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206 ! Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

We obtain

H(1)
nm =

b!

2mω

[

⟨n|a2 + a†2 + aa† + a†a|m⟩
]

=
b!

2mω

[

⟨n|a
√
m|m− 1⟩+ ⟨n|a†

√
m+ 1|m+ 1⟩

+⟨n|a
√
m+ 1|m+ 1⟩+ ⟨n|a†

√
m|m− 1⟩

]

=
b!

2mω

[

⟨n|
√
m
√
m− 1|m− 2⟩+ ⟨n|

√
m+ 1

√
m+ 2|m+ 2⟩

+⟨n|
√
m+ 1

√
m+ 1|m⟩+ ⟨n|

√
m
√
m|m⟩

]

=
b!

2mω

[

√

m(m− 1) δn,m−2 +
√

(m+ 1)(m+ 2) δn,m+2

+(m+ 1)δn,m +mδn,m
]

.

Then

E(2)
n =

∑

m≠n

∣

∣H(1)
nm

∣

∣

2

(E(0)
n − E(0)

m )

=
∑

m≠n

∣

∣H(1)
nm

∣

∣

2

(n−m)!ω

=
b2!2

22m2ω2!ω

[

(n+ 2)(n+ 1)

−2
+

(n− 1)n

2

]

= −
b2

2m2ω4

(

n+
1

2

)

!ω .

13.4 Calculate the first and second-orders corrections to the energy eigenval-
ues of a linear harmonic oscillator with the cubic term −λµx3 added to
the potential. Discuss the condition for the validity of the approxima-
tion.

The Hamiltonian of the perturbed system is H = H(0) + λH(1) where

H(0) =
1

2m
p2x +

1

2
kx2, H(1) = −µx3 . The first-order correction to energy

eigenvalues is given by

E(1)
n = ⟨n|− µx3 |n⟩ = −µ

(

!

2mω

) 3/2

⟨n|(a+ a†)3 |n⟩ .

The expansion of (a+ a†)3 is

a3 + a2a† + aa†a+ a†a2 + a†2a+ a†aa† + aa†2 + a†3 .

In the above expansion each term has unequal powers of a and a†. Hence,

⟨n|(a+a†)3 |n⟩ = 0 and E(1)
n = 0 . The first-order correction to the energy
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Approximation Methods I: Time-Independent Perturbation Theory ! 227

(b) The first-order energy correction is E(1)
n =

〈

nlm
∣

∣H(1)
∣

∣nlm
〉

. For
Rnl(r) = Rnl(0), for r < ρ0 we get

E(1)
n =

∫ ρ0

0
|Rnl(0)|2H(1)r2 dr

∫ π

0

∫ 2π

0
|Ylm|2 sin θ dθ dφ .

We have |Rnl(0)|2 = 4δl0/(n3a30). Rnl(0) ̸= 0 for s-states only. E(1)
n is

nonvanishing only for s-states. Using

∫ π

0

∫ 2π

0
|Ylm|2 sin θ dθ dφ = 1 we

get

E(1)
n =

⎧

⎨

⎩

2e2B2

5n3a3
, for s− states

0, for other states.

13.26 The Hamiltonian of a perturbed system is H =

⎛

⎝

1 2ϵ 0
2ϵ 2 + ϵ 3ϵ
0 3ϵ 3 + 2ϵ

⎞

⎠

where ϵ ≪ 1. Workout the first-order eigenvalues and eigenvectors using
the perturbation theory.

Writing H = H(0) +H(1) we have

H(0) =

⎛

⎝

1 0 0
0 2 0
0 0 3

⎞

⎠ , H(1) =

⎛

⎝

0 2ϵ 0
2ϵ ϵ 3ϵ
0 3ϵ 2ϵ

⎞

⎠ .

The eigenvalues and eigenvectors of H(0) are

E(0)
1 = 1, E(0)

2 = 2, E(0)
3 = 3,

φ(0)
1 =

⎛

⎝

1
0
0

⎞

⎠ , φ(0)
2 =

⎛

⎝

0
1
0

⎞

⎠ , φ(0)
3 =

⎛

⎝

0
0
1

⎞

⎠ .

