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The quantum Hall effect in two-dimensional electron gases 
involves the flow of topologically protected dissipationless charge 
currents along the edges of a sample. Integer or fractional electrical 
conductance is associated with edge currents of electrons or 
quasiparticles with fractional charges, respectively. It has been 
predicted that quantum Hall phenomena can also be created by edge 
currents with a fundamentally different origin: the fractionalization 
of quantum spins. However, such quantization has not yet  
been observed. Here we report the observation of this type of 
quantization of the Hall effect in an insulating two-dimensional 
quantum magnet1, α-RuCl3, with a dominant Kitaev interaction 
(a bond-dependent Ising-type interaction) on a two-dimensional 
honeycomb lattice2–7. We find that the application of a magnetic  
field parallel to the sample destroys long-range magnetic order, 
leading to a field-induced quantum-spin-liquid ground state with 
substantial entanglement of local spins8–12. In the low-temperature 
regime of this state, the two-dimensional thermal Hall conductance 
reaches a quantum plateau as a function of the applied magnetic 
field and has a quantization value that is exactly half of the two-
dimensional thermal Hall conductance of the integer quantum 
Hall effect. This half-integer quantization of the thermal Hall 
conductance in a bulk material is a signature of topologically 
protected chiral edge currents of charge-neutral Majorana 
fermions (particles that are their own antiparticles), which have 
half the degrees of freedom of conventional fermions13–16. These 
results demonstrate the fractionalization of spins into itinerant 
Majorana fermions and Z2 fluxes, which is predicted to occur in 
Kitaev quantum spin liquids1,3. Above a critical magnetic field, the 
quantization disappears and the thermal Hall conductance goes 
to zero rapidly, indicating a topological quantum phase transition 
between the states with and without chiral Majorana edge modes. 
Emergent Majorana fermions in a quantum magnet are expected to 
have a great impact on strongly correlated quantum matter, opening 
up the possibility of topological quantum computing at relatively 
high temperatures.

Topological states of matter are described in terms of topological 
invariant quantities whose values are quantized. The quantity most 
frequently used to prove the existence of these states is the electrical 
Hall conductivity. In the quantum Hall state, the Hall conductance σxy

2D 
is quantized in units of e2/2πħ, where e is the electronic charge and ħ is 
the Planck constant, as σ = / πq e ħ( 2 )xy

2D 2 ; q is an integer in the integer 
quantum Hall effect (QHE) and a fraction in the fractional QHE where, 
with very few exceptions, it has an odd denominator. These quantiza-
tions attest to topologically ordered states. Another topological invar-
iant in the topological phase is the two-dimensional (2D) thermal Hall 
conductance. The thermal Hall conductivity per 2D sheet, κxy

2D, is quan-
tized in units of π/ / /k ħ T( 6) ( )B

2 , where kB is the Boltzmann constant 
and T is the temperature, as

κ / = π/ /T q k ħ( 6)( ) (1)xy
2D

B
2

Although the thermal Hall conductivity is much harder to measure 
than electrical Hall conductivity, it has a clear advantage in revealing  
the topological phases possessing charge-neutral excitations that 
cannot be detected by the electrical Hall conductivity. In particular, a 
q = 1/2 state with positive thermal Hall sign is a decisive manifestation 
of the charge-neutral edge currents of Majorana particles (Fig. 1a, b), 
distinguishing unambiguously between different candidate topological  
orders. We note that a Majorana quantized phase characterized by 
q = 1/2 has been predicted in chiral topological superconductors13–15. 
However, as the topological superconductivity in bulk materials has not 
been fully established, previous experiments searching for Majorana 
fermions have focused on the proximity effect between conventional 
superconductors and nanowires or topological materials17–20. Here we 
present a fundamentally different approach to this issue and perform 
direct measurements of the thermal Hall conductance in a bulk insu-
lating magnet.

Systems composed of interacting 1/2 spins on a honeycomb lattice 
with bond-directional exchange interactions JK are of great interest 
because they host quantum-spin-liquid (QSL) ground states where 
topological excitations emerge1. Such Kitaev QSLs exhibit two types 
of fractionalized quasiparticle excitation, that is, itinerant (mobile) 
Majorana fermions and Z2 fluxes with a gap. The Majorana fermion 
has a massless (gapless) Dirac-type dispersion in zero field. In magnetic 
fields, a Majorana fermion system characterized by the bulk gap and 
gapless edge modes has been realized1,3, and the Z2 flux obeys anyonic 
statistics.

