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We obtain
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13.4 Calculate the first and second-orders corrections to the energy eigenval-
ues of a linear harmonic oscillator with the cubic term −λµx3 added to
the potential. Discuss the condition for the validity of the approxima-
tion.

The Hamiltonian of the perturbed system is H = H(0) + λH(1) where

H(0) =
1

2m
p2x +

1

2
kx2, H(1) = −µx3 . The first-order correction to energy

eigenvalues is given by

E(1)
n = ⟨n|− µx3 |n⟩ = −µ

(

!

2mω

) 3/2

⟨n|(a+ a†)3 |n⟩ .

The expansion of (a+ a†)3 is

a3 + a2a† + aa†a+ a†a2 + a†2a+ a†aa† + aa†2 + a†3 .

In the above expansion each term has unequal powers of a and a†. Hence,

⟨n|(a+a†)3 |n⟩ = 0 and E(1)
n = 0 . The first-order correction to the energy

K24365_SM_Cover.indd   220 13/11/14   6:57 PM

Approximation Methods I: Time-Independent Perturbation Theory ! 207

eigenvalues is thus 0 . Next, calculate the second-order correction to En.
We have

E(2)
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∑
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∣
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Consider the term ⟨n|(a+ a†)3 |m⟩. It is expanded as

⟨n|a3 + a2a† + aa†a+ a†a2 + a†2a+ a†aa† + aa†2 + a†3 |m⟩ .

We evaluate each term in the above integral. We obtain

⟨n|a3 |m⟩ = ⟨n|a2
√
m|m− 1⟩

= ⟨n|a
√
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√
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=

√

m(m− 1)(m− 2) δn,m−3

⟨n|a2a†|m⟩ = ⟨n|a2
√
m+ 1|m+ 1⟩

= (m+ 1)
√
m δn,m−1

⟨n|aa†a|m⟩ = m
√
m δn,m−1

⟨n|a†a2|m⟩ = (m− 1)
√
m δn,m−1

⟨n|a†2a|m⟩ = m
√
m+ 1 δn,m+1

⟨n|a†aa†|m⟩ = (m+ 1)
√
m+ 1 δn,m+1

⟨n|aa†2|m⟩ = (m+ 2)
√
m+ 1 δn,m+1

⟨n|a†3 |m⟩ =
√

(m+ 1)(m+ 2)(m+ 3) δn,m+3 .

Then

⟨n|(a+ a†)3 |m⟩ =
√

m(m− 1)(m− 2) δn,m−3

+3m3/2 δn,m−1 + 3(m+ 1)3/2 δn,m+1

+
√

(m+ 1)(m+ 2)(m+ 3) δn,m+3 .

In the summation in the expression for E(2)
n the nonzero contribution of

⟨n|(a+ a†)3 |m⟩ comes from the cases m = n+3, n+1, n− 1 and n− 3.
Then

E(2)
n =

µ2

!ω

(

!

2mω

) 3 [(n+ 1)(n+ 2)(n+ 3)

−3
+
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−1
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1
+
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3

]
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(
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)

.
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Since E(2)
n is negative, all the energy eigenvalues are reduced. The

amount of reduction increases with n. This is because due to the cu-
bic term the potential flattens for large x.

The ratio of the change in energy due to the cubic term is

E(2)
n

E(0)
n

= −
µ2!

4m3ω5

(

30n2 + 30n+ 11
)

(2n+ 1)
.

A condition for the validity of the perturbation theory is that the above
ratio must be small. This requires both µ2!/(m3ω5 ) and α = (30n2 +
30n + 11)/4(2n+ 1) to be small. α is small provided n is limited to a
low number. We note that for sufficiently large x, the potential V (x)
is negative and below the origin. Hence, a state with energy below the
maximum, say, A is not truly a bound state but has a small probability
of tunneling out to the right. For low lying states this probability is
negligible. But for higher states the perturbation theory breaks down.

13.5 A harmonic oscillator Hamiltonian is perturbed by a quartic term in x
as λbx4 where b has units of energy/length4 . Calculate the first-order
correction to the energy eigenvalues of the perturbed system treating
the harmonic oscillator as the unperturbed system.

The Hamiltonian of the perturbed system is

H = H(0) + λH(1) =
1

2m
p2x +

1

2
kx2 + λbx4 .

Now, E(1)
n is given by

E(1)
n = ⟨n|H(1)|n⟩ = b

(

!

2mω

) 2

⟨n|(a+ a†)4 |n⟩ .

In ⟨n|(a+ a†)4 |n⟩ due to

a|n⟩ =
√
n|n− 1⟩ , a†|n⟩ =

√
n+ 1|n+ 1⟩ (13.1)

and the orthogonality relation, the terms containing unequal number of
a and a† vanish. Therefore, we need to consider only the nonvanishing
terms, namely, the terms containing equal powers of a and a†. The terms

that contribute to E(1)
n are obtained as

⟨n|(a+ a†)4 |n⟩ = ⟨n|(a2 + a†2 + aa† + a†a)2|n⟩
= ⟨n|a2a†2 + a†2a2 + aa†aa† + aa†a†a

+a†aaa† + a†aa†a|n⟩ .
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14.6 A one-dimensional linear harmonic oscillator is acted upon by the force

F (t) =
F0τ/ω

τ 2 + t2
, −∞ < t < ∞. At t = −∞, the oscillator is in the

ground state. Using the time-dependent perturbation theory to first-
order, calculate the probability that the oscillator is found to be in the
excited state at t = ∞.

The transition coefficient a(1)1 (t) for the given problem is

a(1)1 (t) = −
i

!