The first-order correction to the eigenvalues are obtained as

E(1)
1 =

〈

φ(0)
1

∣

∣

∣
H(1)

∣

∣

∣
φ(0)
1

〉

= ( 1 0 0 )

⎛

⎝

0 2ϵ 0
2ϵ ϵ 3ϵ
0 3ϵ 2ϵ

⎞

⎠

⎛

⎝

1
0
0

⎞

⎠

= 0 ,

E(1)
2 = ϵ , E(1)

3 = 2ϵ .

The first-order eigenvector is

φ(1)
n = φ(0)

n +
∑

m ̸=n

H(1)
mn

E(0)
n − E(0)

m

φ(0)
m .
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C H A P T E R 14

Approximation Methods
II: Time-Dependent
Perturbation Theory

14.1 Evaluate the transition amplitude upto the second-order for the constant

perturbation V (t) =

{

0, t < 0

V0, t ≥ 0.

We obtain a(0)f = δif and

a(1)f =
1

i!

∫ t

0
eiωfit

′

Hfi(t
′) dt′

=
Hfi

i!

∫ t

0
eiωfit

′

dt′

=
Hfi

i!

[

eiωfit
′

iωfi

]t

0

=
Hfi

Ef − Ei

(

1− eiωfit
)

.

The second-order term is

a(2)f =
1

(i!)2

∑

m

∫ t

0
eiωfmt′Hfm(t′) dt′

∫ t′

0
eiωmit

′′

Hmi(t
′′) dt′′

=
1

(i!)2

∑

m

HfmHmi

∫ t

0
eiωfmt′ dt′

∫ t′

0
eiωmit

′′

dt′′.

233
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238 ! Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

From the time-dependent perturbation theory the probability of finding
the system in φf at time T if the system is at φi at t = 0 is given by

Pfi = a∗faf =
4
∣

∣

∣
H(1)

fi

∣

∣

∣

2

!2ω2
fi

sin2 (ωfiT/2) , H(1)
fi =

∫ L

0
φ(0)∗
f H(1)φ(0)

i dx ,

where ωfi = (E(0)
f − E(0)

i )/!. For the given problem

P31 =
4
∣

∣

∣
H(1)

31

∣

∣

∣

2

!2ω2
31

sin2 (ω31T/2) , ω31 =
E(0)

3 − E(0)
1

!
=

4π2!

mL2
.

H(1)
31 is obtained as

H(1)
31 =

2V0

L

∫ 3L/4

L/4
sin(3πx/L) sin(πx/L) dx

=
V0

L

∫ 3L/4

L/4
[cos(2πx/L)− cos(4πx/L)] dx

= −
V0

π
.

Therefore,

P31 =
V 2
0 L

4m2

4π6!4
sin2 (ω31T/2) .

14.8 A particle in a box potential of width L is perturbed by the term
V0 sin(πx/L) during the time 0 to T . Compute the probability for the
transition from the ground state φ1 to the excited state φ3 in time T .

The energy eigenvalues and eigenfunctions of the unperturbed system
are

E(0)
n =

n2π2!2

2mL2
, φ(0)

n =
√

2/L sin(nπx/L) .

From the time-dependent perturbation theory the probability of finding
the system in φ3 at time T if the system is at φ1 at t = 0 is given by

P31 =
4
∣

∣

∣
H(1)

31

∣

∣

∣

2

!2ω2
31

sin2 (ω31T/2) ,

where

H(1)
31 = V0

∫ L

0
φ(0)∗
3 sin(πx/L)φ(0)

1 dx .
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Approximation Methods II: Time-Dependent Perturbation Theory ! 247

and

H(0) +H(1) =
p2

2m
+

1

2
mω2x2 +

1

2
mω2 (b2 + 2b)x2

=
p2

2m
+

1

2
m(ω(1 + b))2x2 .

The energy eigenvalues and the eigenfunctions of H(0) + H(1) are ob-
tained from those of H(0) by replacing ω by ω(1 + b). The ground state
eigenfunctions φ<

0 and φ>
0 are given by

φ<
0 =

(

α√
π

)1/2

e−α2x2/2 , α =
√

mω/!

and

φ>
0 =

(

β√
π

)1/2

e−β2x2/2 , β =
√

mω(1 + b)/! .