Recently, a strongly spin–orbit-coupled Mott insulator, α-RuCl3, has 
emerged as a prime candidate for hosting an approximate Kitaev QSL. 
In this compound, local jeff = 1/2 pseudospins are almost coplanar 
within the 2D honeycomb layer and the Kitaev interaction, 
JK/kB ≈ 80 K, has an important role5–7. The system is in a spin-liquid 
(Kitaev paramagnetic) state below about JK/kB and shows antiferro-
magnetic (AFM) order with zigzag spin structure21 (Fig. 1c) at the Néel 
temperature TN ≈ 7 K due to non-Kitaev interactions, such as 
Heisenberg exchange and off-diagonal interactions. The thermal Hall 
conductance of α-RuCl3 has been measured in a magnetic field per-
pendicular to the 2D planes22. For this geometry, a finite positive κxy/T 
emerges in the spin-liquid regime, at TN < T ≲ 80 K. On entering the 
AFM state, κxy/T changes sign and its magnitude is strongly suppressed. 
The quantization and plateau behaviour of κ /Txy

2D  have not been 
observed in the spin-liquid regime. Therefore, expanding the measure-
ments to a lower-temperature region in the liquid state is crucial.

The response of α-RuCl3 to magnetic fields is highly anisotropic, 
with largely different in-plane and out-of plane properties8,11,12,23,24. It 
has been reported that although TN is minimally influenced by an 
external magnetic field perpendicular to the 2D plane, it is markedly  
suppressed by a parallel field. This highly anisotropic response is con-
firmed by measurements of the longitudinal thermal conductivity, κxx, 
with the heat current along the a axis in a magnetic field H applied 
along various directions in the a–c plane, as shown in the inset of 
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Fig. 2a, where H∥ = Hsinθ and H⊥ = Hcosθ are the field components 
parallel and perpendicular to the a axis, respectively, and θ is the angle 
between H and the c axis. In zero field, κxx exhibits a distinct kink at 
TN, as shown in Fig. 2a. Although this kink is observed in a perpendic-
ular field (θ = 0°) of 12 T at the same temperature, no such anomaly is 
observed in a parallel field11,12 (θ = 90°) of 7 T. In Fig. 2a, we also plot 
κxx in an applied magnetic field of 8 T, tilted away from the c axis 
(θ = 60°, µ0H∥ ≈ 7 T). As in the case of the parallel field, no kink is 

observed. Figure 1c displays the phase diagram of an α-RuCl3 sample 
in a tilted field of θ = 60°, where TN is plotted as a function of H∥. The 
inset of Fig. 2b shows TN plotted as a function of H∥ for θ = 45°, 60° and 
90°. For θ = 60°, TN agrees well with that for 90° and vanishes at the 
same critical field of µ0

∗H  ≈ 7 T, whereas for 45° TN vanishes at 
µ0H∥ ≈ 6 T. Although TN does not scale perfectly with H∥, these results 
demonstrate the quasi-2D nature of the magnetic properties. In stark 
contrast to the strong out-of-plane (a–c) anisotropy, the in-plane (a–b) 
anisotropy is very small (Extended Data Fig. 3a–c).

Above = ∗H H , where the AFM order melts, the presence of a pecu-
liar spin-liquid state has been suggested on the basis of nuclear mag-
netic resonance and neutron scattering measurements; the former show 
the presence of a spin gap25 and the latter reveal unusual continuous 
spin excitations26. These magnetic properties are consistent with those 
expected in a Kitaev-type spin-liquid state.

To study the thermal Hall effect in the spin-liquid state above 
= ∗H H , κxy is measured by sweeping fields in tilted directions and 

obtained by anti-symmetrizing the thermal response of the sample with 
respect to the field direction. In this configuration, the Hall response 
is determined by H⊥. Because the magnitude of κxy is extremely small 
compared to κxx in α-RuCl3, special care is taken to detect the intrinsic 
thermal Hall signal (see Methods). Figure 3a–d and Fig. 3e–h depict 
κxy/T at θ = 60° and 45°, respectively, plotted as a function of H⊥ above 

= ∗H H  at low temperatures. The experimental error in the detection 
of the temperature difference between Hall contacts becomes consid-
erable below 3.5 K, leading to unreliable determination of κxy in our 
setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). 
Upon entering the field-induced spin-liquid state, κxy/T, which is pos-
itive in sign, increases rapidly. The most striking feature is that κxy/T 
exhibits a plateau in the field range of 4.5 T < µ0H⊥ < 4.8–5.0 T for 
θ = 60° and 6.8 T < µ0H⊥ < 7.2–7.4 T for θ = 45°, as shown in Fig. 3a–c 
and Fig. 3e–g, respectively. The right axes represent κ /Txy

