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Introduction: The quest for
protected qubits

The basic building block of quantum computation is the qubit, a system with two
(nearly) degenerate states that can be used to encode quantum information. Real
systems typically have a full spectrum of excitations that are considered illegal from
the point of view of a computation, and lead to decoherence if they couple too strongly
into the qubit states during some process. See Fig. 1.1. The essential problem then
is to preserve the quantum state of the qubit as long as possible to allow time for
computations to take place.

Assuming the gap ∆ to the illegal states is reasonable, we can quite generally
describe the dynamics of the qubit state by an effective Schödinger equation

d

dt
|Ψ
〉

= −iHeff |Ψ
〉

(1.1)

where Heff is the effective qubit Hamiltonian. In quantum optics, Heff is often known
with high precision. This is not so in condensed matter systems such as quantum dots.
Even worse, Heff may fluctuate or include interaction with the environment. This
causes decoherence of the qubit state.

Ideally, we would like to arrange for Heff to be zero (or Heff = ϵI) for some good
reason. Usually, we use a symmetry to protect degeneracies in quantum systems. For
example, a quantum spin 1

2 has a two-fold degeneracy protected by the SU(2) symme-
try, as do the 2s+1 degeneracies of higher spins s. Indeed, any non-Abelian symmetry

0

illegal (highly excited) states

E

qubit states

∆

1

Fig. 1.1 Spectrum of a physical qubit system.
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would work. Unfortunately, the SU(2) symmetry of a spin is lifted by magnetic fields
and it’s generally difficult to get rid of stray fields.

Rather than symmetry, in what follows we will look to topology to provide us
with physically protected degeneracies in quantum systems. In particular, we will
examine a number of exactly solvable models in one and two dimensions which exhibit
topologically phases – that is, gapped phases with a protected ground state degeneracy
dependent on the topology of the manifold in which the quantum model is embedded.
In Sec. 2 we warm up with the study of several quantum chains that exhibit Majorana
edge modes and thus a two-fold degeneracy on open chains. The topological phenomena
available in two dimensional models are much richer and will be the focus of the
remaining three sections. We introduce and solve the toric code on the square lattice in
Sec. 3, exhibiting its topolological degeneracy and excitation spectrum explicitly. The
following section steps back to examine the general phenomenology of quasiparticle
statistics braiding in two dimensional models. Finally, in Sec. 5 we introduce the
honeycomb lattice model which exhibits several kinds of topological phases, including
that of the simple toric code and, in the presence of time reversal symmetry breaking,
a gapped phase with chiral edge modes protected by the topology of the Fermi surface.
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Topological phenomena in 1D:
boundary modes in the Majorana
chain

We will consider two examples of 1D models with Z2 symmetry and topological
degeneracy: the transverse field Ising model (TFIM) and the spin-polarized supercon-
ductor (SPSC). Although these models look rather different physically, we will find
that they are mathematically equivalent and that they both exhibit a topological phase
in which the ground state degeneracy is dependent on the boundary conditions of the
chain. That is, the ground state on an open chain is 2-fold degenerate due to the pres-
ence of boundary zero modes, whereas the ground state is unique on a closed loop.
This topological degeneracy will be stable to small local perturbations that respect
the Z2 symmetry. More details on these models may be found in Kitaev (2000).

1. The transverse field Ising model is a spin-1/2 model with Hamiltonian:

HS = −J
N−1
∑

j=1

σx
j σ

x
j+1 − hz

N
∑

j=1

σz
j . (2.1)

Here J is the ferromagnetic exchange coupling in the x direction and hz is a
uniform transverse (z) field. This model has a Z2 symmetry given by a global
spin flip in the σx basis:

PS =
N
∏

j=1

σz
j (2.2)

2. The spin-polarized 1-D superconductor is a fermionic system with Hamiltonian:

HF =
N−1
∑

j=1

(

−w(a†
jaj+1 + a†

j+1aj) + ∆ajaj+1 + ∆∗a†
j+1a

†
j

)

−µ
N
∑

j=1

(

a†
jaj −

1

2

)

(2.3)

where aj and a†
j are fermionic annihilation and creation operators, w is the hop-

ping amplitude, ∆ is the superconducting gap and µ is the chemical potential.
For simplicity, we will assume that ∆ = ∆∗ = w, so that
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HF = w
N−1
∑

j=1

(aj − a†
j)(aj+1 + a†

j+1)− µ
N
∑

j=1

(

a†
jaj − 1/2

)

. (2.4)

This model has a Z2 symmetry given by the fermionic parity operator:

PF = (−1)
P

j a†
jaj (2.5)

Although the two models are mathematically equivalent, as we will see in Sec.
2.2, they are clearly physically different. In particular, for the superconductor, the Z2

symmetry of fermionic parity cannot be lifted by any local physical operator, as such
operators must contain an even number of fermion operators. Unfortunately, for the
spin system the degeneracy is lifted by a simple longitudinal magnetic field hx

∑

j σ
x
j

and thus the topological phase of the TFIM would be much harder to find in nature.

