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Finite-Temperature Simulations for
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Fig. 2 | Longitudinal thermal conductivity in o-RuCls. a, Temperature
dependence of k., in a magnetic field H applied along various directions
in the a-c plane. The inset illustrates a schematic of the measurement
setup for k., and k., (see Methods for details). b, k.. at # =60°, plotted as a
function of the parallel field component, H;. The inset shows Ty versus H,

LETTER

Ky WK )

/‘oH” m

at different field directions. Ty is determined by the T dependence of &,
shown in a (open symbols) and by the minimum in the H dependence of
K (filled symbols), shown by arrows in the main panel. Crosses show Ty
for #=90°, determined from magnetic susceptibility (M/H, where M is the
magnetization) measurements®.
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Interpretation

Temperature Scales ??
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Ogx == Ogy (Electrical Hall Effect quantization fails)
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Quantization of the thermal Hall conductivity at small Hall angles
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Thermal Hall Quantization L>>1
Majorana-Phonon Exchange of Energy B
Majorana-Phonon Coupling [ ~ T °

Observed Quantization of Thermal Hall Effect Should Break
Down at the Temperature is Decreased !!
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Thermal Hall Effect of Magnons
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We review recent developments in theories and experiments on the magnon Hall effect. We derive the thermal Hall
conductivity of magnons in terms of the Berry curvature of magnonic bands. In addition to the Dzyaloshinskii-Moriya

interaction, we show that the dipolar interaction can make the Berry curvature nonzero. We mainly discuss theoretical
aspects of the magnon Hall effect and related theoretical works. Experimental progress in this field is also mentioned.
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Fig. 2. (Color online) (a) Schematic of the magnon edge current. (b)
Magnet in equilibrium, which is divided into small regions. The magnon
edge currents within the neighboring regions cancel each other. (c) Magnet
with the temperature gradient. The magnon edge currents in the small regions
do not cancel, leading to a net transverse current. 22
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FIG. 2. We plot «,, as computed from Eq. (4) for the various models in Table I as a function of (a) temperature and (b) magnetic field.
We also plot the data from Ref. [29] as blue dots. The inset of (a) shows a zoomed-out version of the same graph. In (b), models with &, Z 0
were removed. Our model, which agrees well with the data in (a), does not agree with the data in (b). Since the data of Ref. [29] shows k., > 0
at T > Ty and excitations in the pure Kitaev model contribute to k., > 0 [28], it is expected that at T ~ Ty = 7 K the contribution from
just the magnons should be below the experimental data, as is true for our model. We do not plot S(H KT'J3) or HKT'J2 since the zigzag
spin-wave solution becomes unstable for some critical magnetic field uoH < 10 T. Our proposed model 7(H KT J3) has a large spin reduction
AS,)/S~09aT =TK.
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Observation of the Magnon Hall Effect

Y. Onose,?* T. Ideue,* H. Katsura,? Y. Shiomi,™* N. Nagaosa,™* Y. Tokura®?*

The Hall effect usually occurs in conductors when the Lorentz force acts on a charge current

in the presence of a perpendicular magnetic field. Neutral quasi-particles such as phonons and
spins can, however, carry heat current and potentially exhibit the thermal Hall effect without
resorting to the Lorentz force. We report experimental evidence for the anomalous thermal
Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore
lattice structure. Our theoretical analysis indicates that the propagation of the spin waves is
influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector
potential, much as in the intrinsic anomalous Hall effect in metallic ferromagnets.
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Fig. 1. The crystal structure of Lu,V,0; and the magnon Hall effect. (A) The V sublattice of Lu,V>0;, which is
composed of corner-sharing tetrahedra. (B) The direction of the Dzyaloshinskii-Moriya vector lﬁ,-,» on each
bond of the tetrahedron. The Dzyaloshinskii-Moriya interaction Dj; - (S; x S;) acts between the i and j sites.
(€) The magnon Hall effect. A wave packet of magnon (a quantum of spin precession) moving from the hot
to the cold side is deflected by the Dzyaloshinskii-Moriya interaction playing the role of a vector potential.

Fig. 3. Magnetic field
variation of the ther-
mal Hall conductivity
of Lu,V,0; at various
temperatures. The mag-
netic field is applied
along the [100] direc-
tion. The solid lines are
guides to the eye.
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Fig. 1. The crystal structure of Lu,V,0; and the magnon Hall effect. (A) The V sublattice of Lu,V>0;, which is
composed of corner-sharing tetrahedra. (B) The direction of the Dzyaloshinskii-Moriya vector 15,-,- on each
bond of the tetrahedron. The Dzyaloshinskii-Moriya interaction Dj; - (S; x S;) acts between the i and j sites.
(€) The magnon Hall effect. A wave packet of magnon (a quantum of spin precession) moving from the hot
to the cold side is deflected by the Dzyaloshinskii-Moriya interaction playing the role of a vector potential.
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Fig. 4. (A) Temperature dependence of the spon-
taneous thermal Hall conductivity (the thermal Hall
conductivity just above the saturation field) for H ||
[100], H Il [110], and H Il [111]). The thick dashed
line is a guide to the eye. (B) The thermal Hall angle
Kxy/kx plotted against the magnetization (M). For
Tb;Gas0,, (dashed line), the value of x,, /., divided
by the magnetic field H is taken from (7), and the
magnetic susceptibility (M/H) is estimated from the
magnetization curves in (28). The thick solid line is a
guide to the eye. (C) Magnetic field variation of the
thermal Hall conductivity at 20 K for H |l [100]. The
red solid line indicates the magnetic field depen-
dence given by the theory (Eq. 4) that is based on the
Dzyaloshinskii-Moriya interaction.
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Effect of lattice geometry on magnon Hall effect in ferromagnetic insulators
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We have investigated the thermal Hall effect of magnons for various ferromagnetic insulators. For pyrochlore
ferromagnetic insulators Lu,V,05, Ho;V;0;, and In;Mn, 05, finite thermal Hall conductivities have been
observed below the Curie temperature 7. From the temperature and magnetic-field dependencies, it is concluded
that magnons are responsible for the thermal Hall effect. The Hall effect of magnons can be well explained by the
theory based on the Berry curvature in momentum space induced by the Dzyaloshinskii-Moriya (DM) interaction.
The analysis has been extended to the transition-metal (TM) oxides with perovskite structure. The thermal Hall
signal was absent or far smaller in La:NiMnO¢ and YTiOs, which have the distorted perovskite structure with
four TM ions in the unit cell. On the other hand, a finite thermal Hall response is discernible below 7¢- in another
ferromagentic perovskite oxide BiMnOs;, which shows orbital ordering with a larger unit cell. The presence or
absence of the thermal Hall effect in insulating pyrochlore and perovskite systems reflect the geometric and
topological aspect of DM-induced magnon Hall effect.
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Sample dependence of half-integer quantized thermal Hall effect
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We have investigated the sample dependence of the half-integer thermal Hall effect in @-RuCl; under a
magnetic field tilted 45° from the ¢ axis to the @ axis. We find that the sample with the largest longitudinal thermal
conductivity k., shows the half-integer quantized thermal Hall effect expected in the Kitaev model. On the other
hand, the quantized thermal Hall effect was not observed in the samples with smaller k.. We suggest that
suppressing the magnetic scattering effects on the phonon thermal conduction, which broaden the field-induced
gap protecting the chiral edge current of the Majorana fermions, is important to observe the quantized thermal
Hall effect.
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