
Chapter 11

Sk and Tensor Representations

(Ref: Schensted Part II)
If we have an arbitrary tensor with k indices W i1,··· ,ik we can act on it

with a permutation P =

(
1 2 · · · k
a b · · · ℓ

)

so

(Pw)i1,i2,··· ,ik = wia,ib,··· ,iℓ .

Consider the algebra A formed by taking arbitrary linear combinations of the
different permutations, considered as operators acting on the space of k’th
rank tensors. This algebra can be constructed for any group, particularly
finite groups, and is called the group algebra. (this is not the Lie algebra!).
Note that this sum of permutations makes sense only as operators on a vector
space. It is not the composition of permutations. Also note that as A is an
algebra1, one can both add and multiply (by composition) elements in A.

1
Definition: An algebra consists of a vector space V over a field F , together with a

binary operation of multiplication on the set V of vectors, such that for all a ∈ F and
α, β, γ ∈ V , the following are satisfied:

1. (aα)β = a(αβ) = α(aβ)

2. (α + β)γ = αγ + βγ

3. α(β + γ) = αβ + αγ

V is an associative algebra over F if, in addition,

4 (αβ)γ = α(βγ) for all α, β, γ ∈ V .

121



122. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

The group algebra is useful because it can extract the tensors of specified
symmetry. First consider tensors of rank 2. Writing 1I = 1

2
(1I + (1 2)) +

1
2
(1I − (1 2)) we can extract

sij =
1

2
(1I + (1 2))wij

aij =
1

2
(1I − (1 2))wij

and wij = sij + aij is a decomposition into a symmetric tensor and an anti-
symmetric tensor.

The action of the permutations commutes with the SU(n) rotations on
the tensors, so a constraint on a tensor of the form Aw = 0 for some A ∈ A,
if it holds for one state of an irreducible representation of SU(n), will hold on
all states in that representation. Thus s and a are separate representations.

Now consider a rank 3 tensor wijk, and define

sijk =
1

6

∑

P∈S3

Pwijk

aijk =
1

6

∑

P∈S3

(sign P )Pwijk

These are the totally symmetric and totally antisymmetric parts of w, but it
is not all of w. For example, suppose w112 = w121 = 1, w211 = −2, all other
components zero. Then sijk and aijk are both zero. The rest is related
to the two-dimensional representation of S3 (see homework #3, problem
1). In general, there will be operators in A associated with the different
irreducible representations of Sk, which extract the corresponding irreducible
representations of SU(n).

So we now turn to the problem of finding the irreducible representations
of Sk.

11.1 Irreducible Representations of Sk

We know in general that the number of irreducible representations is the
number of conjugacy classes. So let us begin with that.

Any element of Sk can be written as a product of disjoint cycles. For

example,

(
1 2 3 4 5
2 3 1 5 4

)

= (1 2 3)(4 5). This factorization is unique (re-
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member (1 2 3) = (2 3 1)) up to the order of the factors, which commute
because they are disjoint cycles.

Under conjugation by P =

(
1 2 · · · k
P1 P2 · · · Pk

)

a cycle simply has its

elements permuted. Thus P (i j k)P−1 = (Pi Pj Pk). This is true for products
of cycles as well. Thus two permutations whose descriptions in terms of
disjoint cycles contain the same number of cycles of each length are conjugate,
and only those are. We describe the conjugacy class of elements describable in
terms of disjoint cycles, Ik of length ℓk, as

(
ℓi1
1 ℓi2

2 · · ·
)
. Including one-cycles

for any element left unmoved, we have
∑

m imℓm = k.

Example: S3

permutations class

1I ∈
(
13

)

(1 2) = (1 2)(3) ∈ (2, 1)

(2 3), (1 3) ∈ (2, 1) as well

(1 2 3), (1 3 2) ∈ (3)

There is one conjugacy class for each partition of k. A partition of an
integer k is an unordered set of positive integers, possibly with repeats, which
add to k.

Example: How many classes2 are there in S5?