2.1 Nature of topological degeneracy (spin language)

Consider the transverse field Ising model of Eq. (2.1). With no applied field, there are
a pair of Ising ground states (hz = 0):

|ψ→
〉

= |→→→ · · ·→
〉

, |ψ←
〉

= |←←← · · ·←
〉

. (2.6)

The introduction of a small field hz allows the spins to flip in the σx basis. In particular,
tunneling between the two classical ground states arises via a soliton (domain-wall)
propagating from one side of the system to the other:

|→→→ · · ·→
〉

−→ |←:→→ · · ·→
〉

−→ |←←:→ · · ·→
〉

(2.7)

−→ |←←←: · · ·→
〉

−→ · · · −→ |←←← · · ·←
〉

. (2.8)

As usual, the tunneling amplitude t associated with this transition falls off exponen-
tially in the distance the soliton must propagate

t ∼ e−N/ξ (2.9)

where ξ is the correlation length of the model. The two-fold degeneracy is therefore
lifted by the effective Hamiltonian:

Heff =

(

0 −t
−t 0

)

. (2.10)

The splitting is exponentially small in the system size and the two-fold degeneracy is
recovered in the thermodynamic limit as expected. Moreover, it is clear why introduc-
tion of a longitudinal field hx will fully split the degeneracy.

2.2 Reduction of TFIM to SPSC by the Jordan-Wigner
transformation

To show the equivalence of the one dimensional models introduced above, we will use
a standard Jordan-Wigner transformation to convert the spins of the Ising model into
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fermions. It is perhaps not surprising that a fermionic description exists for spin 1/2
systems – we simplify identify the up and down state of each spin with the presence
or absence of a fermion. The only difficulty arises in arranging the transformation
so that the appropriate (anti)-commutation relations hold in each description. The
Jordan-Wigner transformation does this by introducing string-like fermion operators
that work out quite nicely in 1-D nearest neighbor models.

To reduce HS to HF , we

1. Associate the projection onto the z-axis of the spin with the fermionic occupation
number:

| ↑
〉

↔ n = 0, | ↓
〉

↔ n = 1. (2.11)

That is,

σz
j = (−1)a†

jaj . (2.12)

2. Introduce the string-like annihilation and creation operators

aj =

(

j−1
∏

k=1

σz
k

)

σ+
j

a†
j =

(

j−1
∏

k=1

σz
k

)

σ−j (2.13)

where σ+ and σ− are the usual spin raising and lower operators. At this stage, we
can check that the usual fermionic anticommutation relations hold for the aj , a

†
j:

{

ai, a
†
j

}

= δij (2.14)

3. Observe that
σx

j σ
x
j+1 = −(aj − a†

j)(aj+1 + a†
j+1), (2.15)

so HS (Eq. (2.1)) reduces to HF (Eq. (2.4)) with

w = J, µ = −2hz (2.16)

2.3 Majorana operators

Majorana operators provide a convenient alternative representation of Fermi systems
when the number of particles is only conserved modulo 2, as in a superconductor.
Given a set of N Dirac fermions with annihilation/creation operators aj , a

†
j , we can

define a set of 2N real Majorana fermion operators as follows:

c2j−1 = aj + a†
j

c2j =
aj − a†

j

i
. (2.17)

These operators are Hermitian and satisfy a fermionic anticommutation relation:

c†k = ck
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w

c1 c6c5c4c3c2 c2N−1 c2N

v w v w v vw

Fig. 2.1 Majorana chain representation of 1-d superconductor. Each boxed pair of Majoranas

corresponds to one site of the original fermionic chain.

c2
k = 1, ckcl = −clck(k ̸= l). (2.18)

Or, more compactly,

{ck, cl} = 2δkl. (2.19)

From any pair of Majorana operators, we can construct an annihilation and creation
operator for a standard Dirac fermion (a = (c1 + ic2)/2 and h.c.), and thus the unique
irreducible representation for the pair is a 2-dimensional Hilbert space which is either
occupied or unoccupied by the a fermion.

Both models HS and HF can be written as

Hmaj =
i

2

⎛

⎝v
N
∑

j=1

c2j−1c2j + w
N−1
∑

j=1

c2jc2j+1

⎞

⎠ (2.20)

where v = hz = −µ/2 and w = J . The Z2 symmetry of fermionic parity is given in
the Majorana language by

Pmaj =
N
∏

k=1

(−ic2k−1c2k). (2.21)

We can view this model graphically as a chain of coupled Majorona modes, two to
each of the N sites of the original problem as in Fig. 2.1. If v = 0, then the Majorana
modes at the ends of the chain are not coupled to anything. This immediately allows
us to identify the 2-fold ground state degeneracy in Hmaj as the tensor factor given
by the 2-dimensional representation of the boundary pair c1, c2N .

We will see in Sec. 2.4 that if v ̸= 0 but |v| < w, the operators c1 and c2N are
replaced by some boundary mode operators bl, br. The effective Hamiltonian for this
piece of the system is then

Heff =
i

2
ϵblbr = ϵ(a†a−

1

2
) (2.22)

where ϵ ∼ e−N/ξ and a, a† are the Dirac fermion operators constructed from the
boundary pair. Thus, the ground state degeneracy is lifted by only an exponentially
small splitting in system size.
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2.4 General properties of quadratic fermionic Hamiltonians

We now step back and consider a generic quadratic fermionic Hamiltonian:

H(A) =
i

4

∑

j,k

Ajkcjck (2.23)

where A is a real, skew-symmetric matrix and the cj are Majorana fermion operators.
The normalization i

4 is convenient because it has the property that

[−iH(A),−iH(B)] = −iH ([A, B]) (2.24)

where A, B ∈ so(2N), and H(A), H(B) act on the Fock space FN = C2N

. Thus H(·)
provides a natural representation of so(2N).

