Two-Dimensional Vortex Lattice Melting

Superconducting Length-Scales and Vortex Lattices

Flux Motion

Melting Concepts

Journal Paper Presentation: "Melting of the Vortex Lattice Through the Hexatic Phase in an MoGe3 Thin Film"

Vortex matter

Bitter Decoration YBa₂Cu₃O₇ crystal, 4.2K, 52G

P. L. Gammel et al., Bell Labs

Scanning Tunnel Microscopy NbSe2, 1T, 1.8K

H. F. Hess et al., Bell Labs

Vortex Melting in Superconducting Nb

Melting Concepts

3D

Solid Liquid

Lindemann Criterion

$$\sqrt{(\Delta r)^2} \approx \alpha a$$

1st Order Transition

2D melting: KTHNY theory

Journal Presentation

Motivation/Context

Results

Interpretation

Questions/Ideas for Future Work

(aim for 30-45 mins)

Please check the course site about the presentation schedule

No class on The April 8, 15

Make-Ups on Ms April 12, 19

(Weekly Discussion to be Rescheduled)

Melting of the Vortex Lattice through Intermediate Hexatic Fluid in an *a*-MoGe Thin Film

Indranil Roy,¹ Surajit Dutta,¹ Aditya N. Roy Choudhury,¹ Somak Basistha,¹ Ilaria Maccari,² Soumyajit Mandal,¹ John Jesudasan,¹ Vivas Bagwe,¹ Claudio Castellani,² Lara Benfatto,² and Pratap Raychaudhuri^{1,*} ¹Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India ²ISC-CNR and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy

(Received 16 May 2018; revised manuscript received 3 August 2018; published 30 January 2019)

First Definitive Observation of the Hexatic Phase in a Superconducting Film

(with thanks to Indranil Roy and Pratap Raychaudhuri)

Two Dimensional Melting (BKT + HNY theory)

Quantification of solid, liquid and other phases

• For a perfect lattice, $\cos(\vec{K}.\vec{r}) = 1$, \vec{K} : Reciprocal lattice vector and \vec{r} : Lattice vector; Positional Order Parameter: $G_K = \langle \cos(\vec{K}.\vec{r}) \rangle$

• For a perfect lattice, $\cos(6\theta) = 1$; Orientational Order Parameter: $G_6 = \langle \cos 6(\theta(r) - \theta(0)) \rangle$

	G _K (r)	G ₆ (r)	Phase
$r ightarrow \infty$	1	1	Perfect Lattice
	Const.	Const.	Real Lattice
	e ^{-r/ξ} _K	e ^{-r/ξ} 6	Liquid
	e ^{-r/ξ} κ	1/r ^b	Hexatic

Hexatics have been observed in 2D colloidal systems

Why not in the Melting of the Vortex Phase of Superconducting Films ??

Quest for the Hexatic Liquid Phase in $\alpha - MoGe$

Why Not Before ??

Orientational Coupling between Atomic and Vortex Lattices

Hexatic Glass !!

Solution: Amorphous Superconductor (no lattice effect)

Very Weak Pinning

BCS-Type Superconductor

Melting of the Vortex Lattice through Intermediate Hexatic Fluid in an *a*-MoGe Thin Film

Indranil Roy,¹ Surajit Dutta,¹ Aditya N. Roy Choudhury,¹ Somak Basistha,¹ Ilaria Maccari,² Soumyajit Mandal,¹

John Jesudasan,¹ Vivas Bagwe,¹ Claudio Castellani,² Lara Benfatto,² and Pratap Raychaudhuri^{1,*}

¹Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India

²ISC-CNR and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy

(Received 16 May 2018; revised manuscript received 3 August 2018; published 30 January 2019)

In this Letter, we adopt a strategy that combines magnetotransport and STS imaging to investigate the melting of the VL in a very weakly pinned amorphous MoGe (*a*-MoGe) thin film. The central result of this Letter is that, as the magnetic field is increased, the vortex state goes successively from a vortex solid to a hexatic fluid, and then to an isotropic liquid following the sequence expected from the BKTHNY theory.

Scanning Tunneling Spectroscopy (STS)

Magnetotransport

In this study, we use *a*-MoGe thin films with thicknesses of $t \sim 20$ nm and $T_c \sim 7.05 \pm 0.05$ K, which are grown through pulsed laser deposition. The pinning strength, estimated from the depinning frequency of the vortex lattice at low fields (~35 kHz) is 6 orders of magnitude smaller than the corresponding values for Nb [31] or YBa₂Cu₃O₇ films [32,33]. The very weak pinning is further corroborated from the absence of any difference in the ac susceptibility measured in field cooled and zero field cooled states [34]. Further details are given in the Supplemental Material [35]. Because of different requirements of shape and size, two samples with the same T_c and a thickness variation of <10% were used for transport and STS measurements. For STS, postdeposition, the film was transferred in the scanning tunneling microscope using an ultrahigh vacuum suitcase without exposure to air.

<u>Real space evolution of vortex lattice as a</u> <u>function of magnetic field at 2 K</u>

1 kOe

3 kOe

0.1

Melting observed using bulk measurements Thermally Activated Flux Flow (TAFF)

TAFF Resistance: R_{TAFF} is slope of linear region of V-I curves, for $I < 100 \ \mu A \ll I_c$

For $I \ll I_c$, due to Thermally Activated Flux Flow, R_{TAFF} $V/I = R_{ff} \exp(-U/kT)$

Activated nature for Solid

For <u>Vortex Solid</u>, $U(I) = U_0(I_c/I)^{\alpha}$

Hence, for $I \rightarrow 0$, $R_{TAFF} \rightarrow 0$

Ref: M. V. Feigel'man et al, Theory of collective flux creep, Phys. Rev. Lett. 63, 2303 (1989)

Differentiating solid from hexatic liquid

$$V/I = R_{ff} \exp(-U/kT)$$

Solid: $U(I) = U_0(I_c/I)^{\alpha}$

Below H=1.9 kOe, V-I curves are well fitted, taking α =1

Liquid: *U* is independent of *I*

Above H=1.9 kOe, V-I curves deviate from the exponential form; rather becomes linear.

At 2 K, H=1.9 kOe is the transition point from Vortex solid to Hexatic fluid.

Hexatic to vortex liquid transition

• Six-fold Orientational Order Parameter: $\Psi_{6} = \frac{1}{N} \left\langle \sum_{k,l} e^{\left[6i(\phi_{k} - \phi_{l})\right]} \right\rangle$ (For perfect hexagonal lattice, $\Psi_{6} = 1$)

- Hexatic liquid to <u>lsotropic liquid</u> transition point is identified.
- *H*_{c2} is determined.

The Resulting Phase Diagram

Summary

First Observation of Hexatic Fluid Phase in a 2D Superconducting Film

Pinning Significantly Weaker than in Previous Studies

STS (imaging) Magnetotransport ("shear")

Questions/Ideas for the Future

Size-Dependence of Hexatic Order Parameter ??

Low T limit of the Hexatic Fluid: Quantum Vortex Fluid ??

What happens in Layered Films ??