(5); (4, 1); (3, 1, 1) = (3, 12); (3, 2); (22, 1); (2, 13); (15)

answer: 7.

Thus we also know that there are that many irreducible representations,
although there is not a straightforward correspondance between the repre-
sentations and the conjugacy classes.

Define a Young graph for Sk as a set of k boxes arranged, left-justified,
in rows each of which is no longer than the preceeding. The lengths of the
rows provide a partition of k. So

2The number of partitions of n is given by the partition function of number theory, p(n).
There are other things called partition functions, especially Z of statistical mechanics,
which is different. The number-theory one, also called the integer partition function,
arises also in counting states in string theory. It has the fascinating property that p(k)
has the generating function

∏
∞

k=1
(1 − xk)−1 =

∑

k=0
p(k)xk, where we say p(0) = 1.
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(5)

(4, 1)

(3, 12)

(3, 2)

(22, 1)
(2, 13) (15)

There is one irreducible representation of Sk corresponding to each Young
graph.

A Young tableau is a Young graph with the numbers 1, 2, · · · , k inserted
in the boxes in some order, for example τ = 2 3 4

5 1
.

For each tableau we define an element of the group algebra, Pτ =
∑

P , where
the sum is over those permutations which permute the numbers within each
row but do not move them from one row to another. Here

Pτ = [1I + (2 3) + (3 4) + (2 4) + (2 3 4) + (2 4 3)] [1I + (5 1)] ,

which includes 12 of the 120 permutations in S5.
We also associate Qτ =

∑
(sign P )P where the sum includes only permuta-

tions which permute numbers in the same column but don’t move numbers
from one column to another. Thus

Qτ = [1I − (2 5)] [1I − (1 3)] .

Finally we define the Young operator Yτ = QτPτ .
We see that the way to get a totally symmetric rank 5 tensor is to apply

Y to an arbitrary one while you get a totally antisymmetric tensor by
applying Y , with the numbers in any order in the boxes.

The Yτ corresponding to any Young tableau τ is almost, but not quite, the
element of the group algebra we want to extract irreducible representations.
We find a related set of basis vectors in the group algebra by using the
representations of Sk. Define

eη
ij =

ℓη

k!

∑

P∈Sk

Γη
ji(P

−1)P,

where η is the Young graph corresponding to an irreducible representation
of Sk, and ℓη is the dimension of that representation. The sum is over all the
permutations.
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For , ℓη = 1, Γ = 1, and e11 = Y
1 2 3 4 5

which is also equal to any other Young operator for a tableau in .

For , ℓη = 1, Γ = sign P , e11 = Y 1

2

3

. Other Young operators in differ

only in sign, e.g. Y 2

1

3

= sign(1 2) · Y 1

2

3

= −Y 1

2

3

.

The e’s have some marvelous properties. They form vector spaces trans-
forming as irreducible representations under Sk separately from the right and
from the left: For3 Q ∈ Sk,

Qeη
ij =

ℓη

k!

∑

P

Γη
ji

(
P−1

)
QP =

ℓη

k!

∑

m

Γη
mi(Q)

∑

P

Γη
jm

(
P−1Q−1

)
QP

=
ℓη

k!

∑

m

Γη
mi(Q)

∑

R

Γη
jm

(
R−1

)
R =

∑

m

Γη
mi(Q)eη

mj

where we again used the rearrangement theorem. Thus Q acts just the way
you’ld expect for a basis vector ei of representation η to transform, for each
fixed j.

From the other side, eη
ijQ =

∑

m Γη
jm(Q)eη

im.
We say that the set eη

ij is a two sided ideal (or invariant subalgebra) of
the group algebra over Sk.

This gives the e’s an interesting algebra:

eη
ije

η′

mn =
ℓηℓη′

(k!)2

∑

P,P ′∈Sk

Γη
ji

(
P−1

)
Γη′

nm

(
P ′−1

)
PP ′

=
ℓηℓη′

(k!)2

∑

P,R∈Sk

Γη
ji

(
P−1

) ∑

p

Γη′

np

(
R−1

)
Γη′

pm (P )R

=
ℓη

k!