The transition amplitude a00 is obtained as

a00 =

∫ ∞

−∞
φ> ∗
0 φ<

0 dx

=

√

2αβ

π(α2 + β2 )

∫ ∞

−∞
e−x2

dx

=

√

8αβ

α2 + β2

= 2
√
2

(

1 + b

(2 + b)2

)1/4

.

Then the transition probability is a200 =
8(1 + b)

(2 + b)4
.

14.21 A one-dimensional harmonic oscillator has its spring constant k suddenly
reduced by a factor of 1/2. The oscillator is initially in its ground state.
Find the probability for the oscillator to remain in the ground state after
the perturbation.

The transition coefficient a>f is given by ⟨φ>
f |φ

<
i ⟩. We have

φ<
i =

(

α2
i

π

)1/4

e−α2
ix

2/2 , α2
i =

√
km

!

φ>
f =

(

α2
f

π

)1/4

e−α2
fx

2/2 , α2
f =

√

km/2

!
.
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Approximation Methods III: WKB and Asymptotic Methods ! 253

That is,

λ ≪
4π(E − V )

|dV/dx|
.

dV/dx must be very small compared to the de Broglie wavelength λ.
In other words, the semiclassical approximation is reliable in the short
wavelength limit.

15.4 Given φ = (1/!)
∫ x2

x1
p(x) dx find ∂φ/∂E.

We have

φ =
1

!

∫ x2

x1

p dx =
1

!

∫ x2

x1

√

2m(E − V ) dx .

Then

∂φ

∂E
=

1

!

∂

∂E

∫ x2

x1

√

2m(E − V ) dx

=
m

!

∫ x2

x1

1

p
dx

=
m

!

∫ x2

x1

1

m dx/dt
dx

=
T

2!
,

where T is the period of oscillation. Therefore, ∂φ/∂E = 1/(2!ν).

15.5 Using the WKB quantization rule find the eigenvalues of the quartic

anharmonic oscillator with the Hamiltonian H = −
!2

2m

d2

dx2
+ λx4.

We obtain

φ =
1

!

∫ x2

x1

√

2m(E − V ) dx

=

√
2m

!

∫ x1

−x1

(

E − λx4
)1/2

dx , x1 = 4
√

E/λ .

Introducing the change of variable y = λx4/E we get

φ =
E3/4

2λ1/4

(

2m

!2

) 1/2 ∫ 1

0
(1− y)1/2y−3/4 dy

=
E3/4

2λ1/4

(

2m

!2

) 1/2

β(1/4,3/2) .
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C H A P T E R 16

Approximation Methods
IV: Variational
Approach

16.1 For a one-dimensional box of dimension L with eigenfunction φ show

that ⟨E⟩ = (!2/2m)
∫ L
0 |dφ/dx|2 dx. Using this relation estimate the

ground state energy for a particle in the one-dimensional box with trial
eigenfunction

φ(x) =

{

x/(βL), 0≤ x ≤ βL

(L − x)/((1 − β)L), βL ≤ x ≤ L.
Taking β as the varia-

tional parameter compare it with the exact result.

We obtain

⟨E⟩ =

∫ L

0
φ∗

(

−
!2

2m

d2

dx2

)

φdx

=

[

φ∗
(

−
!2

2m

dφ

dx

)]L

0

+
!2

2m

∫ L

0

dφ∗

dx

dφ

dx
dx

=
!2

2m

∫ L

0

∣

∣

∣

∣

dφ

dx

∣

∣

∣

∣

2

dx .

Next, normalizing the eigenfunction we get N =
√

3/L . Therefore,

⟨E⟩ =
!2

2m

∫ L

0

∣

∣

∣

∣

dφ

dx

∣

∣

∣

∣

2

dx =
3!2

2mL2

[

1

β
+

1

1 − β

]

.

Next, ∂⟨E⟩/∂β = 0gives β = 1/2. So ⟨E⟩ = 12!2/(2mL2). Since the
exact E is π2!2/(2mL2) we have ⟨E⟩ = (12/π2)Eexact = 1.215Eexact.
The error is 21.5%.

259
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260 ! Solutions to the Exercises in Quantum Mechanics I: The Fundamentals

16.2 Estimate the ground state of the infinite-well (one-dimensional box)
problem defined by

V =

{

0, for |x| < L

∞, for |x| > L,

using the trial eigenfunction φ = |L|α −|x|α with α the trial parameter
and compare it with the exact energy value.

