Phase Diagram of Superconducting Infinite-layer Nickelates

Ying-Ting Chan 02/25/2021

Why are layered nickelates interesting?

- A new type of superconductivity
- Layered structure
- Doping dependent behavior

Phase diagram of cuprates

Similar to cuprates?

Physics World 13 (2), 33 (2000).

Superconductivity in an infinite-layer nickelate

Danfeng Li^{1,2}*, Kyuho Lee^{1,3}, Bai Yang Wang^{1,3}, Motoki Osada^{1,4}, Samuel Crossley^{1,2}, Hye Ryoung Lee^{1,4}, Yi Cui^{1,4}, Yasuyuki Hikita¹ & Harold Y. Hwang^{1,2}*

624 | NATURE | VOL 572 | 29 AUGUST 2019

LETTER

Superconducting Dome in Nd_{1-x}Sr_xNiO₂ Infinite Layer Films

Danfeng Li⁽¹⁾, ^{1,2,*,†} Bai Yang Wang, ^{1,3,*,‡} Kyuho Lee⁽¹⁾, ^{1,3} Shannon P. Harvey⁽¹⁾, ^{1,2} Motoki Osada⁽¹⁾, ^{1,4} Berit H. Goodge⁽¹⁾, ^{5,6} Lena F. Kourkoutis⁽¹⁾, ^{5,6} and Harold Y. Hwang⁽¹⁾, ^{1,2,§}
¹Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
²Department of Applied Physics, Stanford University, Stanford, California 94305, USA
⁴Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
⁶Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

(Received 16 March 2020; accepted 15 June 2020; published 7 July 2020)

C-axis lattice constant

Substitution of the larger Sr cation for Nd

Phys. Rev. B 40, 2254 (1989). Phys. Rev. Lett. 125, 027001 (2020).

Transport results

- x = 0.15, 0.175, 0.2, and 0.225 show varying Tc
- Insulating behavior
- Nontrivial sample-to-sample variations in normal state

Phys. Rev. B 40, 2254 (1989). Phys. Rev. Lett. 125, 027001 (2020).

Phase diagram

- Superconducting dome is qualitatively similar to the hole-doped cuprates but half as wide.
- A small dip in Tc for x = 0.2 (1/8 anomaly in cuprates)
- For x = 0, 0.1, 0.125, and 0.25, no sign of superconductivity is observed down to <50 mK.
- The parent compound NdNiO2 shows no sign of magnetic order at 1.7 K (Solid State Sci. 5, 839 (2003).)

Phys. Rev. Lett. 125, 027001 (2020).

- Resistivity in LSCO drops by many orders of magnitude
- Qualitatively different from the cuprates

Phys. Rev. B 40, 2254 (1989). Phys. Rev. Lett. 125, 027001 (2020).

- Like cuprates, the superconducting dome is observed
- Weakly insulating behavior on either side of the dome, and no magnetic order was observed in parent compound.
- The normal state of the nickelates is qualitatively different from the cuprates

What does Infinite-layer mean?

Isolation layer

n=1

n=3

_	0	0	0	0	:0
	0	0	0	0	0
	0	0	0	0	о.
	0	0	0	Ò	0
	0	0	0	0	0
	0	0	0	0	0
				_	

 $A_{\mathbf{s}}B_{2}Ca_{\mathbf{s}-1}Cu_{\mathbf{s}}O_{\mathbf{s}}$

 $A_{m}B_{2}Ca_{n-1}Cu_{n}O_{n} \rightarrow CaCuO_{2}$ When n goes to infinite

 $n = \infty$

Rev. Mod. Phys., (84),1383 (2001) 物理, 1994, 23(4): 205-212.

Normal state Hall coefficient R_H

- R_H=1/ne
- Two band model

Phys. Rev. Lett. 125, 027001 (2020).