∑

P∈Sk

Γη ∗

ij (P )
∑

p

Γη′

pm (P ) eη′

pn by unitarity

= δηη′δjmeη
in by the great orthogonality theorem

We may also show that the diagonal elements eη
ii form a decomposition

of the identity. From the great orthogonality theorem “transposed” ,

δGG′ =
∑

ijη

ℓη

k!
Γη ∗

ij (G′)Γη
ij(G)

3Note P and Q are any elements of Sk, and are not related to Pτ and Qτ defined earlier.
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we can write the identity element of Sk as

1I =
∑

G

δG−1,1IG =
∑

ijηG

ℓη

k!
Γη ∗

ij (1I)Γη
ij(G

−1)G

=
∑

iηG

ℓη

k!
Γη

ii(G
−1)G =

∑

η i

eη
ii

so
1I =

∑

η i

eη
ii

Thus the whole algebra is spanned by these two sided ideals. In particular,
the Yτ are contained in the corresponding eη

ij (an ℓ2
η dimensional algebra).

In fact, the space spanned by eη
ij is also spanned by QisijPj, where Qi and

Pi are the antisymmetrizers and symmetrizers of a set of standard tableaux
for η, which means tableaux in which the numbers increase left to right in
each row, and also top to bottom in each column. Thus 1 2

3
and 1 3

2
are

standard tableaux, but 3 2
1

,
2 3
1

and 2 1
3

are not. Here sij is the permutation

such that τi = sijτj . Each of these spaces has dimension ℓ2
η, with ℓη equal to

the number of standard tableaux, so
The dimension of Γη is the number of standard tableaux of η.
Counting all possibilities is tedious, so we have a magic formula in terms

of hooks.
For each box b in a Young graph with k boxes, define the hook of b,

gb = 1 plus the number of boxes directly to the right plus the number of
boxes directly beneath. Then

ℓη =
k!

∏

b

gb

.

Example: In the Young graph I have placed the corresponding hooks (this is
not a Young tableau)

7 5 3 2
6 4 2 1
3 1
1

ℓ =
11!

7 · 6 · 5 · 4 · 32 · 22 · 13
= 1320.

It would be hard to count this explicitly. For our more reasonable case ,

3 1
1

gives ℓ = 3!
3

= 2.
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11.2 Representations of SU(n)

We now turn to the extraction of arbitary representations of SU(n). Georgi
discusses the fundamental weights of SU(n), and shows that an arbitrary
representation can be found from a tensor product of an adequate number of
defining representations. The problem is to extract from the tensor product of
k defining representations ⊗Nk the irreducible pieces. We have seen that this
can be done by demanding that elements of the permutation group algebra
vanish. If we impose eη

iiw = 0 for all η and i save one, that is equivalent to
projecting out our representation

T a1a2···ak = (eη
iiw)a1a2···ak no sum on i

for one particular representation η and one basis vector i.

The different i generate equivalent representations. The different η’s,
however, each correspond to a different (inequivalent) representation of SU(n).

Before doing more formal arguments, we will do an example. Consider
three spin 1

2
objects, or the tensor product of three defining representations

of SU(2). We will extract from this 8 dimensional state space the piece e
11

.

From the problem you did for homework (#3, problem 1),

e11 =
2

6

∑

P

Γe11
(
P−1

)
P

=
1

3

(

1I + (1 2) −
1

2
(2 3) −

1

2
(1 3) −

1

2
(1 2 3) −

1

2
(1 3 2)

)