We now bring H(A) to a canonical form:

Hcanonical =
i

2

m
∑

k=1

ϵkb′kb′′k =
m
∑

k=1

ϵk(ã†
kãk −

1

2
) (2.25)

where b′k, b′′k are appropriate real linear combinations of the original cj satisfying the

same Majorana fermion commutation relations and the ãk, ã†
k are the annihilation and

creation operators associated to the b′k, b′′k pair of Majoranas. This form for H follows
immediately from the standard block diagonalization of real skew symmetric matrices

A = Q

⎛

⎜

⎜

⎜

⎜

⎝

0 ϵ1
−ϵ1 0

0 ϵ2
−ϵ2 0

· · ·

⎞

⎟

⎟

⎟

⎟

⎠

QT , Q ∈ O(2N), ϵk ≥ 0 (2.26)

From this form it is easy to check that the eigenvalues of A are ±iϵk and that the
eigenvectors are the coefficients of c in ãk, ã†

k.
If some of the ϵk vanish, then we refer to the associated fermions as zero modes. In

particular, these will lead to ground state degeneracies, since occupation or nonoccu-
pation of such modes does not affect the energy. For the Majorana chain of Eq. (2.20),
we have

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 v
−v 0 w
−w 0 v
−v 0 w
−w 0

· · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.27)

We can find a vector u such that uA = 0 by inspection:

u = (1, 0,
v

w
, 0,
( v

w

)2
, 0, · · ·) (2.28)

This vector leads to a left boundary mode
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bl =
∑

ukck (2.29)

while an analogous calculation starting at the right end will find a right boundary mode
br. These modes form a Majorana canonical pair, leading to a two-fold degeneracy of
the ground state of the chain. Clearly, uk ∼ e−k/ξ falls off exponentially from the edges
of the chain with correlation length ξ−1 = ln

∣

∣

w
v

∣

∣, as expected in section 2.3.

2.5 Why are the boundary modes robust?

In the simple case of a quadratic fermion Hamiltonian, we know that the modes cor-
respond to eigenvalues of a skew-symmetric real matrix. These come in pairs ±iϵ, in
general, and the case ϵ = 0 is special. In particular, if the pair of Majoranas corre-
sponding to a zero mode are physically well separated, we expect perturbations to
have trouble lifting the boundary degeneracy.

More generally, for interacting fermions, we can extend the symmetry group Z2,
generated by P = Pmaj, to a non-commuting algebra acting on the the ground state
space L. First, in the noninteracting limit, at v = 0, we define

X = Y
j
∏

k=1

(−ic2k−1c2k) (2.30)

where Y = c2j+1 is a local Majorana operator at site 2j + 1. A straightforward calcu-
lation shows that

XP = −PX (2.31)

and that [H, X ] = 0 so that the algebra generated by X, P acts on L nontrivially.
We now allow Y to vary as we adiabatically turn on interactions and, so long as an
energy gap is maintained, we expect Y to remain a local operator near 2j, which we
can separate from the boundary by suitably large choice of j. That is, to find Y , one
needs to know the ground state or at least the structure of the ground state near 2j.
This is a nontrivial operation but see Hastings and Wen (2005) for more details.
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The two-dimensional toric code

The toric code is an exactly solvable spin 1/2 model on the square lattice. It exhibits a
ground state degeneracy of 4g when embedded on a surface of genus g and a quasiparti-
cle spectrum with both bosonic and fermionic sectors. Although we will not introduce
it as such, the model can be viewed as an Ising gauge theory at a particularly simple
point in parameter space (see Sec. 4.5). Many of the topological features of the toric
code model were essentially understood by Read and Chakraborty (1989), but they
did not propose an exactly solved model. A more detailed exposition of the toric code
may be found in Kitaev (2003).

We consider a square lattice, possibly embedded into a nontrivial surface such as
a torus, and place spins on the edges, as in Fig. 3.1. The Hamiltonian is given by

HT = −Je

∑

s

As − Jm

∑

p

Bp (3.1)

where s runs over the vertices (stars) of the lattice and p runs over the plaquettes.
The star operator acts on the four spins surrounding a vertex s,

Bp

As

Fig. 3.1 A piece of the toric code. The spins live on the edges of the square lattice. The

spins adjacent to a star operator As and a plaquette operator Bp are shown.
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As =
∏

j∈star(s)

σx
j (3.2)

while the plaquette operator acts on the four spins surrounding a plaquette,

Bp =
∏

j∈∂p

σz
j . (3.3)

Clearly, the As all commute with one another, as do the Bp. Slightly less trivially,

AsBp = BpAs (3.4)

because any given star and plaquette share an even number of edges (either none or
two) and therefore the minus signs arising from the commutation of σx and σz on
those edges cancel. Since all of the terms of HT commute, we expect to be able to
solve it term by term.

In particular, we will solve HT working in the σz basis. Define classical variables
sj = ±1 to label the σz basis states. For each classical spin configuration {s}, we can
define the plaquette flux

wp(s) =
∏

j∈∂p

sj . (3.5)

If wp = −1, we say that there is a vortex on plaquette p.

