
Chapter 1

Groups

1.1 Introduction

One of the fundamental problems in quantum physics is to solve the time-
independent Schrödinger equation

Hψ = Eiψ, (1.1)

where H is the Hamiltonian operator of the system, and ψ is a wave func-
tion of the dynamical coordinates. Ei is an unknown eigenvalue. Very few
Hamiltonians can be exactly solved, but many Hamiltonians of interest have
a symmetry to them, which provides important help in simplifying the prob-
lem.

Let us start with a few examples which you already know.

a) consider a one-dimensional potential problem,

H = −
~

2

2m

(

∂

∂x

)2

+ V (x), (1.2)

with a potential which is symmetric under x ↔ −x, which means
V (x) = V (−x), and the problem is parity invariant.

If ψ1(x) is an eigenfunction of (1.1) with eigenvalue E, so is ψ2(x) :=
ψ1(−x). Let us define a parity operator P which acts on any function
ψ(x) of one dimension to give a new function

(Pψ)(x) = ψ′(x) := ψ(−x).

7
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Then Pψ1 = ψ2. A Hamiltonian with a symmetric potential com-
mutes with the parity operator. Because we assumed Hψ1 = Eψ1,
PHψ1 = PEψ1 = EPψ1 = Eψ2, but the first term is HPψ1 = Hψ2,
and we see that ψ2 is also an eigenfunction of H , with the same eigen-
value.

Because the Hamiltonian is a linear operator, if ψ1 and ψ2 are both
eigenfunctions with the same eigenvalue E, so are

χ+ = ψ1 + ψ2 = (1 + P )ψ1,

χ− = ψ1 − ψ2 = (1 − P )ψ1,

unless one of these is identically zero. So we either have a pair of wave
functions, or we have a wave function which is an eigenfunction of the
parity operator; in fact, it must be either even, ψ1 = Pψ1, or odd,
ψ1 = −Pψ1, under parity, and generally

χ±(x) = ±χ±(−x), Pχ± = ±χ±.

Either the eigenfunction we started with, ψ1, is an eigenfunction of the
parity operator, or it is part of a two dimensional vector space gener-
ated by χ±, all vectors of which are eigenvalues of H with eigenvalue E,
and which is mapped into itself by the parity operator. The moral of
this is that we only need to look for even and odd eigenstates. This is
a considerable simplification, especially if we are searching numerically
for eigenstates. If the potential is not singular, odd eigenstates must
vanish at the origin and even eigenstates must have a zero first deriva-
tive there. As the overall scale is irrelevant for a solution of a linear
differential equation, there are no undetermined initial values at the
origin, i.e. we know ψ(0) and ψ′(0). We can therefore numerically in-
tegrate from the origin for various values of E, and bound eigenstates
can be found by scanning through these E values, noting when the
sign of the blow up at infinity changes sign. Without this symmetry,
we could not get all eigenstates that way.

b) Consider a three dimensional Hamiltonian with a spherically symmetric
potential V (~r ) = V (|~r|). This is invariant under rotations ri → r′i =
∑

j Rijrj, where R is an orthogonal 3 × 3 matrix. If we take a passive
viewpoint, (i.e. that the points have not changed but their coordinates
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have), we expect that the states of the system have not changed. That
is, ψ(P) is still the same for any physical point P, but in the new system
P is described with coordinates r′i rather than the old coordinates ri,
so as a function of these new coordinates we have a new wavefunction
ψ′(~r ′) = ψ(~r ), or ψ′(R~r ) = ψ(~r). If we use new coordinates ~x = R~r to
describe this relation, we have

ψ′(~x) := ψ
(

R−1~x
)

as the definition of ψ′. This is the passive view of a rotation, but we
can also consider a rotation actively, with an active interpretation ψ′

is the wave function of a new state, one with the same energy. Thus R
can be thought of as an operator on the Hilbert space of functions on
space. This operator commutes with the Hamiltonian and is linear, so
once again, if Hψ1 = Eψ1, then ψR = Rψ1 is also an eigenfunction of
H with eigenvalue E.