,

Let this act on the basis vectors which we expand as ↑= e1, ↓= e2.
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v e
11

v

↑↑↑ 1
3
↑↑↑ + 1

3
↑↑↑ −1

6
↑↑↑ −1

6
↑↑↑ −1

6
↑↑↑ −1

6
↑↑↑ = 0

↑↑↓ 1
3
↑↑↓ + 1

3
↑↑↓ −1

6
↑↓↑ −1

6
↓↑↑ −1

6
↓↑↑ −1

6
↑↓↑ = 2

3
↑↑↓ −1

3
↑↓↑ −1

3
↓↑↑

↑↓↑ 1
3
↑↓↑ + 1

3
↓↑↑ −1

6
↑↑↓ −1

6
↑↓↑ −1

6
↑↑↓ −1

6
↓↑↑ = −1

3
↑↑↓ +1

6
↑↓↑ +1

6
↓↑↑

↓↑↑ 1
3
↓↑↑ + 1

3
↑↓↑ −1

6
↓↑↑ −1

6
↑↑↓ −1

6
↑↓↑ −1

6
↑↑↓ = −1

3
↑↑↓ +1

6
↑↓↑ +1

6
↓↑↑

↑↓↓ 1
3
↑↓↓ + 1

3
↓↑↓ −1

6
↑↓↓ −1

6
↓↓↑ −1

6
↓↑↓ −1

6
↓↓↑ = 1

6
↑↓↓ +1

6
↓↑↓ −1

3
↓↓↑

↓↑↓ 1
3
↓↑↓ + 1

3
↑↓↓ −1

6
↓↓↑ −1

6
↓↑↓ −1

6
↓↓↑ −1

6
↑↓↓ = 1

6
↑↓↓ +1

6
↓↑↓ −1

3
↓↓↑

↓↓↑ 1
3
↓↓↑ + 1

3
↓↓↑ −1

6
↓↑↓ −1

6
↑↓↓ −1

6
↑↓↓ −1

6
↓↑↓ = −1

3
↑↓↓ −1

3
↓↑↓ +2

3
↓↓↑

↓↓↓ 1
3
↓↓↓ + 1

3
↓↓↓ −1

6
↓↓↓ −1

6
↓↓↓ −1

6
↓↓↓ −1

6
↓↓↓ = 0

Notice this only results in one state of Jz = 1
2

and one of Jz = −1
2
. So

e11 projects out a 2-dimensional s = 1
2

state. e22 would project out an
orthogonal spin 1

2
. Thus the tensor product of three spin 1/2’s is a spin

3/2 (the totally symmetric part, e11 ) and two spin 1/2 representations,
2 × 2 × 2 = 4 + 2 + 2.

Having completed this trivial but tedious example of the simple case of
SU(2) and , we are ready for some abstract reasoning.

Now we consider the general case of Nk. The basis vectors which are
mixed by the permutations are only those with the same number of indices
equal to 1, and the same number equal to 2, etc.. Consider the subspace
with ri of the indices equal to i, with

∑
ri = k, each ri = 1, . . . , N .

This subspace S~r is spanned by the basis vector

e = e1 ⊗ e1 · · · ⊗ e1
︸ ︷︷ ︸

r1 times

⊗ e2 · · · ⊗ e2
︸ ︷︷ ︸

r2 times

· · · ⊗ eN · · · ⊗ eN
︸ ︷︷ ︸

rN times

,

together with all permutations P e, for P ∈ Sk. If all the indices are different,
all ri = 0 or 1, all of the permutations are inequivalent, and we get a k!
dimensional space. But if the ri’s are not all ≤ 1, there is a subgroup P ⊂ Sk

with B e = e for B ∈ P. In fact, P = Sr1
× Sr2

× · · ·SrN
.

Let PP =
∑

B∈P
B which is a element of the group algebra A. Then

while the subspace S~r is spanned by {P e|P ∈ Sk} it is also spanned by
{PPP e|P ∈ Sk}.
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We now want to extract from S~r the piece projected out by eη
ii. The

products {eη
iiP} for all P are just sums of multiples of eη

ij , for all j (by
p. 125) so we want to know the dimension of the space {eη

ijPP |j = 1, ℓη}. As
eη is a two-sided ideal, this space is 〈

∑

k eη
ikbk〉, so the dimensionality depends

on the constraints on bk. If they were all independent, they would form an ℓη

dimensional space. But there are constraints. For B ∈ P, PPB = PP . Let’s
be more explicit:

eη
ijPP =

∑

n

eη
inbnj = eη

ijPPB =
∑

n

bnje
η
inB =

∑

nm

Γη
nm(B)eη

imbnj .