3.1 Ground states

To find the ground states |Ψ
〉

of HT , we need to minimize the energy, which means
maximize the energy of each of the As and Bp terms. The plaquette terms provide the
condition

Bp|Ψ
〉

= |Ψ
〉

(3.6)

which holds if and only if

|Ψ
〉

=
∑

{s:wp(s)=1 ∀p}

cs|s
〉

(3.7)

. That is, the ground state contains no vortices. The group of star operators act on
the configurations s by flipping spins. Thus, the star conditions

As|Ψ
〉

= |Ψ
〉

(3.8)

hold if and only if all of the cs are equal for each orbit of the action of star operators.
In particular, if the spin flips of As are ergodic, as they are on the plane, all cs must
be equal and the ground state is uniquely determined.

On the torus, the star operators preserve the cohomology class of a vortex-free spin
configuration. In more physical terms, we can define conserved numbers given by the
Wilson loop like functions

wl(s) =
∏

j∈l

sj , l = l1, l2 (3.9)

where l1 and l2 are two independent non-trivial cycles on the square lattice wrapping
the torus (Fig. 3.2). Any given star will overlap with a loop l in either zero or two
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l1

l2

Fig. 3.2 Large cycles on the torus.

p2

W (e)
l W (m)

l∗

s2

s1

l l∗p1

Fig. 3.3 Electric and magnetic path operators.

edges and therefore As preserves wl. Since there are two independent loops on the
torus, each of which can have wl = ±1, there is a four-fold degenerate ground state:

|Ψ
〉

=
∑

{s:wp(s)=1 ∀p}

cwl1
wl2

|s
〉

. (3.10)

3.2 Excitations

The excitations of the toric code come in two varieties: the electric charges and mag-
netic vortices of a Z2 gauge theory. We will see this connection more explicitly later.
In the following, we restrict attention to the planar system for simplicity.

To find the electric charges, let us define the electric path operator

W (e)
l =

∏

j∈l

σz
j (3.11)

where l is a path in the lattice going from s1 to s2 (see Fig. 3.3). This operator clearly
commutes with the plaquette operators Bp and with all of the star operators As except
for at the end points s1 and s2, where only one edge overlaps between the star and
the path and we have

W (e)
l As1

= −As1
W (e)

l . (3.12)

Therefore, the state

|Ψs1,s2

〉

= W (e)
l |Ψ0

〉

, (3.13)

where |Ψ0

〉

is the planar ground state, is an eigenstate of the Hamiltonian with excita-
tions (charges) at s1 and s2 that each cost energy 2Je to create relative to the ground
state.
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An analogous construction will find the magnetic vortices: we can define a dual
path operator

W (m)
l∗ =

∏

j∈l∗

σx
j (3.14)

where the path l∗ lies in the dual lattice (see Fig. 3.3) and goes from p1 to p2. In this

case, the stars As all commute with W (m)
l∗ , as do all of the plaquette operators Bp

except the two at the end points of l∗, which anticommute. Thus, the W (m)
l∗ operator

creates a pair of magnetic vortices on the plaquettes p1 and p2 at an energy of 2Jm

each.
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Abelian anyons and quasiparticle
statistics

Let us discuss what can possibly happen if we exchange two particles in two dimensions.
To ensure that particle statistics is well-defined, we assume that there is no long-range
interaction and that the phase is gapped. If we drag two particles around one another
adiabatically,

t

Top View Side View

then we expect both dynamical phase accumulation and a statistical effect due to the
exchange. We are well acquainted with this effect for everyday bosons and fermions,
for which:

Bosons: |Ψ
〉

+→ |Ψ
〉

Fermions: |Ψ
〉

+→ −|Ψ
〉 (4.1)

where we have dropped the dynamical phase so as to focus on the statistics. In both
of these standard cases, a full rotation (two exchanges),

Top View

t

Side View

leaves |Ψ
〉

unchanged.
In principle,

Rab =

ab

a b (4.2)

is an arbitrary phase factor or even an operator (braiding operator). If the two particles
are distinguishable (a ̸= b), then Rab does not have an invariant meaning, but the
mutual statistics
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Rba · Rab =

a b

a b

(4.3)

does.
Let us illustrate this in the toric code model. In section 3.2 we found two kinds of

quasiparticle excitations in the toric code: electric charges (e) and magnetic vortices
(m). Since path operators of the same type commute with one another, it is easy to
show that each of these are bosons. However, they have nontrivial mutual statistics.

To calculate the mutual statistics, consider taking a charge e around a vortex m.

m

p1

e

l

Let |ξ
〉

be some state containing a magnetic vortex at p1. Under the full braiding
operation,

|ξ
〉

+→

⎛

⎝

∏

j∈l

σz
j

⎞

⎠ |ξ
〉

=

⎛

⎝

∏

p inside l

Bp

⎞

⎠ |ξ
〉

(4.4)

where the second line is a Stokes’ theorem like result relating the product around a
loop to the products of internal loops. Since

Bp1
|ξ
〉

= −|ξ
〉

(4.5)

for the plaquette p1 containing the vortex, we have that

|ξ
〉

+→ −|ξ
〉

, (4.6)

or

e m

e m

e me m e m

= −

e m

(4.7)
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Using the bosonic self-statistics equations,

=

e e

ee

e e

ee

=

m m m m

mmmm (4.8)

we can derive the nontrivial corollary that composite e−m particles are fermions:

m

m

e

e

m

m

m e me

m e mee m e m

e m e m

=

e

e

= −

(4.9)

4.1 Superselection sectors and fusion rules

Initially, we exhibited two kinds of bosonic excitations in the toric code model (charges
e and vortices m) in the solution of the Hamiltonian. After a bit of work, we discovered
that a composite e−m object has a meaningful characterization within the model as
well, at least in that it has fermionic statistics. This begs the question, how many
particle types exist in the toric code model and how can we identify them?