If we started with a function which had no particular symmetry prop-
erty under rotations, the rotated function ψR will not be multiple of ψ.
In this case, if ψ was an eigenfunction of H with eigenvalue E, we will
generate another eigenfunction for each possible rotation. If they were
all linearly independent, we would have an infinite number of quantum
states with the same energy. This will never happen, at least for bound
states of ordinary quantum mechanics with a finite number of degrees
of freedom and reasonably behaved potentials, so the functions must all
be linear combinations of a finite number of basis states. For a single
particle in a spherically symmetric potential, we find that these basis
functions are 2ℓ+1 functions proportional to the spherical harmonics
for a given ℓ,

ψm(~r ) = R(|r|)Yℓm(θ, φ), for m = −ℓ,−ℓ+1, ..., ℓ.

The 2ℓ + 1 functions Yℓm transform as a representation1 of the ro-
tation group.

Here we see that an infinite group of symmetries produces a much
greater simplification of the problem, reducing a three dimensional

1A mathematician would disagree with our nomenclature. He would say the 2ℓ + 1
Yℓm’s, for a fixed ℓ, form a module, and would use the word representation to describe
the matrix-valued function of the rotation, which describes the linear transformation of
this module under the action of the group.
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problem to a one-dimensional one, than does a finite symmetry like
parity.

c) Now consider the motion of a particle in a periodic potential, which for
simplicity we will take to be one dimensional. This might be the motion
of an electron in a perfect one dimensional crystal, for example. If a is
the lattice spacing, we have V (x + a) = V (x), and H commutes with
the operator T which translates by one lattice spacing,

T : ψ(x) → ψ′(x) := ψ(x− a).

As T can be applied many times, a function with no symmetry prop-
erty under translation would generate infinitely many functions. But
a better observation is that the function can be written as a sum of
Bloch states

ψ(x) =

∫

2π/a

0

dk eikxuk(x),

where the uk(x) are periodic functions with period a, (i.e. uk(x+a) =
uk(x)), with k ∈ [0, 2π/a]. Notice that the wave function itself, and
even the basis states eikxuk(x) from which it is made, are not periodic,
but the basis states do have a simple transformation property (they get
multiplied by a constant phase) under T .

d) Finally, let’s consider an example you probably have not seen before.
Consider in two dimensions a square lattice with a single impurity,
which we take to be at the origin. What might symmetry tell us about

the wave function of an electron in
the vicinity of this impurity? The
potential is invariant under coun-
terclockwise rotation by 90◦ about
the impurity. Let us call this C.
It is also unchanged by reflection
about the x-axis, by the reflection
about the y-axis, by the reflection
about the line x = y, and by the
relection about the line x = −y.
Let us call these

a

d

b

c
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reflections2 mx, my, σ+, σ− respectively. Clearly we are dealing with
the symmetries of a square.

In considering what other eigenfunctions we might get from a given
eigenfunction by using these symmetries, we see that the reflections
each might generate an additional function, but applying it again will
not generate anything new, because a reflection applied twice does
nothing, or m2

i = 1, σ2
± = 1. The rotation C can be applied more

than once, like the translations, but unlike them we eventually get back
to the identity transformation. In this case, four successive rotations
counterclockwise by 90◦ gives us nothing new, C4 = 1. The least
positive number of times a symmetry can be multiplied by itself to give
the identity is called the order of the symmetry. The order of each of
the reflections is 2, the order of C is 4.

This set of transformations is called the symmetry group of the square,
because it leaves the square shown invariant, although it does permute
the four labelled atoms. It is called D4 or C4v.

As for the other symmetries, if we have an eigenfunction ψ(x, y) of H for
our impurity, applying the symmetry transformations C, mi, or σ± will give
an eigenfunction, possibly a different one, with the same eigenvalue. Then
we can apply another symmetry again, and get an eigenfunction. How many
different eigenfunctions can we get? If the original ψ was already symmetric
under the symmetry, we get nothing new. But if it is an arbitrarily messy
function, we can expect that each symmetry will give us a new function.
Can we then get an infinite number by continuing to apply symmetries? If
our symmetry consisted only of repeated rotations C, clearly there would
only be four. But what about mixing reflections? How many symmetries are
there? This is a question about groups, so let’s turn to a formal exploration
of groups.

