Physics 618Homework #5Due: Thursday, Feb. 23, 2017 at 4:00 PM

1 [10 pts] SU(1,1) is the set of 2×2 complex matrices of determinant 1 which leave invariant the form $|z_1|^2 - |z_2|^2$.

a) Find all elements in an infinite simal neighborhood of $1\!\!1,$ and parameterize them.

b) What is the dimension of this group? Give a well-chosen basis for the Lie algebra.

c) Find the structure constants and the Killing form. Is the group semisimple?

d) Evaluate $e^{i\Sigma\nu_j L_j}$ for finite ν_j , at least well enough to discuss the range of the parameters. Is the group compact? Is it simply connected?

2 [5 pts] Show that there does not exist a two-dimensional semisimple Lie algebra.

3 [10 pts] Let $R(\vec{\omega})$ be a rotation $\vec{r} \to \vec{r}'$ where, to first order in the angle of rotation $\omega, \vec{r}' = \vec{r} - \vec{\omega} \times \vec{r}$. *R* acts on the space of functions on \mathbb{R}^3 by Rf = f', with $f'(\vec{r}') = f(\vec{r})$, and if for infinitesimal $\vec{\omega}$ we write $R = 1 + i\vec{\omega} \cdot \vec{L}$, a) show that $\vec{L} = -i\vec{r} \times \vec{\nabla}$.

b) Express this in component form, using ϵ_{ijk} , and verify that the operators L_i satisfy the SU(2) Lie algebra commutation relations.

c) Show that, in spherical coordinates,

$$L_z = -i\frac{\partial}{\partial\phi}, \qquad L_{\pm} = \frac{1}{\sqrt{2}} e^{\pm i\phi} \left(\pm \frac{\partial}{\partial\theta} + i\cot\theta \frac{\partial}{\partial\phi}\right).$$

d) Show that if a set of functions $Y_{\ell m}$ transform as $|\ell m\rangle$, then $Y_{\ell m}(\theta, \phi) = Y_{\ell m}(\theta) e^{im\phi}$. Find an equation to give $Y_{\ell,-\ell}(\theta)$ up to a multiplicative constant, and a recursion relation to determine the other $Y_{\ell m}$.

4 [5 pts] Complete the calculation begun in class for the Clebsch-Gordon coefficients $(1\frac{1}{2} \ell m | 1\frac{1}{2} m_1 m_2)$.