HW PHYS 502-2018 Solutions

Problem 1

A harmonic oscillator potential is perturbed by the term $\lambda b x^{2}$. Calculate the first-order and second-order corrections to the energy eigenvalues.

The first-order correction to energy eigenvalues is $E_{n}^{(1)}=\langle n| H^{(1)}|n\rangle$ where $H^{(1)}=b x^{2}$. We have the following relations for linear harmonic oscillator:

$$
a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad x=\sqrt{\hbar /(2 m \omega)}\left(a+a^{\dagger}\right) .
$$

Now

$$
\begin{aligned}
E_{n}^{(1)} & =\langle n| H^{(1)}|n\rangle \\
& =\frac{b \hbar}{2 m \omega}\langle n|\left(a+a^{\dagger}\right)^{2}|n\rangle \\
& =\frac{b \hbar}{2 m \omega}\langle n| a^{2}+a^{\dagger 2}+a a^{\dagger}+a^{\dagger} a|n\rangle
\end{aligned}
$$

We note that

$$
\begin{aligned}
\langle n| a^{m}|n\rangle & =0, \quad\langle n| a^{\dagger m}|n\rangle=0 \\
\langle n| a^{m} a^{\dagger l}|n\rangle & =0 \text { if } m \neq l \\
\langle n| a^{\dagger m} a^{l}|n\rangle & =0 \text { if } m \neq l .
\end{aligned}
$$

Hence, in the expression for $E_{n}^{(1)},\langle n| a^{2}|n\rangle=0$ and $\langle n| a^{\dagger 2}|n\rangle=0$. Then

$$
\begin{aligned}
E_{n}^{(1)} & =\frac{b \hbar}{2 m \omega}\langle n| a a^{\dagger}+a^{\dagger} a|n\rangle \\
& =\frac{b \hbar}{2 m \omega}\left[\langle n| a \sqrt{n+1}|n\rangle+\langle n| a^{\dagger} \sqrt{n}|n-1\rangle\right] \\
& =\frac{b \hbar}{2 m \omega}[\langle n| n+1|n\rangle+\langle n| n|n\rangle] \\
& =\frac{b \hbar}{2 m \omega}(2 n+1)\langle n \mid n\rangle \\
& =\frac{b \hbar}{m \omega^{2}}\left(n+\frac{1}{2}\right) \hbar \omega .
\end{aligned}
$$

Next, consider

$$
E_{n}^{(2)}=\sum_{m \neq n}\left(\frac{\left|H_{n m}^{(1)}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}\right)
$$

We obtain

$$
\begin{aligned}
H_{n m}^{(1)}= & \frac{b \hbar}{2 m \omega}\left[\langle n| a^{2}+a^{\dagger 2}+a a^{\dagger}+a^{\dagger} a|m\rangle\right] \\
= & \frac{b \hbar}{2 m \omega}\left[\langle n| a \sqrt{m}|m-1\rangle+\langle n| a^{\dagger} \sqrt{m+1}|m+1\rangle\right. \\
& \left.\quad+\langle n| a \sqrt{m+1}|m+1\rangle+\langle n| a^{\dagger} \sqrt{m}|m-1\rangle\right] \\
= & \frac{b \hbar}{2 m \omega}[\langle n| \sqrt{m} \sqrt{m-1}|m-2\rangle+\langle n| \sqrt{m+1} \sqrt{m+2}|m+2\rangle \\
& \quad+\langle n| \sqrt{m+1} \sqrt{m+1}|m\rangle+\langle n| \sqrt{m} \sqrt{m}|m\rangle] \\
= & \frac{b \hbar}{2 m \omega}\left[\sqrt{m(m-1)} \delta_{n, m-2}+\sqrt{(m+1)(m+2)} \delta_{n, m+2}\right. \\
& \left.\quad+(m+1) \delta_{n, m}+m \delta_{n, m}\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
E_{n}^{(2)} & =\sum_{m \neq n} \frac{\left|H_{n m}^{(1)}\right|^{2}}{\left(E_{n}^{(0)}-E_{m}^{(0)}\right)} \\
& =\sum_{m \neq n} \frac{\left|H_{n m}^{(1)}\right|^{2}}{(n-m) \hbar \omega} \\
& =\frac{b^{2} \hbar^{2}}{2^{2} m^{2} \omega^{2} \hbar \omega}\left[\frac{(n+2)(n+1)}{-2}+\frac{(n-1) n}{2}\right] \\
& =-\frac{b^{2}}{2 m^{2} \omega^{4}}\left(n+\frac{1}{2}\right) \hbar \omega
\end{aligned}
$$