1.2 Definition of a Group

Let us ask what are the general properties which a set of symmetries has.

2My notation is essentially from Joshi, except my C is his C−1 and also Jones’ c. The
other Jones elements are b1 = mx, b2 = σ+, b3 = my, and b4 = σ

−
.
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a) Suppose A and B are operators on the Hilbert space of wavefunctions,
and they are symmetries of the Hamiltonian. Then the operation which
consists of first applying B and then applying A, called the composition
of A and B and written A ◦ B, is also a symmetry. Thus the product
of two elements of the set is also in the set.

b) Clearly if we do nothing, the Hamiltonian is unchanged. Thus the do-
nothing, or identity operator, is always in the set.

c) The operations we call symmetries have to preserve the norm of the states,
so they are unitary operators on the Hilbert space and therefore have
an inverse. If A left the Hamiltonian unchanged, clearly A−1, which
brings it back to what it was, must leave it unchanged. Thus the inverse
of every element of the set exists and is in the set.

These properties are essentially the definition of a group, except that we
need to add one property we have missed, which is that transformations which
map any space into itself are associative under composition, A ◦ (B ◦ C) =
(A ◦ B) ◦ C, because however you place the parentheses, either side means
apply C, then B, and then A. Putting this together, we get the

Definition: A group G is a set of distinct elements A,B, ... together with
a multiplication law A⊙ B or simply AB, such that

a) If A ∈ G and B ∈ G, then AB ∈ G. This is called closure, the set is
closed under group multiplication.

b) For all A,B,C ∈ G,A(BC) = (AB)C. This is called associativity.

c) ∃e ∈ G such that ∀A ∈ G, eA = Ae = A. e is called the identity, and
can also be written as 1 or 1I. 3

d) For each A ∈ G, there is a B ∈ G such that AB = BA = e. B is called
the inverse of A and is written A−1.

Note that the multiplication law is not necessarily ordinary multiplication.
Some examples of groups are

3Physicists generally do not use e, too easily confused with exp 1. For some reason
mathematicians like e.
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Set Multiplication Law Name

all integers addition Z

integers 0, 1, ...p− 1 addition mod p Zp

rotations in three dimensions composition SO(3)
rotations in two dimensions composition SO(2) = U(1)

symmetries of a square composition C4v or D4

Some examples on non-groups:

non-negative integers addition inverses do not exist
rotations through angles < π/2 composition not closed

Let us look at some of our symmetry groups.

Parity: The group consisting of parity P and the identity 1I is a group
with two elements and a multiplication table giving AB:

A
B❅
❅ 1I P

1I 1I P
P P 1I

Note that P 2 = 1I, because changing the sign of x twice is doing nothing.

D4: In order to work out the multiplication table of the symmetry group
of the square, it is good to be clear on what each transformation does. Let
us think of things actively, and look at what each element does to a square
with its vertices labelled. Thus

1I
a b
d c

=
a b
d c

, C
a b
d c

=
b c
a d

.

C can also be repeated,

C2 a b
d c

= C
b c
a d

=
c d
b a

,

C3 a b
d c

= C(C2)
a b
d c

= C
c d
b a

=
d a
c b

,

C4 = 1I.
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For the reflections,

mx
a b
d c

=
d c
a b

, m2

x = 1I

σ+

a b
d c

=
c b
d a

, σ2

+ = 1I

my
a b
d c

=
b a
c d

, m2

y = 1I

σ−
a b
d c

=
a d
b c

, σ2

− = 1I

The results of applying a reflection and then a rotation are identifable from
the results:

0 : Cmx
a b
d c

= C
d c
a b

=
c b
d a

= σ+

a b
d c

,

so Cmx = σ+. Rotating the output of mx acting on the initial square

additional times with C, we generate my
a b
d c

and σ−
a b
d c

, so we also see

that C2mx = my, C
3mx = σ−. Further consideration of this type produces

the following multiplication table:

A
B❅
❅ 1I C C2 C3 mx σ+ my σ−

1I 1I C C2 C3 mx σ+ my σ−
C C C2 C3 1I σ+ my σ− mx

C2 C2 C3 1I C my σ− mx σ+

C3 C3 1I C C2 σ− mx σ+ my

mx mx σ− my σ+ 1I C3 C2 C
σ+ σ+ mx σ− my C 1I C3 C2

my my σ+ mx σ− C2 C 1I C3

σ− σ− my σ+ mx C3 C2 C 1I
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Filling in this table can be done
using several approaches. The en-
tries marked − are trivial, and the
entries marked 0 we have already
found. We can apply the compo-
sition to the standard square and
see what happens, as in

1 : mxmy
a b
d c

= mx
b a
c d

=
c d
b a

= C2 a b
d c

,

so mxmy = C2.