2D  in units of 
quantum thermal Hall conductance π/ k ħ( 6)( )B

2 , where κ κ= dxy xy
2D  with 

a layer distance21 of d = 5.72 Å. Remarkably, the plateau is very close to 
the half of the quantum thermal Hall conductance reported in the inte-
ger quantum Hall system27 within the error of 3%, demonstrating the 
emergence of a half-integer thermal Hall conductance plateau. Above 
µ0H⊥ ≈ 5.0 T for θ = 60° (7.4 T for θ = 45°), κ /Txy

2D  decreases rapidly 
and vanishes. We note that the half-integer quantized plateau is repro-
duced in crystal from different growth (Extended Data Fig. 5). 
Although the plateau behaviour seems to be preserved at 5.6 K, κ /Txy

2D  
slightly deviates from the quantized value. At higher temperatures, the 
plateau behaviour disappears (Fig. 3d, h).

The temperature dependence of κxy/T at magnetic fields where a 
plateau is observed is shown in Fig. 4. The half-integer thermal Hall 
conductance is observable up to about 5.5 K, above which κxy/T 
increases rapidly with T. As shown in the inset of Fig. 4, κxy/T decreases 
after reaching a maximum at around 15 K and nearly vanishes above 
about 60 K (see Extended Data Fig. 6). As the vanishing temperature 
of κxy/T is close to the Kitaev interaction, it is natural to consider that 
the finite thermal Hall signal reflects unusual quasiparticle excitations 
inherent to the spin-liquid state governed by the Kitaev interaction 
(see Methods for further discussion).

In equation (1), the coefficient q gives the chiral central charge of the 
gapless boundary modes, which propagate along one direction. The 
central charge represents a degree of freedom of one-dimensional gap-
less modes; it is unity for conventional fermions and 1/2 for Majorana 
fermions whose degrees of freedom are half of those of conventional 
fermions. An integer quantum Hall system with bulk Chern number 
ν has ν boundary modes with q = ν, whereas a Kitaev QSL with Chern 
number ν has ν Majorana boundary modes with q = ν/2. Thus, the 
observed half-integer thermal Hall conductance provides direct evi-
dence of chiral Majorana edge currents. We also note that the positive 
Hall sign is also consistent with that predicted in the Kitaev QSL1. In the 
pure Kitaev model, the excitation energy of the Z2 flux is estimated7 to 
be ∆F/kB ≈ 0.06JK/kB ≈ 5.5 K. Recent numerical results16 of the thermal 
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Fig. 1 | Chiral Majorana edge currents and temperature–magnetic field 
phase diagram of α-RuCl3. a, b, Schematic illustrations of heat 
conduction in the integer quantum Hall state of a 2D electron gas (a) and a 
Kitaev QSL state (b) in a magnetic field perpendicular to the sample plane 
(grey arrows). In the red (blue) area, the temperature is higher (lower), and 
the red and blue arrows represent thermal flow. In the quantum Hall state, 
the skipping orbits of electrons (green spheres) at the edge, which form 
one-dimensional edge channels, conduct heat and κxy is negative in sign. In 
the Kitaev QSL state, spins are fractionalized into Majorana fermions 
(yellow spheres) and Z2 fluxes (hexagons). The heat is carried by chiral 
edge currents of charge-neutral Majorana fermions and κxy is positive in 
sign. c, Phase diagram of α-RuCl3 in a field tilted at θ = 60° (see right inset, 
where green and blue arrows represent the magnetic field H and parallel 
field component H∥). Open and closed diamonds represent the onset 
temperature of AFM order with zigzag-type TN determined by the T and 
H dependences of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 
and 2). Below T ≈ JK/kB ≈ 80 K, the spin-liquid (Kitaev paramagnetic) 
state appears. At µ ≈∗H 7 T0 , TN vanishes. A half-integer quantized plateau 
of the 2D thermal Hall conductance is observed in the red area. Open blue 
squares represent the fields where the thermal Hall response disappears. 
The red circle is the suggested topological phase-transition point that 
separates the non-trivial QSL state with topologically protected chiral 
Majorana edge currents from a trivial state, such as a non-topological spin 
liquid. The striped region denotes the region that was not accessible in the 
thermal Hall effect measurements. Error bars represent one standard 
deviation (error bars for the temperature are smaller than the symbols). 
The left inset shows the zigzag magnetic structure in the AFM state. The 
magnetic moments of Ru atoms represented by blue and green arrows are 
aligned antiparallel.
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Fig. 2 | Longitudinal thermal conductivity in α-RuCl3. a, Temperature 
dependence of κxx in a magnetic field H applied along various directions 
in the a–c plane. The inset illustrates a schematic of the measurement 
setup for κxx and κxy (see Methods for details). b, κxx at θ = 60°, plotted as a 
function of the parallel field component, H∥. The inset shows TN versus H∥ 