We take an algebraic definition of a particle type: each type corresponds to a super-
selection sector, which is a representation of the local operator algebra. In particular,
we say that two particles (or composite objects) are of the same type

a ∼ b (4.10)

if a can be transformed to b by some operator acting in a finite region. For example,
in the toric code, two e-particles are equivalent to having no particles at all,

W (e)
l

e

l
e

+−→

(4.11)

by acting with an appropriate, geometrically bounded electric path operator W (e)
l .

We introduce the notation
e× e = 1 (4.12)

to represent the fusion rule that two e-particles are equivalent to the vacuum sector
1. In the toric code, there are 4 superselection sectors:

1, e, m, and ϵ = e×m (4.13)
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with the fusion rules:
e× e = 1 e×m = ϵ
m×m = 1 e× ϵ = m
ϵ× ϵ = 1 m× ϵ = e

(4.14)

4.2 Mutual statistics implies degeneracy on the torus

This is an argument due to Einarsson (1990). Suppose that there are at least two
particle types, e and m with −1 mutual statistics. Let us define an operator Z acting
on the ground state in an abstract fashion (not refering to the actual model) which
creates an e pair, wraps one particle around the torus and annihilates the pair. In the

toric code, this will be the path operator W (e)
l =

∏

j∈l σ
z
j for a loop l winding one of

the nontrivial cycles on the torus, but we need not know that specifically.
We can define another operator X that creates a pair of the other type m and

winds around the other nontrivial cycle on the torus. But now a bit of geometric
introspection reveals that the combination,

em = −1Z−1X−1ZX =

(4.15)

Thus, there are two non-commuting operators acting on the ground state space L,
and we conclude dim L > 1. In fact, there are four such operators, each of the two
particle types can be moved around each of the two nontrivial cycles. Working out the
commutation relations of these operators implies that dim L = 4.

4.3 The toric code in a field: perturbation analysis

We now apply a magnetic field to the toric code that will realistically allow the quasi-
particles to hop and, unfortunately, destroy its exact solvability (see Tupitsyn et al. (2008)).
To wit:

H = −Je

∑

s

As − Jm

∑

p

Bp −
∑

j

(

hxσ
x
j + hzσ

z
j

)

(4.16)

For example, with hx = 0 but hz ̸= 0, we can view the perturbation as an electric
path operator of length 1 on each edge. Hence, it can cause charge pair creation and
annihilation (at an energy cost ∼ 4Je) or hop existing charges by one lattice displace-
ment, at no cost. For small hz this provides a nontrivial tight-binding dispersion to
the charges,

ϵ(q) ≈ 2Je − 2hz(cos qx + cos qy) (4.17)

but does not close the gap or lead to a change in the topological degeneracy of the
ground state in the thermodynamic limit.

At large hz ≫ Je, Jm, the model should simply align with the applied field as a
paramagnet. Clearly, in this limit the topological degeneracy has been destroyed and
we have a unique spin-polarized ground state. The phase transition can be understood
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Fig. 4.1 Numerically determined phase diagram of the toric code in a field from

Tupitsyn et al. (2008). (I) labels the topological phase, (II) and (III) the vortex and charge

condensates (i.e. the paramagnetic phase). The numerics were done using discrete imaginary
time with a rather large quantization step.

from the topological side as a bose condensation of the charges, which proliferate as
hz increases.

The same argument is applicable if hx ≫ Je, Jm. If hx increases while hz = 0,
then vortices condense. However, the high-field phase is just a paramagnet, so one
can continuously rotate the field between the x- and z-direction without inducing a
phase transition. Thus, the charge and vortex condensates are actually the same phase!
This property was first discovered by Fradkin and Shenker (1979) for a 3D classical
Z2 gauge Higgs model, where it appears rather mysterious.

4.4 Robustness of the topological degeneracy

The splitting of the ground state levels due to virtual quasiparticle tunneling is given
by

δE ∼ ∆e−L/ξ (4.18)

This follows from the effective Hamiltonian

Heff = −(t1ZZ1 + t2ZZ2 + t1XX1 + t2XX2) (4.19)

where the Zi, Xi operators are the winding loop operators of Sec. 4.2. Physically, this
is simply a statement of the fact that the only way to act upon the ground state is
to wind quasiparticles around the torus. This is a process exponentially suppressed in
system size.

4.5 Emergent symmetry: gauge formulation

There are two ways to introduce symmetry operators in the perturbed toric code
model.
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1. One can define loop operators (e.g. Z1, Z2, X1, X2), the definition of which depends
on the actual ground state of the perturbed Hamiltonian. This is similar to the
definition of the operator Y in the 1D case of Sec. 2.5, which also requires detailed
knowledge of the ground state.

2. One can exploit gauge invariance by rewriting the model in a gauge invariant
form. This can be done for any spin model by introducing redundancy. In this
case, the symmetry does not depend on the model but is only manifest in the
topological phase.