− − − − − − − −
− − − − 0 4 3 5
− − − − 0 6 6 6
− − − − 0 6 6 6
− 7 9 9 2 10 1 12
− 8 9 9 12 2 11 12
− 8 9 9 12 11 2 12
− 8 9 9 12 11 12 2

Table of order of steps taken
in filling out the multiplica-
tion table.

We can notice that reflecting twice about the same axis does nothing, so

2 : m2

x = σ2

+ = m2

y = σ2

− = 1I.

By associativity and previous results, we have

3 : Cmy = C(C2mx) = C3mx = σ−

4 : Cσ+ = C(Cmx) = C2mx = my

5 : Cσ− = C(C3)mx = C4mx = mx

Proceding in this fashion instantly gives (6).
When we get up to mxC, associativity won’t help, so we need to work

out its effect:

mxC
a b
d c

= mx
b c
a d

=
a d
b c

= σ−
a b
d c

, so 7 : mxC = σ−

Now we can use associativity again,

8: myC = C2mxC = C2σ− = σ+

σ+C = CmxC = Cσ− = mx

σ−C = C3mxC = C3σ− = my.

Now right multiplication by C is determined, so the AC2 and AC3 columns
are done trivially (9) by associativity.

By now we have so many entries that associativity will give us the rest.
For example 10 : mxσ+ = mx(mxC

3) = m2
xC

3 = C3.
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Multiplying this equation on the left by various powers of C gives all the
miσ+ and σ−σ+ (11), and then multiplying these on the right gives all the
products of two reflections (12).

This tedious construction of the multiplication table enables us to make
a few observations.

a) We have explicitly shown closure under multiplication, for all the elements
in the table are in the group. This would not have been true if we had
tried to define {1I, C, C2, C3, mx} as a group, because the upper left
5 × 5 piece of the product table contains other elements as well. But
{1I, C, C2, C3} does work, with none of the reflections included, and
this means C4 := {1I, C, C2, C3} is a subgroup of D4.

Definition: A subgroup H of a group G is a subset of elements H ⊆ G,
having the same multiplication law as G, which is closed under multiplication
and forms a group by itself.

b) No element of the group occurs twice in the same column4, for if the A and
B rows both had the same entry in the D column, with A 6= B, then
AD = BD, and multiplying on the right by D−1 gives A = ADD−1 =
BDD−1 = B, which is a contradiction.

As each column has the same number of entries as there are elements of
the group, and none of the elements is repeated, each element appears
once in each column. Thus xa = b can always be solved for x, (but this
is obvious, as x = ba−1). The fact that each element occurs exactly once
is called the rearrangement theorem. A very important consequence
of this theorem is that, if f : G → V is any function from the group
into a vector space,

∑

A∈G

f(A) =
∑

A∈G

f(AB), for any B ∈ G.

This is because we are still summing f over all the elements of the
group, and the finite sum is indifferent to the order in which the ele-
ments are added.

4Our multiplication table is appropriate only for finite groups, that is, groups with
a finite number of elements, unlike the continuous rotation groups like SO(3). But our
definition of subgroups applies for infinite groups as well.
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This discussion was for a finite group. For a group with an infinite
number of elements, this sum may not be well defined. For continu-
ous groups with elements described by a set of continuous parameters
{νi}, the thing which serves the role of summation over the group is
integration,

∑

A

f(A) →

∫

µ({ν})dν1...dνnf(A(ν1, ..., νn)),

where µ is the measure for the integration. This will not be invari-
ant

(∫

f(A) 6=
∫

f(AB)
)

unless the measure µ({ν}) is chosen properly,
which can only be done for compact groups in general. More about
this later.

