

Experimental Detection of Majorana Fermions ??

Kitaev Materials

Laboratory Sighting of Majorana Fermions ??

Focus: Thermal Hall Measurements on $\alpha - RuCl_3$

Ru 🔹

- Background
 - Results
- Interpretation
- Subsequent Work

2

What ??s Would We Ask as Referees ??

The Kitaev Model on the Honeycomb Lattice

Ising Spins with Bond Anisotropies

Quantum Model

Superposition of Classical Configurations (similar to RVB)

Highly Entangled Quantum Spin Liquid State

Kitaev Materials

spin-orbit coupling λ/t

4

Fig. 2: Formation of spin-orbit entangled j = 1/2 moments for ions in a d^5 electronic configuration such as for the typical iridium valence Ir^{4+} or the ruthenium valence Ru^{3+} .

Fig. 3: Illustration of possible geometric orientations of neighboring IrO_6 octahedra that give rise to different types of (dominant) exchange interactions between the magnetic moments located on the iridium ion at the center of these octahedra. For the corner-sharing geometry (I) one finds a dominant symmetric Heisenberg exchange, while for the edge-sharing geometries (II) one finds a dominant bond-directional, Kitaev-type exchange.

Ab Initio Calculations
$$H = -\sum_{\gamma-\text{bonds}} J \ \mathbf{S}_i \mathbf{S}_j + K \ S_i^{\gamma} S_j^{\gamma} + \Gamma \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} \right)$$

$$J = \cos \phi, \ K = \sin \phi$$

Fig. 6: Phase diagram of the Heisenberg-Kitaev model, reproduced from Ref. [63].

Fig. 7: Crystal structure of the honeycomb Kitaev materials A_2IrO_3 such as Na_2IrO_3 and α -Li₂IrO₃.

Zig-Zag Magnetic Ordering at T = 15 K

Trigonal Distortions

Next-Nearest Neighbor Exchange

7

α -RuCl₃

Edge-Sharing Octahedra

Negligible trigonal distortion

SOC smaller than in 5d irritates (but argued that ratio of SOC to Bandwidth comparable)

Zig-zag magnetic ordering at T = 7K

Unusual features above Neel temperature

Raman, inelastic neutrons

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara¹, T. Ohnishi¹, Y. Mizukami², O. Tanaka², Sixiao Ma¹, K. Sugii³, N. Kurita⁴, H. Tanaka⁴, J. Nasu⁴, Y. Motome⁵, T. Shibauchi² & Y. Matsuda¹*

Background

The Kitaev Model on the Honeycomb Lattice

Ising Spins with Bond Anisotropies

Quantum Model

Superposition of Classical Configurations (similar to RVB)

Highly Entangled Quantum Spin Liquid State

The Kitaev Model on the Honeycomb Lattice

Effect of a Magnetic Field

Flux Operators no Longer Conserved in General

Perturbative Treatment Introduces Three-Spin Terms Flux Operators Remain Conserved

Schematic Phase Diagram

Schematic Phase Diagram

Thermal Hall Measurement

A Bit More About the Material ($\alpha - RuCl_3$)

Zigzag Ordering

Suppress with Magnetic Field !! (First-Order Transition with Pressure) 17

Inelastic Neutron Scattering as a Function of Magnetic Field

Thermal Hall Conductivity (Magnetic Field Perpendicular to ab plane)

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara¹, T. Ohnishi¹, Y. Mizukami², O. Tanaka², Sixiao Ma¹, K. Sugii³, N. Kurita⁴, H. Tanaka⁴, J. Nasu⁴, Y. Motome⁵, T. Shibauchi² & Y. Matsuda^{1*}