We will take the second approach in order to avoid the difficulty of defining the
appropriate loop operators and also to introduce the important gauge formulation of
the model. To gauge the model we proceed in steps:

1. Introduce one extra spin µv per vertex that always remains in the state

1√
2

(

| ↑
〉

+ | ↓
〉)

. (4.20)

This state is characterized by the condition

µx
v |Ψ
〉

= |Ψ
〉

, (4.21)

where µx
v is the Pauli spin matrix for the spin µ at vertex v.

2. Change spin operators from σuv, µv to σ̃uv , µ̃v where we represent the classical
value of each old spin suv as m̃us̃uvm̃v. Here suv is the spin on the edge connecting
u and v and mu, mv are the classical values of the new spins (i.e. the labels in
the µz basis).

Thus the complete transformation is given by

σz
uv = µ̃z

uσ̃
z
uv µ̃z

v

σx
uv = σ̃x

uv

µz
u = µ̃z

u

µx
u = µ̃x

u

∏

j∈star(u)

σ̃x
j = µ̃x

uÃu (4.22)

and the constraint Eq. (4.21) becomes the standard Z2 gauge constraint:

µ̃x
uÃu|Ψ

〉

= |Ψ
〉

. (4.23)

On states satisfying the gauge constraint Eq. (4.23), Au = Ãu = µ̃x
u. Therefore,

Au|Ψ
〉

= µ̃x
u|Ψ
〉

(4.24)

and we can rewrite the Hamiltonian as

H = −Je

∑

v

µ̃x
v − Jm

∑

p

B̃p −
∑

⟨u,v⟩

(hxσ̃
x
uv + hzµ̃uσ̃

z
uv µ̃v) (4.25)

subject to the gauge constraint.
Viewed as a standard Z2 gauge theory, the protected topological degeneracy of the

ground state is physically familiar as the protected degeneracy associated with the
choice of flux threading the 2g holes of the genus g surface.
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The honeycomb lattice model

We now investigate the properties of another exactly solvable spin model in two dimen-
sions, the honeycomb lattice model. This model exhibits a number of gapped phases
that are perturbatively related to the toric code of the previous sections. Moreover, in
the presence of time-reversal symmetry breaking terms, a new topological phase arises
with different topological properties, including nontrivial spectral Chern number. An
extended treatment of the properties of this model with much greater detail can be
found in Kitaev (2006).

In the honeycomb lattice model, the degrees of freedom are spins living on the
vertices of a honeycomb lattice with nearest neighbor interactions. The unusual feature
of this model is that the interactions are link orientation dependent (see Fig. 5.1). The
Hamiltonian is

H = −Jx

∑

x links

σx
j σ

x
k − Jy

∑

y links

σy
j σ

y
k − Jz

∑

z links

σz
j σ

z
k (5.1)

We might expect this model to be integrable because [H, Wp] = 0 for an extensive
collection of plaquette operators

Wp = σx
1σy

2σ
z
3σ

x
4σy

5σ
z
6

z

1
6

y x

yx

z

2 4

5

3

(5.2)
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Fig. 5.1 The honeycomb model has spins living on the vertices of a honeycomb lattice

with nearest neighbor interactions that are link-orientation dependent. x-links have σxσx

interactions, y-links have σyσy interactions and z-links have σzσz interactions.
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where the spins and labels follow from the figure for each plaquette. Unfortunately,
this is not quite enough: there are two spins but only one constraint per hexagon so
that half of each spin remains unconstrained. In fact, the remaining degrees of freedom
are Majorana operators!

5.1 A (redundant) representation of a spin by 4 Majorana
operators

We consider a collection of four Majorana operators c, bx, by and bz that act on the
4-dimensional Fock space F. We define the following three operators

σ̃x = ibxc

σ̃y = ibyc

σ̃y = ibyc. (5.3)

These operators do not obey the spin algebra relations on the full Fock space, but we
clearly have two extra dimensions of wiggle room. In fact, the physical state space is
identified with a two-dimensional subspace L ⊂ F given by the constraint

D|Ψ
〉

= |Ψ
〉

, where D = bxbybzc (5.4)

Within L, the σ̃α act as σα act on the actual spin. Of course, σ̃α also act on L⊥, but
we can ignore these states by enforcing the constraint.

To be careful, we need to check two consistency conditions:

1. σ̃α preserves the subspace L, which follows from [σ̃α, D] = 0.
2. The σ̃α satisfy the correct algebraic relations when restricted to L. For example,

σ̃xσ̃yσ̃z = (ibxc)(ibyc)(ibzc) = i3(−1)bxbybzc3 = iD = i (5.5)

where the last equality only holds in the physical subspace L.

5.2 Solving the Honeycomb Model using Majoranas

We now use the Majorana representation of spins just introduced to rewrite each
spin of the entire honeycomb model as in Fig. 5.2. This will greatly expand the 2N -
dimensional Hilbert space to the Fock space F of dimension 22N , but the physical
space L ⊂ F is fixed by the gauge condition

Dj |Ψ
〉

= |Ψ
〉

for all j (5.6)

where Dj = bx
j by

j bz
jc. We define a projector onto L by

ΠL =
∏

j

(

1 + Dj

2

)

(5.7)

In the Majorana representation, the Hamiltonian (5.1) becomes

H̃ =
i

4

∑

⟨j,k⟩

Âjkcjck
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Fig. 5.2 Majorana representation of honeycomb model.

