarks have
y = 1/3, while the right-handed quarks, in order to have the same charge as
their left-handed components, have y = 4/3 for u, c, and t, and y = −2/3
for d, s, and b. Note in all cases the charge Q (in units of e > 0) is

Q = t3 +
1

2
y.

Thus each of the spinor fields enters the lagrangian with

L = iψ̄ 6DL

1 − γ5

2
ψ + iψ̄ 6DR

1 + γ5

2
ψ

with

DL µ = ∂µ + ig~σ · ~Wµ/2 + ig′y1IBµ/2,

DR µ = ∂µ + ig′yBµ/2.

though for the right-handed neutrinos, as their t = y = 0, there is no way for
them to interact and no way for us to know, in the standard model, whether
or not they exist!
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Let us consider the decay of the muon, µ− →
e− + νµ + ν̄e, This proceeds by the second order
interaction with W exchange. We note that ~σ ·
~Wν = 1√

2
(σ+Wν + σ−W

†
ν ) where σ± = 1

2
σ1 ± σ2

and W ν = (W ν
1 − iW ν

2 )/
√

2. The reason for this

notation is that σ− =

(

0 0
1 0

)

and W has the

right weight for a propagator. Now the relevant
−

e
µ− ν

e

µ
ν

W−

part for the electron field is σ− and for the muon σ+, so the invariant ampli-
tude is

iM =

(

i
g√
2
ψ̄eγ

ρ(1 − γ5)ψνe

)

i(−gρτ + kρkτ/M
2
W )

k2 −M2
W

(

i
g√
2
ψ̄νµ

γτ (1 − γ5)ψµ

)

.

But the muon only has a mass of 105 MeV so the momentum transfer k ≪
MW = 80.38 GeV, so we can pretty well put k to zero, and

iM = i
g2

2M2
W

ψ̄eγ
ρ(1 − γ5)ψνe

ψ̄νµ
γρ(1 − γ5)ψµ

which is exactly the old Fermi four-fermion interaction with coupling constant

GF√
2

=
g2

8M2
W

= 1/2v2.

From the long-measured value GF = 1.166 × 10−5 GeV−2 we find v ≈ 246
GeV.

The same diagram, charge conjugated, will give the scattering cross sec-
tion for νµ + e− → νe +µ−, as in Fig. 22.10 in the book, which might be used
to detect muon neutrinos. But it was also discovered in bubble chambers in
1973 that there was also an elastic cross section, νµ + e− → νµ + e−, which
must proceed by a neutral current, the Z. From the effective coupling con-
stant here, together with the electric charge = g sin θW , we have the three
experimental values we need to determine g, g′ and v, and thus

sin2 θW = 0.231, MZ = MW/ cos θW = 91.2 GeV.

1.3.1 Quark Weak Interactions

As we mentioned, all the fundamental spinors have their left-handed com-
ponents as part of a weak isodoublet, and their right handed components
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immune to the ~W gauges, feeling only the B in their covariant derivatives.
Thus the left handed components are

(

νe

e−

) (

νµ

µ−

) (

ντ

τ−

) (

u
d′

) (

c
s′

) (

t
b′

)

y = −1 −1 −1 1
3

1
3

1
3

all with t = 1/2. The right handed quarks and leptons do not come in
doublets. The leptons e−R, µ−

R, τ−R have y = −2, the quarks whose mirror
images are t3 = +1/2 (uR, cR, tR) have y = 4/3 and the others y = −2/3 so
as to have total electromagnetic charges of 2/3 and −1/3 respectively.

We have distinguished between hadronic isospin and weak isospin, but
we haven’t discussed what that difference is. When we classify the u and d
as a hadronic isospin doublet, we are basing the assignment of what particle
comes from T− |u〉 on the overwhelming strength of the strong interaction.
But what about t− |u〉, the action of the weak isospin? It gives us a quark
of charge −1/3, but might it not be a mixture of the d, s and b quarks as
distinguished by strong interactions and their very different masses? We have
written the weak isodoublets in terms of primed quark fields to distinguish
them from the strong interaction conserved flavors. We did not bother with
the upper components, because we can choose the weak upper components to
be whatever the strong interactions wanted by definition of which generation
is which. But then the lower components are what the W ’s produce from the
upper ones. These three fields, d′, s′ and b′ must be a unitary transformation
of the mass eigenstates d,s and b, so we may write





d′

s′

b′



 = V





d
s
b



 with V =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





where V is the CKM or Cabbibo, Kobayashi, Maskawa matrix.

