HW PHYS 502 - 2018 Solutions

Problem 1

A harmonic oscillator potential is perturbed by the term λbx^2 . Calculate the first-order and second-order corrections to the energy eigenvalues.

The first-order correction to energy eigenvalues is $E_n^{(1)} = \langle n | H^{(1)} | n \rangle$ where $H^{(1)} = bx^2$. We have the following relations for linear harmonic oscillator:

$$a|n\rangle = \sqrt{n}|n-1\rangle, \ a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle, \ x = \sqrt{\hbar/(2m\omega)} (a+a^{\dagger}).$$

Now

$$E_n^{(1)} = \langle n | H^{(1)} | n \rangle$$

= $\frac{b\hbar}{2m\omega} \langle n | (a + a^{\dagger})^2 | n \rangle$
= $\frac{b\hbar}{2m\omega} \langle n | a^2 + a^{\dagger 2} + aa^{\dagger} + a^{\dagger} a | n \rangle$

We note that

$$\begin{aligned} \langle n|a^{m}|n\rangle &= 0 , \quad \langle n|a^{\dagger m}|n\rangle = 0 , \\ \langle n|a^{m}a^{\dagger l}|n\rangle &= 0 \text{ if } m \neq l , \\ \langle n|a^{\dagger m}a^{l}|n\rangle &= 0 \text{ if } m \neq l . \end{aligned}$$

Hence, in the expression for $E_n^{(1)}$, $\langle n|a^2|n\rangle = 0$ and $\langle n|a^{\dagger 2}|n\rangle = 0$. Then

$$E_n^{(1)} = \frac{b\hbar}{2m\omega} \langle n|aa^{\dagger} + a^{\dagger}a|n \rangle$$

$$= \frac{b\hbar}{2m\omega} \left[\langle n|a\sqrt{n+1}|n \rangle + \langle n|a^{\dagger}\sqrt{n}|n-1 \rangle \right]$$

$$= \frac{b\hbar}{2m\omega} \left[\langle n|n+1|n \rangle + \langle n|n|n \rangle \right]$$

$$= \frac{b\hbar}{2m\omega} (2n+1) \langle n|n \rangle$$

$$= \frac{b\hbar}{m\omega^2} \left(n + \frac{1}{2} \right) \hbar\omega .$$

Next, consider

$$E_n^{(2)} = \sum_{m \neq n} \left(\frac{|H_{nm}^{(1)}|^2}{E_n^{(0)} - E_m^{(0)}} \right) \,.$$

We obtain

$$H_{nm}^{(1)} = \frac{b\hbar}{2m\omega} \left[\langle n|a^2 + a^{\dagger 2} + aa^{\dagger} + a^{\dagger}a|m \rangle \right]$$

$$= \frac{b\hbar}{2m\omega} \left[\langle n|a\sqrt{m}|m-1 \rangle + \langle n|a^{\dagger}\sqrt{m+1}|m+1 \rangle + \langle n|a\sqrt{m+1}|m+1 \rangle + \langle n|a\sqrt{m}m|m-1 \rangle \right]$$

$$= \frac{b\hbar}{2m\omega} \left[\langle n|\sqrt{m}\sqrt{m-1}|m-2 \rangle + \langle n|\sqrt{m+1}\sqrt{m+2}|m+2 \rangle + \langle n|\sqrt{m+1}\sqrt{m+1}|m \rangle + \langle n|\sqrt{m}\sqrt{m}|m \rangle \right]$$

$$= \frac{b\hbar}{2m\omega} \left[\sqrt{m(m-1)} \,\delta_{n,m-2} + \sqrt{(m+1)(m+2)} \,\delta_{n,m+2} + (m+1)\delta_{n,m} + m\delta_{n,m} \right].$$

Then

_

$$E_n^{(2)} = \sum_{m \neq n} \frac{|H_{nm}^{(1)}|^2}{(E_n^{(0)} - E_m^{(0)})}$$

= $\sum_{m \neq n} \frac{|H_{nm}^{(1)}|^2}{(n - m)\hbar\omega}$
= $\frac{b^2\hbar^2}{2^2m^2\omega^2\hbar\omega} \left[\frac{(n + 2)(n + 1)}{-2} + \frac{(n - 1)n}{2}\right]$
= $-\frac{b^2}{2m^2\omega^4} \left(n + \frac{1}{2}\right)\hbar\omega$.

Problem 2:

If the Hamiltonian of a particle in a box of length L is subjected to a uniform electric field given by $H^{(1)} = -eEx$ calculate the first-order correction to the energy eigenvalues.

The eigenvalues and the eigenfunctions of the unperturbed system are

$$E_n^{(0)} = \frac{\hbar^2 \pi^2 n^2}{4mL^2}$$
, n = 1, 2, ..., $\phi_n^{(0)} = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$.

The first-order correction $E_n^{(1)}$ is

$$E_n^{(1)} = -\frac{2eE}{L} \int_0^L x \sin^2(n\pi x/L) \, dx$$

= $-\frac{eE}{L} \int_0^L [x - x \cos(2n\pi x/L)] \, dx$
= $-\frac{eE}{L} \left[\frac{L^2}{2} - \frac{L^2}{4n^2\pi^2} \cos(\overline{2n\pi x/L}) \Big|_0^L \right]$
= $\frac{eEL}{2}$.

Problem 3

An electron in the potential $V(x) = \begin{cases} -a/x, & x > 0 \\ \infty, & x \le 0 \end{cases}$ is in its ground state characterized by the eigenfunction $\phi_0 = Nxe^{-\beta x}$. The particle is subjected to an applied electric field E_e in the x-direction. Calculate the first-order correction to ground state energy eigenvalue.

First, calculate β . Substituting the solution in the Schrödinger equation

$$-\frac{\hbar^2}{2m}\psi_{xx} - \frac{a}{x}\psi = E\psi$$

we get

$$-\frac{\hbar^2}{2m} \left[-2\beta + \beta^2 x\right] - a = Ex \; .$$

Equating the coefficients of x^0 and x equal to zero separately we get

$$E = -\frac{ma^2}{2\hbar^2} , \quad \beta = \frac{am}{\hbar^2} .$$

Next, from the normalization condition $1 = N^2 \int_0^\infty x^2 e^{-2\beta x} dx$ we find $N = 2\beta^{3/2}$.

Next, the first-order correction to the ground state energy can be calculated from $E_0^{(1)} = \langle H^{(1)} \rangle$. The perturbation $H^{(1)}$ due to the applied electric field is $eE_{\rm e}x$. Then

$$E_{0}^{(1)} = N^{2} e E_{e} \int_{0}^{\infty} x^{3} e^{-2\beta x} dx$$

$$= \frac{N^{2} e E_{e}}{16\beta^{4}} \int_{0}^{\infty} y^{3} e^{-y} dy$$

$$= \frac{N^{2} e E_{e}}{16\beta^{4}} \left[-y^{3} e^{-y} \Big|_{0}^{\infty} + 3 \int_{0}^{\infty} y^{2} e^{-y} dy \right]$$

$$= \frac{3N^{2} e E_{e}}{8\beta^{4}}$$

$$= \frac{3e E_{e}}{2\beta}$$

$$= \frac{3e E_{e} \hbar^{2}}{2ma}.$$