Âjk = 2Jα(j,k)ûjk

ûjk = ibα(j,k)
j bα(j,k)

k (5.8)

where α(j, k) = x, y, z is the direction of the link between j and k.
We have suggestively written the Hamiltonian H̃ as if it were a simple quadratic

fermion Hamiltonian as in Sec. 2.4, but of course Âjk is secretly an operator rather
than a real skew-symmetric matrix. However, each operator bα

j enters only one term

of the Hamiltonian and therefore ûjk commute with each other and with H̃ ! Thus, we
can fix ujk = ±1, defining an orthogonal decomposition of the full Fock space:

F =
⊕

u

Fu, where |Ψ
〉

∈ Fu iff ûjk|Ψ
〉

= ujk|Ψ
〉

∀ j, k (5.9)

Within each subspace Fu, we need to solve the quadratic Hamiltonian

H̃u =
i

4

∑

⟨j,k⟩

Ajkcjck

Ajk = 2Jα(j,k)ujk (5.10)

which we know how to do in principle. On the other hand, the integrals of motion Wp

(the hexagon operators) define a decomposition of the physical subspace L labeled by
the eigenvalues wp = ±1:

L =
⊕

w

Lw, where |Ψ
〉

∈ Lw iff Wp|Ψ
〉

= wp|Ψ
〉

∀ p (5.11)

We can relate these two decompositions by expressing Wp in the Majorana represen-
tation and noting that within the physical subspace

W̃p =
∏

⟨j,k⟩∈∂p

ûjk (5.12)
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Thus, we find
Lw = ΠLFu (5.13)

where wp =
∏

(j,k)∈∂p ujk.
So we have a procedure for finding the ground state of the honeycomb model:

1. Fix wp = ±1 for all p.
2. Find ujk satisfying

wp =
∏

(j,k)∈∂p

ujk. (5.14)

There is a small subtletly here in that ujk = −ukj so we must be careful about
ordering. We can consistently take j in the even sublattice of the honeycomb and
k in the odd sublattice in equation (5.14).

3. Solve for the ground state of the quadratic Hamiltonian (5.10), finding the energy
E(w).

4. Project the found state onto the physical subspace (i.e. symmetrize over gauge
transformations).

5. Repeat for all w; pick the w that minimizes the energy.

If there were no further structure to E(w), this would be an intractable search
problem in the space of wp. Fortunately, due to a theorem by Lieb (1994), the ground
state has no vortices. That is,

E(w) = min if wp = 1 ∀ p (5.15)

Using this choice of wp, it is easy to solve the model and produce the phase diagram
of Fig. 5.3. The gapless phase has two Dirac points in the fermionic spectrum.

5.3 Fermionic spectrum in the honeycomb lattice model

We just need to diagonalize the Hamiltonian

H̃u =
i

4

∑

⟨j,k⟩

Ajkcjck

Ajk = 2Jα(j,k)ujk

ujk =

{

+1 if j ∈ even sublattice
−1 otherwise

(5.16)

This is equivalent to finding the eigenvalues and eigenvectors of the matrix iA. Since
the honeycomb lattice has two sites per unit cell, by applying the Fourier transform
we get a 2× 2 matrix A(q⃗):

iA(q⃗) =

(

0 if(q⃗)
−if(q⃗) 0

)

ϵ(q⃗) = ±|f(q⃗)| (5.17)

where f(q⃗) is some complex function that depends on the couplings Jx, Jy, Jz. In the
gapless phase (phase B in Fig. 5.3), f(q⃗) has two zeros which correspond to Dirac points
(see Fig. 5.4). At the transition to phase A, the Dirac points merge and disappear.
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Fig. 5.4 Direct and reciprocal lattices of the honeycomb. The points ±q⃗∗ are the two Dirac

points of the gapless phase B.

5.4 Quasiparticle statistics in the gapped phase

It appears that there are two particle types: fermions and vortices (hexagons with
wp = −1). The vortices are associated with a Z2 gauge field, where ujk plays the role
of vector potential. Taking a fermion around a vortex results in the multiplication of
the state by −1 (compared to the no-vortex case). However, the details such as the
fusion rules are not obvious.

Let us look at the model from a different perspective. If Jx = Jy = 0, Jz > 0,
the system is just a set of dimers (see Fig. 5.5). Each dimer can be in two states: ↑↑
and ↓↓. The other two states have 2Jz higher energy. Thus, the ground state is highly
degenerate.

If Jx, Jy ≪ Jz, we can use perturbation theory relative to the noninteracting dimer
point. Let us characterize each dimer by an effective spin:

| ⇑
〉

= | ↑↑
〉

; | ⇓
〉

= | ↓↓
〉

. (5.18)

At 4th order of perturbation theory, we get:

H(4)
eff = const−

J2
xJ2

y

16J3
z

∑

p

Qp (5.19)
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Fig. 5.5 The vertical dimers on the honeycomb lattice themselves form the edges of a

(dashed) square lattice. The plaquettes of alternate rows of the hexagonal lattice correspond

to the stars and plaquettes of the square lattice. This is weak breaking of translational sym-

metry.

where p runs over the square plaquettes of the dimer lattice (see Fig. 5.5) and

Qp = σy
p1
σx

p2
σy

p3
σx

p4
(5.20)

is a plaquette operator on the effective spin space | ⇑
〉

, | ⇓
〉

. By adjusting the unit
cell and rotating the spins, we can reduce this Hamiltonian to the toric code!

