Li-Ion Batteries

By Gustavo Ramirez

OVERVIEW

- Introduction to battery as a technology
- Current Li-ion batteries
- Next Generation?

Introduction to the Battery

- Cell is the fundamental unit of a battery; converts chemical energy directly into electrochemical energy via redox reaction
- Technology is the *ability to* store energy into the future in the form of an electrochemical reaction
- Current Li-ion battery technology is on par with other mature battery technologies, and there's still significant room for improvement!

Lithium-Ion Battery

- Li-ion battery conducts Li-ions between its 3 main components: cathode, anode, and electrolyte
- Cathode (+) uses a transition metal oxide: xLi⁺ + xe⁻ + Li_{1-x}MeO₂ ↔ LiMeO₂
- Anode (-) uses a carbon:
 Li_xC₆ ↔ xLi⁺ + xe⁻ + C₆
- *Electrolyte* is LiPF₆ salt dissolved in ethylene carbonate (EC) & another carbonate solvent, *providing Li ions*

Next Generation?

- Current cathode and anode materials are *intercalation materials*, crystal structure maintained during charge/discharge
- Alloying materials (-) alloy with lithium, causing massive volume expansions
- Conversion materials (+) experience complete dissolution of the crystal structure: $xLi^+ + xe^- + MeF_X \leftrightarrow Me^0 + xLiF$

Advantage Over Intercalation

- Conversion and alloying materials *allow more lithium per amount of metal than intercalation* (≤ 1)
- Remarkable increases in gravimetric and volumetric capacities are possible for both cathode and anode materials
- There are many challenges awaiting regarding structure integrity during prolonged cycling

Thank You!