The rearrangement theorem also applies to rows, and the measure is
also left invariant,

∑

A∈G

f(A) =
∑

A∈G

f(BA), for any B ∈ G.

c) Notice Cmx = σ+ but mxC = σ− 6= σ+, so the multiplication law need
not be commutative, in which case the group is called nonabelian. A
group is abelian if AB = BA for all A and B in the group.

d) We have seen that C and its powers form a subgroup without the other
elements. This subgroup is called C4. We say that C generates this
subgroup. Each of the reflections, mi or σ±, generates a subgroup with
only two elements, itself and the identity, each with a multiplication
table which is the same as that for parity, except the names are changed.
We say these subgroups are each isomorphic to the parity group. All
of these order 2 groups are also isomorphic to the group Z2 of integers
mod 2 under addition.

Two groups G and G′ are isomorphic if there exists a bijective map
f : G → G′ which respects multiplication, f(a)f(b) = f(ab) for all a and b
in G. By bijective map we mean that f is one-to-one and onto, or in other
words no two distinct elements in G are mapped into the same element in
G′, and every element in G′ is the image of some element in G. Without
the requirement that f be either one-to-one or onto, but still requiring that
f(a)f(b) = f(ab), we say f is a homomorphism from G into G′.
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The symbol representing “is isomorphic to” is ∼=, so G1
∼= G2 means G1 is

isomorphic to G2. Note isomorphism is an equivalence relation (to be defined
shortly), so that we usually think of a group as a representative of all groups
isomorphic to it. Note that the groups generated by parity, or by mx, are
isomorphic to the group Z2 with elements {0, 1} with addition mod 2 as the
product, or to the group with elements {−1, 1} with ordinary multiplication
as the product. In fact, it is easy to show that all groups with exactly two
elements are isomorphic.

Note < C,mx >= C4v.

1.3 Conjugacy

Two elements B and C of a group G are said to be conjugate if there exists
an element A ∈ G such that

A−1BA = C.

Conjugacy is easily shown to be an equivalence relation.
A relation on a set S is a boolean valued function on S × S. That

is to say, for each ordered pair it is either true or not. It is usually stated
differently: the relation A ∼ B holds for certain pairs of elements A and B in
G, and not for some other pairs of elements. A relation ∼= is an equivalence
relation if

1. it is reflexive. That is, A ∼= A for every A ∈ G.

2. it is symmetric. That is, if A ∼= B then B ∼= A, for any A and B in
G.

3. it is transitive. That is, if A ∼= B and B ∼= C, then A ∼= C, for A, B,
and C in G.

Any equivalence relation on a set divides the set up into disjoint equiva-
lence classes, all of the elements in one equivalence class being equivalent
to each other and not to any of those in other classes. As conjugacy in a
group G is an equivalence relation, it divides G into conjugacy classes.
This division plays an important role in the analysis of representations of a
finite group.
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Any element B which commutes with all other elements of the group G
is clearly in a conjugacy class by itself, for then A−1BA = B for any A. The
set of all such elements is called the center of the group. In particular,
an Abelian group of order n has n conjugacy classes, each with one element,
and then the center is the whole group. Also, for any group, the identity
element is always in a class by itself.

For a nontrivial example consider the group D4 = C4v discussed above.
The operator mx does not commute with C, but rather C−1mxC = my, so
mx

∼= my. Similarly C−1σ−C = σ+, so σ− ∼= σ+. If we conjugate C with mx,
m−1

x Cmx = C3, so C ∼= C3. We have so far divided the 8 elements into 5
classes:

C1 = {1I}, C2 = {C,C3}, C3 = {C2},

C4 = {mx, my}, C5 = {σ+, σ−}

To show that these are separate conjugacy classes we need to show that
there is no element B ∈ G which we can use to conjugate an element in
one of these classes that gives an element in another. This can be done by
exhaustive search or by observing that conjugating A by any element B in
this group does not change whether or not A is a reflection, and leaves the
effect on the line y = 0 unchanged. Thus we have 5 conjugacy classes, two
with a single element each and three with two elements each.