The eη
im are linearly independent, so bnj =

∑

m bmjΓ
η
mn(B), for B ∈ P. To

find out how many degrees of freedom survive this constraint for each j,
observe that Γη

mn(B) forms a reducible representation of the subgroup P. So
we can write

Γη(B) = U
⊕

ǫ

Γǫ(B) U−1

where Γǫ are irreducible representations of P. Now if c = bU ,

b = bΓη(B) = bU
⊕

Γǫ(B)U−1 =⇒ c = c
(⊕

Γǫ(B)
)

.

The vector c breaks up into pieces for each representation ǫ, with cǫΓǫ(B) =
cǫ for all B ∈ P. This is possible for nonzero c only if ǫ is the identity
representation, as the representations are irreducible.

Therefore the dimensionality of the space eη
iiPe is the number of times,

γη, that the identity representation of P is contained in Γη.

But the number of times the representation i is contained in Γη is

γη = ai=1I =
1

gP

∑

B∈P

χi ∗(B)χη(B) =
1

gP

∑

B∈P

χη(B)

for i=identity, where gP is the number of elements in P, which is
∏

ri!

Example: η = . From homework, and recalling χ = Tr Γ,

χ = 2 for B = 1I

χ = 0 for B = (1 2), (1 3), or (2 3)

χ = −1 for B = (1 2 3), or (1 3 2)
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Consider the space starting from e1 ⊗ e1 ⊗ e2.

P = {1I, (1 2)}, gP = 2, γη =
1

2
(2 + 0) = 1

so e11 generates only one state from the three-dimensional space S~r.
From e1 ⊗ e1 ⊗ e1, P = S3, gP = 6, γη = 1

6
(2− 1 − 1) = 0 so we get no state

here.
If all vectors are unequal, say e1 ⊗ e2 ⊗ e3 for SU(n > 2), P = 1I, gP = 1,
γη = 2

1
= 2.

For SU(N), there are N states of the form ei ⊗ ei ⊗ ei, not contributing

anything to η = . There are N(N − 1) states ei ⊗ ei ⊗ ej with i 6= j, each

contributing one state, so from these we get N(N − 1) states. There are also
N(N − 1)(N − 2)/6 states of the form ei ⊗ ej ⊗ ek, with i < j < k, each

contributing 2 states, so the dimension of is

N(N − 1) +
1

3
N(N − 1)(N − 2) =

N(N2 − 1)

3
=

{
2 for N = 2

8 for N = 3

Let’s work another example, for SU(N). As we need the characters

for this representation, let’s take them from Schensted: χ = 3 for 1I ∈ (14),
[1 element]; χ = 0 for (3, 1), [8 elements]; χ = 1 for (2, 12), [6 elements];
χ = −1 for (2, 2), [3 elements] and for (4), [6 elements].

Enumerating the basis states in the various partitions, and multiplying
χ(B) by their number for those within P, we find

indices subspace P γ
η

14 (3, 1) (2, 12) (2, 2) (4)

all i eieieiei S4

1

24

(

1 · 3+8 · 0+6 · 1+3 · (−1)+6 · (−1)
)

=0

i 6= j eieieiej S3
1

6

(

1 · 3+2 · 0+3 · 1+0 · (−1)+0 · (−1)
)

=1

i < j eieiejej S2×S2
1

4

(

1 · 3+0 · 0+2 · 1+1 · (−1)+0 · (−1)
)

=1

i6=j<k 6=i eieiejek S2
1

2

(

1 · 3+0 · 0+1 · 1+0 · (−1)+0 · (−1)
)