at different field directions. TN is determined by the T dependence of κxx 
shown in a (open symbols) and by the minimum in the H dependence of 
κxx (filled symbols), shown by arrows in the main panel. Crosses show TN 
for θ = 90°, determined from magnetic susceptibility (M/H, where M is the 
magnetization) measurements26.
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Hall conductance for the 2D pure Kitaev model calculated with the 
quantum Monte Carlo method show that quantization occurs slightly 
below ∆F/kB. Experimentally, ∆F/kB is estimated25 to be 10 K, which 
is consistent with the persistence of the thermal Hall quantization up 
to around 5 K.

In the plateau regime of κxy, no anomaly is observed in κxx, probably 
because phonon contributions largely dominate over fermionic excita-
tions arising from spins in κxx in the whole temperature range28,29. 
Moreover, owing to the strong spin–phonon coupling in α-RuCl311, the 
phonon conductivity is expected to show complicated H and T depend-
ences. The observed behaviour of the plateau as a function of H and T 
therefore demonstrates that κxy/T is not affected by spin–phonon scat-
tering in the plateau regime, providing strong support for topological 
protection. The fact that κxy vanishes at the highest fields, as shown 
in Fig. 3a–c, e–g, provides direct evidence that the thermal Hall effect 
is not influenced by phonons, demonstrating that κxy is a unique and 
powerful probe in the search for Majorana quantization.

We stress that a half-integer thermal Hall conductance in a bulk 
material is a direct consequence of the chiral Majorana edge current. 
Recent experiments based on the proximity effect between a quantum 
anomalous Hall insulator and a conventional superconductor have 
reported a signature of chiral Majorana edge modes20. However, this is 
based on the observation of half-integer quantization of the longitudi-
nal electrical conductance via the scattering matrix effect between the 
edge states of the insulator and superconductor. Moreover, Majorana 
fermions in Kitaev magnets and topological superconductors have 
essentially different features. In the former, strong correlations give 
rise to Majorana fermions, whereas in the latter they do not play a role. 
In addition, Majorana fermions exist inside the bulk of a sample in the 
Kitaev QSL state, in sharp contrast to topological superconductors, 
where they appear only at the edges. This distinct nature of Majorana 
fermions is supported by the fact that the quantum plateau disappears 
below about 400 mK in a topological superconductor device20, whereas 
it is preserved up to around 5 K in α-RuCl3.

At θ = 60°, κ /H T( )xy
2D  increases slightly from the quantized value 

before going to zero at a high field at 4.3 K and 4.9 K, which is repro-
duced in a different crystal (Extended Data Fig. 5a). However, such a 
behaviour is not observed at θ = 45°. On the other hand, an overshoot 
is also observed in the temperature dependence of κxy

2D, irrespective of 
the angle (Fig. 4) and crystal (Extended Data Fig. 5b); therefore, there 
seem to be certain high-energy corrections that are responsible for the 
excess conductivity at high fields and high temperatures. These over-
shoots are in contrast to the numerical results of the thermal Hall effect 
for the 2D pure Kitaev model with a weak magnetic field16. Meanwhile, 
it has been pointed out that non-Kitaev interactions, such as Heisenberg 
and off-diagonal ones, are important for α-RuCl3

30,31. Hence, the 

discrepancy may be attributed to high-field effects or non-Kitaev inter-
actions, which deserves further study.

The near vanishing of κ /Txy
2D  after its rapid suppression in the high-

field regime (Fig. 3a–c, e–g) demonstrates the disappearance of chiral 
Majorana edge currents. As shown by the open blue square in Fig. 1c, 
the temperature at which κ /Txy