1.4 Cosets

If a group G has a subgroup H , there is another kind of equivalence relation

g1
∼= g2 if there is an element h ∈ H ∋ g1h = g2.

H can’t just be any subset; the requirements for the relation to be an equiv-
alence relation require H to be a group. The equivalence class of g is just
the set

gH := {gh|h ∈ H}

which is the set of elements gh for all h ∈ H . It is called the left coset of
H in G with respect to g. We can also define right cosets analogously—they
are not necessarily the same.

Note that each coset has the same number of elements as H , and the
whole group is the disjoint union of the cosets. The number of elements in
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a group is called the order of the group, and we have just shown that the
order of G is equal to the order of H multiplied by the number of cosets of H
in G. In particular, the order of G is divisible by the order of H . We define
the index of H in G to be the number of cosets of H in G, which we see is
given, for finite groups, by

index of H in G = order(G)/order(H).

1.5 Cyclic Group

Any nonidentity element g of a finite group generates a sequence
{1I, g, g2, ...} which must eventually repeat an element. The first one repeated
must be 1I, so we can take the smallest n > 0 for which gn = 1I, and call
it the order of the element g in G. The set H = {1I, g, g2, ...gn−1} is a
subgroup of order n. Such groups, which are constructed of powers of a
single generator, are called cyclic groups, and may be written as 〈g〉. Every
nonidentity element of order n generates a cyclic subgroup, so there is a
subgroup of order n, and thus the order of each element divides the order of
the group G.

1.6 Normal Subgroups

H is called a normal subgroup of G (H ✁ G) if the left and right cosets
are the same for every element x ∈ G, or

xH = Hx for all x ∈ G.

This does not imply that each element h ∈ H commutes with x, but rather
that for each h and x there is an h′ with xh′ = hx, or h′ = x−1hx, with
h′ ∈ H .

As an example, consider G = D4 = C4v. The subgroup C4 generated
by C is a normal subgroup, as shown below. The subgroup H = {1I, mx}
is not normal (H 6✁G), because CH = {C,Cmx} = {C, σ+}, while HC =
{C,mxC} = {C, σ−}.

If H is a normal subgroup of G, the cosets of H in G may be consid-
ered elements of another group, the quotient group G/H , by defining the
multiplication law

xH ⊙ yH = xyH.
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This looks like it might work for any subgroup H , normal or not, but it
doesn’t, because the coset xH does not uniquely specify an element x ∈
G, and the definition of ⊙ above only works if xyH is independent of this
ambiguity. For a normal subgroup Hy = yH , so the set of elements xHyH
(the set is independent of the ambiguity) is xyHH = xyH .

We could use an example. Consider the set of four elements in D4 gener-
ated by C,

H = C4 := 〈C〉 = {1I, C, C2, C3}.

This is a subgroup. There are two right cosets, H and

Hmx = {mx, Cmx, C
2mx, C

3mx} = {mx, σ+, my, σ−}.

H and Hmx are disjoint and together make up G. There are also two left
cosets, H and mxH , which do the same. As the H ’s are the same, it must
be true that Hmx = mxH , and H is a normal subgroup, as must be every
other subgroup of index 2 in any group. The elements of the coset HP :=
mxH = Hmx are the four elements of the group other than those in H .
The quotient groupD4/C4 has only two elements,
the identity H , and HP , with the multiplication
table shown, so it is isomorphic to the parity
group or to Z2.

A
B❅
❅ H HP

H H HP

HP HP H

1.7 Direct Products

Let H and K be two groups of orders η and κ respectively. Then the set
H ×K is the set of pairs of elements, one from H and one from K, which
we can write5 as {(h, k), h ∈ H, k ∈ K}. There is no particular meaning
to calling this multiplication — it is just notation for an ordered pair of
elements, one from each set. Notice that H ×K has ηκ elements.

Now we can turn H×K into a group by defining the group multiplication
law

(h1, k1) ⊙ (h2, k2) := (h1 ⊙ h2, k1 ⊙ k2),

where the two ⊙’s on the right are the ones for H and for K respectively. It
is easy to show that H ×K, which is called the direct product of H and

5Most books write the elements as h k, but this is not multiplication by either of the
operators of the groups.
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K, is a group, with identity (1I, 1I), and with the inverse of (h, k) given by
(h−1, k−1).