Note that if there were no such discrepancy between weak and strong
isospin, that is, if V were = 1I, there would be conservation of (strangeness
+ charm), and K mesons could not decay. So part of the CKM matrix,
Vus, was proposed by Cabbibo in 1963 before three generations or even the
charmed quark were known.
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For the leptons, as far as we know3, each generation does have its own
conservation law, so there is no mixing, and so only the leptonic equivalent of
Vud, Vcs, Vtb are nonzero, and are pure phase transformations. Also, because
the phase of each field is arbitrary, we can adjust phases to make the leptonic
equivalent of V be the identity. For the quarks, we can adjust the six phases
of the weak and strong fields, but adjusting them all by the same amount
leaves V unchanged, so there are 5 adjustable parameters of the nine real
parameters that a 3× 3 unitary matrix has. Thus there are four parameters
which need to be measured to know V.

One important consequence of this possible mixing is that the V matrix
cannot be made real by the choice of field phases. If it could, it would be an
orthogonal 3 × 3 matrix with only three adjustable parameters. That there
is room in V for a complex parameter which cannot be made real means
that CP conservation, which is equivalent to T conservation in QFT, can
be violated, as time reversal involves complex conjugation. If there were
only two generations of quarks, this would not be the case, and the weak
interactions would not give an explanation of CP violation, such as seen in
the K0 − K̄0 system and also the corresponding D0 and B0 systems.

1.3.2 Fermion Masses

We have seen that the left-handed and right-handed parts of the spinors
transform differently under weak isospin, so a simple mass term mψ̄ψ is not
invariant. This is why the theory we are using, before symmetry breaking,
has no massive spinors.

But the vacuum expectation value φ0, which breaks the symmetry, pro-
vides a mechanism for generating mass. Under weak isospin, ψ̄L transforms
properly4 so that ψ̄Lφ is a scalar under weak isospin. So

L(e)
Yuk = −geψ̄e,Lφψe,R + h.c.

obeys all required symmetries, and reduces to −gev√
2

(ēLeR + ēReL) = −meψ̄eψe,

3Wrong! Wrong! Wrong! We now have conclusive evidence for neutrino mixing, which
means one flavor of neutrino can turn into a different one, so there is no conservation of
the number of leptons of each individual flavor. It is still not known if there is conservation
of the total number, Ne +Nµ +Nτ .

4The convoluted language, rather than saying ψ̄L is t = 1/2, is because the conjugate
to a standard t = 1/2 representation is equivalent to the standard representation, it is not
equal to it.



618: Last Latexed: April 14, 2016 at 14:50 13

when we discard terms cubic in the fluctuating fields, replacing φ by φ0, This
provides the electron with a mass me = gev/

√
2. Thus we see that the vac-

uum breakdown provides mass to the fermions as well as the W±, provided
there is a Yukawa coupling in the Lagrangian of the electron with the Higgs
field. But this means there is also a coupling to the fluctuating part of the

Higgs field, −gev√
2
ĥ(x) (ēL(x)eR(x) + ēR(x)eL(x)) = − gme

2MW
ĥ(x)ē(x)e(x).

The other bottom components of the isodoublets can develop masses in
the same way as the electron. But what about the upper components? The
secret comes from closer examination of the transformation of the standard
isospin 1/2 representation, under which

ψa →
(

ei~α·~σ/2
)

ab
ψb.

The conjugate representation has

ψ†
a →

(

e−i~α·~σT /2
)

ab
ψ†

b .

Thus it does not transform like the standard representation, but χa := ǫacψ
†
c

does, where ǫab = (iσ2)ab is the two-dimensional antisymmetric Levi-Civita
tensor ǫ12 = 1 = −ǫ21, ǫ11 = ǫ22 = 0 in isospin space. To see this,

χa := ǫacψ
†
c →

[

(iσ2)
(

e−i~α·~σT /2
)

ψ†
]

a
=
[(

ei~α·~σ/2
)

(iσ2)ψ
†]

a
=
(

ei~α·~σ/2χ
)

a
.

So ǫabψ̄u,L b transforms like φa and φ†
aǫabψ̄u,L b is invariant, and can be con-

tracted with ψu,R. Of course φ†
0 aǫab = ( v√

2
, 0). Thus the u− d quark Yukawa

interaction is L = −λdψ̄u,L · φ dR − λuψ̄u,L(iσ2)φ
†uR + h.c.

Thus we see that we can introduce any spinor masses to the quarks and
the charged leptons we wish, so our theory can accommodate any quark and
lepton masses, but does not predict them. In so doing, the couplings of these
fermions to the higgs field is determined, with a strength proportional to
the induced fermion mass. Thus you might think the experimentalists found
the Higgs by looking for bb̄ and their decays, but unfortunately that channel
has so much background this is impossible to extract. It was actually the
coupling to the gauge particles, photons and Z’s, together with τ τ̄ , that were
detected.