∫ ∞

−∞
eiωt′

〈

1
∣

∣

∣
H(1)

∣

∣

∣
0
〉

dt′

=
i

!

∫ ∞

−∞
eiωt′

〈

1|x|0
〉 F0τ/ω

τ 2 + t′2
dt′

=
i

!

(

!

2mω

) 1/2

(F0τ/ω)

∫ ∞

−∞

eiωt′

τ 2 + t′2
dt′ .

The integral in the above equation can be evaluated using contour inte-
gration. Its value is (π/τ)e−ωτ . Then

a(1)1 (t) =
i

!

(

!

2mω

) 1/2 F0π

ω
e−ωτ .

and hence

∣

∣

∣
a(1)1 (t)

∣

∣

∣

2
=

F 2
0 π

2

2m!ω3
e−2ωτ .

The time τ → ∞ corresponds to turning the perturbation slowly,
that is, ωτ ≫ 1. Hence, the transition probability vanishes. The other
limit ωτ → 0 corresponds to the application of an impulsive pertur-

bation with lim
τ → 0

τ

π(t2 + τ 2 )
= δ(t). Therefore, for τ → 0,

∣

∣

∣
a(1)1 (t)

∣

∣

∣

2
=

(F 2
0 π

2 )/(2m!ω3 ).

14.7 At time t = 0the infinite height potential V (x) = 0for 0< x < L and
∞ otherwise is perturbed by the additional term of the form Vp(x) = V0

for L/4< x < 3L/4and 0otherwise. The perturbation is switched-off
at t = T . The system is initially in the ground state φ1. What is the
probability of finding it in the state φ3 after the time t = T ?

The energy eigenvalues and eigenfunctions of the unperturbed system
are

E(0)
n =

n2π2!2

2mL2
, φ(0)

n =
√

2/L sin(nπx/L) .
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First, we normalize the given trial eigenfunction:

1 =

∫

ψ∗ψ dτ

=
N2

πa30

∫ ∞

0

∫ π

0

∫ 2π

0
e−2r/a0

(

1 + 2qEr cos θ + q2E2r2cos2θ
)

×r2sin θ dr dθ dφ

= N2
(

1 + q2E2a20
)

.

That is, N2=
1

1 + q2E2a20
≈ 1− q2E2a20. Then

⟨E0⟩ =
N2

πa30

∫ ∞

0

∫ π

0

∫ 2π

0
(1 + qEr cos θ) e−r/a0

× (H0− eEr cos θ) (1 + qEr cos θ)e−r/a0

×r2sin θ dr dθ dφ

= −
e2

2a0
− E2a20

(

2qe−
q2e2

2a0

)

.

From ∂⟨E0⟩/∂q = 0 gives q = 2a0/e. Then

⟨E0⟩ = −
e2

2a0
− 2a30E

2 .

The polarizability is −∂2⟨E0⟩/∂E2= 4a30.

16.8 A particle of mass m is acted on by the three-dimensional potential
V (r) = −V0e−r/a where !2/(V0a2m) = 3/4. Use the trial function e−r/β

to obtain a bound on the energy.

The normalization condition gives N =
√

1/(πβ3) . Since V is indepen-
dent of θ and φ

⟨E⟩ = −4πN2!2

2m

∫ ∞

0
e−r/βr2

(

d2

dr2
+

2

r

d

dr

)

e−r/β dr

−4πN2V0

∫ ∞

0
e−2r/βe−r/ar2dr .

Carrying out the differentiation the above integral we get

⟨E⟩ = −
4π!2N2

2mβ2

∫ ∞

0
e−2r/βr2dr +

8π!2N2

2mβ

∫ ∞

0
e−2r/βr dr

−4πN2V0

∫ ∞

0
e−(

2
β+ 1

a )rr2dr .
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That is,

⟨E⟩ = −
π!2N 2

2mβ2

2β3

8
+

8π!2N 2

2mβ

β2

4
−

8πN 2V0
(

2
β + 1

a

)3

=
!2

2mβ2
−

8V0
(

2 +
β

a

) 3 .

∂⟨E⟩/∂β = 0gives

32
(

2 +
β

a

) 4 =
a3

β3
.

If β/a = 2 the above equation is satisfied. Therefore, β = 2a. Then
⟨E⟩ = − V0/32.

16.9 Let the total Hamiltonian of a system is of the form H0 +H ′ with H ′

small compared to H0. By choosing the eigenfunction of H0 as the trial
eigenfunction, show that the first-order perturbation is always in excess
of the exact value.

We have Eexact ≤
∫ ∞

−∞
ψ∗Hψ dτ . Let H0φ(0)n = E(0)

n φ(0)n . The choice

ψ = φ(0)n gives

Eexact ≤
∫ ∞

−∞
φ(0)∗n Hφ(0)n dτ

≤
∫ ∞

−∞
φ(0)∗n

(

H0 +H ′)φ(0)n dτ

≤
∫ ∞

−∞
φ(0)∗n H0φ(0)n dτ +

∫ ∞

−∞
φ(0)∗n H ′φ(0)n dτ

≤ E(0)
n +H ′

nn

≤ E(0)
n + E(1)

n .

That is, E(0)
n + E(1)

n ≥ Eexact. The first-order perturbation is always in
excess of the exact value.

16.10 The nonrelativistic hydrogen has the Hamiltonian H = − (!2/2m)∇2 −
e2/r. Estimate its ground state energy by taking the normalized trial
eigenfunction

ψ(r,β) =

(

2

π

) 1/4 ( 2

β

) 3/2

e−r2/β2

Y 0
0
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