2D  vanishes decreases rapidly with 
decreasing H∥. This suggests a topological quantum phase transition 
from the non-trivial QSL to a trivial high-field state, where the thermal 
Hall effect is absent, at µ0H∥ ≈ 9 T, as shown by the red circle in 
Fig. 1c32. The specific heat at 0.47 K for θ = 60° exhibits a dip-like 
anomaly in the vicinity of 9 T, which can be associated with an abrupt 
change of the spin gap at the topological transition, strongly supporting 
the presence of a characteristic field revealed by κxy/T (Extended Data 
Fig. 7a–c). The vanishing of κxy/T at the highest fields is unlikely to be 
due to the crossover to a simple forced ferromagnetic state because the 
magnetization at 9 T is less than 1/3 of the fully polarized value, indi-
cating that paramagnetic spins still remain. The observation of half- 
integer thermal Hall conductance reveals that topologically protected 
chiral Majorana edge currents persist in α-RuCl3, even in the presence 
of non-Kitaev interactions and a parallel field. This observation opens 
a possibility of using Majorana fermions and their link to non-Abelian 
anyons, which are important for topological quantum computing, 
revealing novel aspects of strongly correlated topological quantum 
matters.
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METHODS
Single-crystal growth. High-quality single crystals of α-RuCl3 were grown by a verti-
cal Bridgman method as described in ref. 33. For thermal transport measurements, we 
carefully picked up thin crystals with a plate-like shape. Typical sample size was roughly  
2 mm × 0.5 mm × 0.02 mm. We selected the best crystals, in which no anomaly 
associated with the magnetic transition at 14 K due to the stacking faults was detected 
by magnetic susceptibility, specific heat and thermal transport measurements.
Thermal transport measurements. Thermal and thermal Hall conductivities were 
measured simultaneously on the same crystal by the standard steady-state method, 
using the experimental setup illustrated in the inset of Fig. 2a. A heat current q was 
applied along the a axis (q ∥ x). Using special jigs, a magnetic field H was applied 
along various directions in the a–c plane within an accuracy of less than one degree. 
The temperature gradient −∇xT ∥ x and −∇yT ∥ y was measured by carefully cali-
brated Cernox thermometers. The sample temperature was measured with an accu-
racy of 0.1 mK using alternating current resistance bridges. A 1-kΩ chip resistor was 
used to generate the heat current. The magnitude of the thermal gradient was less 
than 5% of the base temperature. To reduce the noise level, all measurements were 
performed in a radio-frequency-shielded room. For the measurements of the thermal 
Hall effect, we removed the longitudinal response due to misalignment of the contacts 
by anti-symmetrizing the measured ∇yT as ∇yT asym(H) = [∇yT(H)−∇yT(−H)]/2 
at each temperature. We note that the offset transverse thermal gradient due to the 
misalignment of the Hall contact was reduced to be less than 0.5% of the longitudinal 
thermal gradient in zero field. κxx and κxy were obtained from the longitudinal  
thermal resistivity, wxx = ∇xT/q, and the thermal Hall resistivity, wxy = ∇yT asym/q,  
as κ = / +w w w( )xx xx xx xy

2 2  and κ = / +w w w( )xx xy xx xy
2 2 . To avoid a background Hall 

signal, a LiF heat bath and non-metallic grease were used. We confirmed that the 
thermal Hall signal in LiF is negligibly small within our experimental resolution34. 
The experimental error in determining κxy, caused by the uncertainty in measuring 
the distance between the contacts and the thickness of the crystal, is within ±2%.
Specific heat measurements. Specific heat was measured by a long  
relaxation method35 in a 3He cryostat. A Cernox chip resistor was used as both 

a thermometer and a heater. The sample was attached to the calorimeter using 
grease. The thermometer was calibrated in magnetic field of up to 12 T.
Origin of thermal Hall response. Here we discuss κxy/T in the high-tempera-
ture spin-liquid regime, where no plateau behaviour is observed. A finite κxy/T 
in the spin-liquid states has been reported only in the kagomé insulator volbor-
thite Cu3V2O7(OH)2·2H2O so far34. We point out that the behaviour of κxy/T in 
the high-temperature regime of α-RuCl3 is essentially different from that in the 
liquid state of volborthite; the κxy value of volborthite is opposite in sign to that 
of α-RuCl3 and its magnitude is more than one order magnitude smaller. Until 
now, all theories except the Kitaev model predict that a finite κxy can appear in 
spin-liquid states when the Dzyaloshinsky–Moriya (DM) interaction is present36. 
In fact, volborthite has a large DM interaction. However, the DM interaction in 
α-RuCl3 is approximately 5 K, which is much smaller31 than JK, and hence it does 
not play an important role at high temperatures. Moreover, the phonon thermal 
Hall conductivity is three orders of magnitude smaller than the observed κxy/T in 
the spin-liquid state and shows essentially different temperature dependence37.
Data availability. The data that support the results presented in this paper and 
other findings of this study are available from the corresponding author upon 
reasonable request.
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where the overshoot behaviour from the quantization value is observed is 
slightly higher than that of sample 1, but the field where κxy/T vanishes 
(µ0H∥ ≈ 9.3 T) is close to that of sample 1. b, κxy/T of sample 2 in a field 
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