The two groups act independently. For example, in elementary particle
physics there is invariance under the rotation group SO(3) in space, and
also under the color group SU(3). These act completely independently, so
one barely mentions that there is a SO(3) × SU(3) symmetry. However, in
electro-weak theory, there is a symmetry under weak isospin and another
U(1) group, SU(2) × U(1), which is often mentioned like this because a
subgroup, which is not a direct product of two groups, is the one which
survives the spontaneous symmetry breaking.

IfG = H×K, it contains normal subgroups {(h, 1I)|h ∈ H} and {(1I, k)|k ∈
K}, which loosely speaking we could just call H and K. So we can form the
quotient group G/H and it is clearly isomorphic to K, K ∼= G/H , and also
H ∼= G/K. But this is not true for a general group G with a normal sub-
group H . For example, as we have seen, C4 = 〈C〉 is a normal subgroup of
D4 with a quotient group equivalent to Z2, but C4 and Z2 are both Abelian,
and the direct product of Abelian groups is Abelian, while D4 is not, so

D4 6= (D4/C4) × C4.

Another example which is important in atomic and nuclear physics in-
volves continuous (Lie) groups rather than finite groups. To the extent that
spin is decoupled from spatial motion, an atomic or nuclear system is invari-
ant under rotations of spins of electrons and nuclei (for atomic physics) or
of the nucleons (in nuclear physics) separately from rotations of their wave

functions in space. That is, the generators of rotations of spin ~S and of po-
sition ~L are independent conserved quantities or symmetry generators. So
the symmetry group is SU(2)S × SO(3)L. But this is not an exact sym-

metry, because there are ~L · ~S interactions, and the true symmetry is only
under simultaneous rotation of spin and orbital degrees of freedom, or ~J .
This SU(2)J is a normal subgroup of the SU(2)S × SO(3)L. If we treat
the interaction terms as a perturbation, each (L, S) multiplet gets split into
multiplets of different J .
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1.8 Kernel

Let G and K be groups and f : G → K be a homomorphism with kernel
H , i.e.

H = {h ∈ G ∋ f(h) = 1IK}.

Then H is a normal subgroup of G, ker(f) ✁ G.

It is easy to see that H is closed under multiplication and contains
the identity of G, and is therefore not empty. To show that it is normal,
we need only show g−1hg ∈ H for all g ∈ G, h ∈ H . But f(g−1hg) =
f(g−1)f(h)f(g) = f(g−1)f(g) = 1IK , because a homomorphism preserves
products and inverses and the identity. Thus g−1hg is in H , and H ✁ G.

The notion of kernels, and equivalencing by ignoring things in the kernel,
is a common notion with many applications in mathematics. One physics
application will come much later, when we consider spontaneous symme-
try breaking. There the full dynamical symmetry group does not leave the
vacuum state invariant, but the map from the group into the variations of
the vacuum state has a kernel, the symmetries which are not broken, which
is a normal subgroup, and the quotient group is generated by the massless
Goldstone bosons.

1.9 Permutations

Consider n boxes labelled 1, 2, ..., n and n objects a, b, ... which fit one to each
box. Represent the composite action of moving the object in the i’th box to
the ri’th box (all simultaneously) by

(

1 2 ... i ... n
r1 r2 ... ri ... rn

)

.

The ri’s are just the integers 1, ..., n but in some different order, with n!
possibilities. These composite movements are called permutations of n
objects, and, for a given n, form a group called the symmetric group Sn.

Let us specialize to S3.



24. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

Effect on
Short Name = Full Name Action + − ∗

1I =

(

1 2 3
1 2 3

)

Identity + − ∗

(12) =

(

1 2 3
2 1 3

)

interchange 1 and 2 − + ∗

(13) =

(

1 2 3
3 2 1

)

interchange 1 and 3 ∗ − +

(23) =

(

1 2 3
1 3 2

)

interchange 2 and 3 + ∗ −

(123) =

(

1 2 3
2 3 1

)

1 → 2 → 3 → 1 ∗ + −

(132) =

(

1 2 3
3 1 2

)

1 → 3 → 2 → 1 − ∗ +

The short names we have given are called cycles, and (n1, n2, ..., nr) might
have been better written as (n1 → n2 → ... → nr → n1). Thus (123) =
(231), etc. All permutations in general can be written as products of disjoint
cycles, but not necessarily as a single cycle as we can for S3, which doesn’t
have enough elements to have two nontrivial disjoint cycles. It is also possible
to write all permutations in terms of a product of transpositions, which
are cycles of two elements, or simple interchanges, but these are not disjoint.
For example, (123) = (13)(12). You should check this out, applying (12)
first, and then (13).

