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   Spin Liquids

What They are NOT

Wavefunctions

Experimental Candidates

My 15 minute Presentation (again!)
“Intro to Quantum Criticality”

Exotic Excitations



Spin Liquid = Spin Gas ??

• Classical liquids are continuously connected 
to gases - not a distinct phase of matter ...
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Spin Waves vs. Spinons

Spin Waves
Low-Energy States of an Ordered Magnet

Quantum of Excitation = Magnon

Goldstone Mode
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Spin Waves vs. Spinons

Spinons
S = 1/2 AFM chain:  No Long-Range Order

No Breaking of Spin Rotational Symmetry

S = 1 fractionalized into two S=1/2 spinons !!
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Classical Spin Liquid:  Spin Ice at Low T ??

Spin Freezing !!

Large Energy Barriers
between Ice-Rule

Spin States

Weak Quantum Fluctuations

Strong Quantum Fluctuations Needed to 
avoid Ordering or Freezing even at T=0 !!



A debate

Néel
Landau
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singlets

 6(courtesy:  L. Balents)
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Valence Bond States of Frustrated Antiferromagnets

Valence Bond Solid (VBS) 

Breaks Lattice Symmetries

No Long-Range Entanglement

-
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Science 87

Dearth of 2D S=1/2 AFMS:  Could Doping such a 

       “Spin Liquid” lead to Novel Superconductivity??

+ + … 
� =
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Resonating Valence Bond (RVB) States of Frustrated 
Antiferromagnets

Wavefunction is superposition of many pairings 
of states with

Short-Range Bonds

Longer-Range Bonds



Quantum  Spin Liquids:

Quantum Spin System with No Spin Ordering or Spin 
Freezing


No Broken Symmetry


Expected:  Unconventional Excitations  (NOT spin 1 
magnons!)


“Economy” Strongly Correlated Phases 
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A Modern View

• Let’s call a QSL a ground state of a spin system 
with long range entanglement 

• This means a state which cannot be regarded 
or even approximated as a product state over 
any finite blocks
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How to describe a 
QSL?

• A long-range entangled wavefunction is a 
complicated thing!

• Very hard to work directly with all these 
coefficients ......

+ + … � = c2c1
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Quantum Spin Liquid “Zoology”

Characterized by weights of VB partition in Wavefunction


Gapped and Gapless


Excitations obey fermion, bose and anyon statistics


Two common varieties: 


U(1) States:  unpaired spinons, gapless in 2d,

strong gauge fluctuations, stable only at T=0 in d=3


Z2 States:  Spinons paired, gapped in 2d,

weak gauge fluctuations, Ising transition in d=3
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Where to look?

• Materials with

• S=1/2 spins 

• Frustration

• Significant charge fluctuations

• Exotic interactions (c.f. Spin-orbit 
coupling) 
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Yb2Ti2O7
pyrochlore lattice

[110] magnetic Field-Induced   

Long Range Order in Yb2Ti2O7 

Sharp spin waves at all wavevectors indicate that the system has entered 

a long range ordered phase induced by modest [110] magnetic fields 

• Spin waves appear absent in low field, but 
emerge for B>0.5T

• a low field QSL?

K.A. Ross et al (2009)
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Herbertsmithite
(ZnCu3(OH)6Cl2 )

S=1/2 Kagome Material with J~200K


No conventional magnetic order to 50mK
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http://en.wikipedia.org/wiki/Zinc
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Chlorine


Ground-State is Gapped

No Sign of Magnetic or
Valence Bond Ordering!!
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Topological Entanglement Entropy:   
A New Diagnostic for Phases with No Known 

Order Parameter 

          (for gapped Quantum Spin Liquids)

A B

⇢A = TrB | ih |

LA

S = �TrA[⇢A ln ⇢A]

 SA: Measure of how strongly


entangled subregion A is with


rest of the system


SA(L) ⇠ ↵LA � �
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γDMRG=0.698(8)

(γth=ln(2)=0.693) 

 Z2  Spin Liquid ??!!
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ZnCu3(OH)6Cl2
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Continuum of Spinon
Excitations !!

No Spin Gap ??

(Disorder) ??

 21

http://en.wikipedia.org/wiki/Zinc
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Chlorine
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Introduction to Quantum Criticality
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Quantum Criticality  ??

Quantum Fluctuations at Finite T ??

An Experimental Case

Towards the Future….
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Thermal vs. Quantum Fluctuations

Temperature

Ice Water Water Vapor

 Thermal Transformation of Matter 

 Heat                  Atomic  Motion 

kBT

~⌦
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Quantum Fluctuations at Finite Temperature ??

Heisenberg Uncertainty Principle

�t / ~
�E

Decoherence Time-Scale (Planck time)

tP / ~
kBT

Fluctuations purely Quantum up to the Planck time 
Classical beyond

T = 0 Quantum Critical Point, 
Fluctuations are Purely Quantum
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Quantum Fluctuations Present at Room Temperatures !!

Specific Heat of Diamond
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Classical
Criticality

Quantum
Criticality



Classical and Quantum Phase Transitions
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Towards the Future ….

Universality of Quantum Criticality ??

Exotic Quantum Phases near QCPs ??

New Functionalities ??
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