Problem 2:

If the Hamiltonian of a particle in a box of length L is subjected to a uniform electric field given by $H^{(1)}=-e E x$ calculate the first-order correction to the energy eigenvalues.

The eigenvalues and the eigenfunctions of the unperturbed system are

$$
E_{n}^{(0)}=\frac{\hbar^{2} \pi^{2} n^{2}}{4 m L^{2}}, \quad n=1,2, \cdots, \quad \phi_{n}^{(0)}=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) .
$$

The first-order correction $E_{n}^{(1)}$ is

$$
\begin{aligned}
E_{n}^{(1)} & =-\frac{2 e E}{L} \int_{0}^{L} x \sin ^{2}(n \pi x / L) \mathrm{d} x \\
& =-\frac{e E}{L} \int_{0}^{L}[x-x \cos (2 n \pi x / L)] \mathrm{d} x \\
& =-\frac{e E}{L}\left[\frac{L^{2}}{2}-\left.\frac{L^{2}}{4 n^{2} \pi^{2}} \cos (2 n \pi x / L)\right|_{0} ^{L}\right] \\
& =\frac{e E L}{2}
\end{aligned}
$$

Problem 3

An electron in the potential $V(x)=\left\{\begin{array}{ll}-a / x, & x>0 \\ \infty, & x \leq 0\end{array}\right.$ is in its ground state characterized by the eigenfunction $\phi_{0}=N x \mathrm{e}^{-\beta x}$. The particle is subjected to an applied electric field E_{e} in the x-direction. Calculate the first-order correction to ground state energy eigenvalue.

First, calculate β. Substituting the solution in the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \psi_{x x}-\frac{a}{x} \psi=E \psi
$$

we get

$$
-\frac{\hbar^{2}}{2 m}\left[-2 \beta+\beta^{2} x\right]-a=E x
$$

Equating the coefficients of x^{0} and x equal to zero separately we get

$$
E=-\frac{m a^{2}}{2 \hbar^{2}}, \quad \beta=\frac{a m}{\hbar^{2}}
$$

Next, from the normalization condition $1=N^{2} \int_{0}^{\infty} x^{2} \mathrm{e}^{-2 \beta x} \mathrm{~d} x$ we find $N=2 \beta^{3 / 2}$.

Next, the first-order correction to the ground state energy can be calculated from $E_{0}^{(1)}=\left\langle H^{(1)}\right\rangle$. The perturbation $H^{(1)}$ due to the applied electric field is $e E_{\mathrm{e}} x$. Then

$$
\begin{aligned}
E_{0}^{(1)} & =N^{2} e E_{\mathrm{e}} \int_{0}^{\infty} x^{3} \mathrm{e}^{-2 \beta x} \mathrm{~d} x \\
& =\frac{N^{2} e E_{\mathrm{e}}}{16 \beta^{4}} \int_{0}^{\infty} y^{3} \mathrm{e}^{-y} \mathrm{~d} y \\
& =\frac{N^{2} e E_{\mathrm{e}}}{16 \beta^{4}}\left[-\left.y^{3} \mathrm{e}^{-y}\right|_{0} ^{\infty}+3 \int_{0}^{\infty} y^{2} \mathrm{e}^{-y} \mathrm{~d} y\right] \\
& =\frac{3 N^{2} e E_{\mathrm{e}}}{8 \beta^{4}} \\
& =\frac{3 e E_{\mathrm{e}}}{2 \beta} \\
& =\frac{3 e E_{\mathrm{e}} \hbar^{2}}{2 m a}
\end{aligned}
$$