We obtain

⟨E⟩ =

−
!2

2m

∫ L

−L

(

φ∗ d
2φ

dx2

)

dx

∫ L

−L
φ∗φdx

=

!2

2m
α(α−1)

∫ L

0
(Lα −xα) xα−2 dx

∫ L

0

(

L2α −2Lαxα + x2α
)

dx

=
(α+ 1)(2α+ 1)

2α−1

(

!2

4mL2

)

.

From ∂⟨E⟩/∂α = 0 we get α = (1 ±
√
6 )/2. Since α has to be positive

for physically acceptable solution we choose α = (1 +
√
6 )/2≈ 1.72.

Then using Eexact = !2π2/(8mL2) we obtain

⟨E⟩ =
2.72× 4.44×2×Eexact

2.44×π2
= 1.003Eexact .

The percentage of error is 0.3%.

16.3 Using the calculation of variation, show that the time-independent
Schrödinger equation is the Euler–Lagrange equation that minimizes
the functional I(c) =

∫∞
−∞ φ∗

α(x, c)H(x)φα(x, c) dx with respect to vari-

ation of φα(x) and φ∗
α(x) with

∫∞
−∞ φ∗

α(x)φα(x) dx = 1 and the Lagrange
multiplier being the energy eigenvalue.

We have

I(c) =

∫ ∞

−∞
φ∗
α(x, c)H(x)φα(x, c) dx

=

∫ ∞

−∞

(

!2

2m

dφ∗
α

dx

dφα

dx
+ φ∗

αV φα

)

dx (using problem 1)

=

∫ ∞

−∞
F

(

x,φα,φ
∗
α,

dφα

dx
,
dφ∗

α

dx

)

dx .
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Scattering Theory ! 271

Then

mA

k!2

∣

∣

∣

∣

∫ ∞

0

(

e2ikr − 1
)

∫ ∞

α
e−α′r dα′ dr

∣

∣

∣

∣

≪ 1

=⇒
∣

∣

∣

∣

mA

k!2

∫ ∞

α

∫ ∞

0

(

e(2ik−α′)r − e−α′r
)

dr dα′
∣

∣

∣

∣

≪ 1

=⇒

∣

∣

∣

∣

∣

mA

k!2

∫ ∞

α

[

e(2ik−α′)r

2ik − α′ +
e−α′r

α′

]∞

0

dα′

∣

∣

∣

∣

∣

≪ 1

=⇒
∣

∣

∣

∣

mA

k!2

∫ ∞

α

[

1

α′ − 2ik
−

1

α′

]

dα′
∣

∣

∣

∣

≪ 1

=⇒
∣

∣

∣

∣

mA

k!2

[

ln

(

1−
2ik

α′

)]∞

α

∣

∣

∣

∣

≪ 1

=⇒
∣

∣

∣

∣

mA

k!2

[

− ln

(

1−
2ik

α

)]∣

∣

∣

∣

≪ 1

=⇒
∣

∣

∣

∣

mA

k!2
ln

(

1−
2ik

α

)∣

∣

∣

∣

≪ 1 .

For lower velocities k is very small, k/α ≪ 1. Then

ln

(

1−
2ik

α

)

≈
2k

α
.

Hence, the validity condition becomes 2mA/(!2α) ≪ 1. Hence, the Born
approximation is valid only if A/α is very small. The interaction must
be weak and the range of the interaction must be 1/α fairly small.

For higher velocities k is very large and hence the validity condition

becomes
mA

!2k
ln(2k/α) ≪ 1. Since the range of the Yukawa potential,

1/α, is very small, this condition is not generally valid for heavy nuclei.

17.8 Calculate the differential cross-section for a central Gaussian potential
V (r) = (V0/

√
4π)e−r2/4a2

under Born approximation.

Under the Born approximation

f = −
2mV0

s!2
√
4π

∫ ∞

0
r sin(sr) e−r2/(4a2) dr

=
2mV0

s!2
√
4π

∂

∂s

∫ ∞

0
cos sr e−r2/4a2

dr

=
mV0

s!2
√
4π

∂

∂s

∫ ∞

−∞
cos(sr) e−r2/4a2

dr .

Writing cos(sr) = (eisr + e−isr)/2 and defining x = (r/2a) − isa, y =
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