=2

all 6= eiejekeℓ (1I) 1
1

(

1 · 3+0 · 0+0 · 1+0 · (−1)+0 · (−1)
)

=3

Rewriting this with only the results for γη to allow room for counting
index choices and states, we have
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indices subspace P γ
η

# index choices # states

all i eieieiei S4 0 N 0
i 6= j eieieiej S3 1 N(N−1) N(N−1)
i < j eieiejej S2×S2 1 N(N−1)/2 N(N−1)/2
i6=j<k 6=i eieiejek S2 2 N(N−1)(N−2)/2 N(N−1)(N−2)

all 6= eiejekeℓ (1I) 3
(N

4

)
3
(N

4

)

So the total dimensionality of for SU(N)
is

0 + N(N − 1) +
N(N − 1)

2
+ N(N − 1)(N − 2)

+3
N(N − 1)(N − 2)(N − 3)

4!

= N(N − 1)

(
3

2
+ (N − 2) +

1

8
(N − 2)(N − 3)

)

=
(N + 2)!

8 (N − 2)!
.

For SU(3), N = 3, the total dimension is

5!/(8 · 1!) = 15.

We now know how to extract the irreducible representations or just to
count their dimensionality. Now it is time for magic.

The number γη of states extracted by eη
ii from S~r, the space spanned by

P (
⊗

eri

i ) by all P ∈ Sk, is given by the number of ways one can place r1

1’s, r2 2’s, · · · in the Young graph so that in each row the numbers do not
decrease, and in each column they increase. This is called a permissible
placement.

To see how this works, let’s check it out on for SU(N). For r1 = 4
there is no way to avoid two 1’s in the same column, so γ = 0.
For r1 = 3 and r2 = 1, the 2 has to be in the second row, so there is only one
way, γ = 1.
For r1 = r2 = 2, the only possibility is 1 1 2

2
, γ = 1.

For r1 = 2, r2 = r3 = 1, we have 1 1 2

3
and 1 1 3

2
, so γ = 2.

For r1 = r2 = r3 = r4 = 1, we have 1 2 3

4
, 1 3 4

2
, 1 2 4

3
, and γ = 3.

Note in our previous method, it was clear that these numbers only de-
pended on the set {ri} and not on the order. This is now not obvious.
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Consider r1 = 1, r2 = 2, r4 = 1. Then we have 1 2 4

2
and 1 2 2

4
, so again γ = 2,

as for r1 = 2, r2 = r3 = 1.
Now to count the dimensionality of an irreducible representation of SU(N)

belonging to the Young graph η, we must sum, over all choices ri, the corre-
sponding γη. But for each choice of ri the γη is the number of ways of placing
the indices in the graph in a permissible fashion. So the dimension of the
full irreducible representation of SU(N) is the number of ways of placing k
integers, chosen from 1, 2, , . . .N (repeats allowed) in a permissible fashion
in η.

Example for SU(3): 1 1
2

, 1 1
3

, 1 2
2

, 1 2
3

, 1 3
2

, 1 3
3

, 2 2
3

, 2 3
3

, for a total
of 8 dimensions.

There is an easier method of finding the dimensionality. For each box,
associate the value (N +column number− row number). Then divide by the
hook of that box. The dimension of the representation is the product of
these quotients over all the boxes.

−
−

+
N 1

N N 1

−
+ +N 2 +(N 2) !

Examples:   Dim 1
1
3 == (N N2 1)

3

   Dim = N 1
N N 1 4 2 1

1 =
8 !(N 2)−

Note: If the first column of a graph has N boxes, the hook of each box in
column 1 is equal to the (N +column number− row number) of the last box
in that row. Thus eliminating the first row does not change the dimension.
In fact, it does not change the representation either. This is because a totally
antisymmetric tensor with N indices is invariant.

Thus in SU(2), = , as we saw in detail. It also means that for

SU(N), we needn’t consider representations with N or more rows (except
perhaps to indicate the identity representation by one column of N boxes).