The vertices and plaquettes of the new lattice correspond to alternating rows of
hexagons. Thus, vortices on even rows belong to one superselection sector and vortices
on odd rows to the other. It is impossible to move a vortex from an even row to an
odd row by a local operator without producing other particles (e.g. fermions). The
fermions and e−m pairs belong to the same superselection sector, ϵ, though these are
different physical states.

5.5 Nonabelian phase

In the gapless phase B, vortex statistics are not well-defined. However, a gap can
be opened by applying a perturbation that breaks the time-reversal symmetry, such
as a magnetic field. Unfortunately the honeycomb model in a field is not exactly
solvable. Yao and Kivelson (2007) studied an exactly solvable spin model where the
time-reversal symmetry is spontaneously broken, but we will satisfy ourselves by in-
troducing a T-breaking next nearest neighbor interaction on the fermionic level (which
can be represented by a 3-spin interaction in the original spin language).

Written in terms of Majorana fermions, we consider the Hamiltonian

H =
i

4

∑

⟨j,k⟩

Ajkcjck (5.21)

where Ajk now has chiral terms connecting Majoranas beyond nearest neighbor in the
honeycomb lattice (see Fig. 5.6). After Fourier transforming, we find
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Fig. 5.6 Picture of chiral interaction matrix Ajk. Forward arrows correspond to positive

entries in the skew-symmetric real matrix Ajk. Solid arrows are the interactions of the original
honeycomb model; dashed arrows give the time-reversal symmetry breaking perturbation.

iA(q⃗) =

(

∆(q⃗) if(q⃗)
−if(q⃗) −∆(q⃗)

)

(5.22)

with the massive dispersion relation

ϵ(q⃗) = ±
√

f(q⃗)2 + ∆(q⃗)2. (5.23)

Within this massive phase, we will find nontrivial topological invariants of the
quasiparticle spectrum. Let iA(q⃗) be a nondegenerate Hermitian matrix that conti-
nously depends on q⃗. In our case, A acts in C2, but in general it can be Cn for any
n. Let us keep track of the “negative eigenspace” of iA(q⃗): the subspace L(q⃗) ⊆ Cn

spanned by eigenvectors corresponding to negative eigenvalues. For matrix (5.22),
dim L(q⃗) = 1. This defines a map F from momentum space (the torus) to the set of
m-dimensional subspaces in Cn. More formally:

F : T
2 −→ U(n)/U(m)× U(n−m) (5.24)

This map F may have nontrivial topology.
In the honeycomb model with T-breaking, we have n = 2, m = 1 and U(2)/U(1)×

U(1) = CP 1 = S2 is the unit sphere. Thus, F : T2 −→ S2 and for the matrix iA(q⃗)
of Eq. (5.22), F has degree 1. That is, the torus wraps around the sphere once. More
abstractly, L(q⃗) defines a complex vector bundle over the momentum space T2. This
has an invariant Chern number ν, which in this case is ν = 1.

What is the significance of the spectral Chern number? It is known to characterize
the integer quantum Hall effect, where it is known as the “TKNN invariant”. For a
Majorana system, there is no Hall effect since particles are not conserved. Rather, the
spectral Chern number determines the number of chiral modes at the edge:

ν = (# of left-movers)− (# of right-movers). (5.25)

5.6 Robustness of chiral modes

A chiral edge mode may be described by its Hamiltonian:
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Hedge =
iv

4

∫

η̂(x)∂xη̂(x)dx (5.26)

where η̂(x) is a real fermionic field. That is,

η̂(x)η̂(y) + η̂(y)η̂(x) = 2δ(x− y). (5.27)

At temperature T , each mode carries energy current

I1 =
π

24
T 2. (5.28)

The easiest explanation of this is a straightforward 1-D fermi gas calculation:

I1 = v

∫ ∞

0
n(q)ϵ(q)

dq

4π

=
1

2π

∫ ∞

0

ϵdϵ

1 + eϵ/T

=
π

24
T 2 (5.29)

However, it is useful to reexamine this current using conformal field theory (CFT),
in order to understand better why the chiral modes are robust. We consider a disc
of B phase extended into imaginary time at temperature T . That is, we have a solid
cylinder with top and bottom identified:

t

1/
T x

We have obtained a solid torus whose surface is a usual torus. The partition function
is mostly determined by the surface.

Let the spatial dimensions be much greater than 1
T . From this point of view, the

cylinder looks more like:

1/
T x

t

According to the usual CFT arguments, we have

Z ∼ q
c
24 q̄

c̄
24
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q = e2πiτ

τ = i
LT

v
+ twist (5.30)

Twisting the torus changes the partition function by:

τ +→ τ + 1

Z +→ Ze2πi c−c̄
24 . (5.31)

On the other hand, the twist parameter (Re τ) couples to the some component of the
energy-momentum tensor, namely, Txt, which corresponds to the energy flow. This
relation implies that

I =
π

12
(c− c̄)T 2. (5.32)

The chiral central charge, c− c̄, does not depend on the boundary conditions. Indeed,
the energy current on the edge cannot change because the energy cannot go into the
bulk.
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