The sign of a permutation is ±1, depending on whether it can be written
as a product of an even or odd number of transpositions. Although the
decomposition of a permutation into transpositions is not unique, the sign
is well defined. Otherwise there could be no fermions. The sign of the
permutation P is often written (−1)P , which has no other intrinsic meaning.

The even permutations, i.e. those with positive sign, obviously form a
subgroup An, called the alternating group. In fact, f : Sn → Z2 with
f : P 7→ (−1)P is a homomorphism from Sn into the group Z2 = {1,−1}
with ⊙ ordinary multiplication. The kernel of this homomorphism is An,
which proves An is a normal subgroup. For n = 3 we have a group of three
elements,

A3 = {1I, (123), (132)} ∼= Z3.
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1.10 Groups of low order

Every group needs to include the identity. Thus the smallest group is the
only group of order one, {1I}. Any other element g of a finite group generates
a cyclic subgroup of order the same as the order of g. If there are no other
elements, the group is the cyclic group of order n, Zn, which can be thought
of as the integers {0, 1, ..., n − 1} with ⊙ taken to be addition mod n, or
as the complex numbers of unit magnitude zk = e2πik/n, with ⊙ ordinary
complex multiplication. Thus for every integer n > 0 there is at least one
group of order n. If n is a prime, the order of any non-identity element must
be n because it must divide n. Then it generates the full group, and there is
nothing unresolved in its multiplication table. Thus there is only one group
of order p for each prime6 p.

Thus there is one group of order two and one of order three. For order
four, in addition to the cyclic group Z4, we can look for a group with
no element of order 4. As the orders must divide 4, we must have three
elements, A, B, C, each of order two, so each has square 1. What is AB?
It can’t be 1I because A 6= B, and it can’t be either of A or B, as the other
is not the identity, so it must be C. The same argument determines that
BA is neither 1I nor A nor B, so it must also be C, AB = BA. As A
and B were arbitrary non-identity elements, the group is Abelian and the
multiplication fully determined. This group is called the Vierergruppe. It
is the symmetry group of a rectangle, the subgroup of the symmetry group
of the square, D4, and it is generated by mx and my, or 〈mx, my〉.

For order 6 we already have the cyclic group Z6 and the permutation
group S3. These are all groups of order 67.

6Note when we count groups, we are actually counting equivalence classes of groups
under isomorphism — that is, we do not separately count two formulations, such as the
two of Zn above, which are isomorphic to each other.

7If none of the elements is of order 3, there must be 5 of order 2. Picking two of them
as A and B, the argument above tells us that AB is one of the others, and has order two,
so ABAB = 1 ⇒ BA = AB. Then this element, along with A, B and the identity, form a
Vierergruppe subgroup. But the order of a subgroup must divide the order of the group,
so this is impossible.

It is also impossible for all the non-identity elements to have order 3. To see this, let A

be one such element and B another which is also not A2. Then AB is a fourth, as it can’t
be any of the others. Then B2 is the fifth, but A2B is then impossible.

Thus there must be one element A of order three, and one, B, of order 2. Then the
group consists of {1I, A, A2, B, BA, BA2}, all of which must be distinct. What is AB?
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It is either BA, in which case the group is 〈A〉 × 〈B〉 ∼= Z3 × Z2, or else AB = BA2.
Any product is now determined, because we know how to move any B to the left, and
this group is isomorphic to S3, with B 7→ (12) and A 7→ (123). So where is Z6? It is
isomorphic to Z3 ×Z2, which in the additive formulation of the cyclic groups is given by
1Z6

7→ 1Z3
· 1Z2

.


