Home work \#5
(1.) Given

$$
\left.\begin{array}{l}
\text { Given } \\
1 \rightarrow\binom{\sin \left(\frac{\theta}{2}\right) e^{-i \varphi}}{-\cos \left(\frac{\theta}{2}\right)} \\
1+7=\binom{\cos \left(\frac{\theta}{2}\right) e^{-i \varphi}}{\sin (\theta / 2}
\end{array}\right) .
$$

a) Prove that the expressions above indeed upresent éigenstates obeying $H \stackrel{ \pm}{ } \mid \pm \pm\langle\mid \pm\rangle$ for $1+=\bar{h} \cdot \bar{\sigma}=\sum_{j}^{\prime}=h_{j} \sigma_{;}$
b) Show that the spin polarization is parallel (antiparallel) to the magnetic field:

$$
\langle \pm| \bar{\sigma}| \pm\rangle= \pm \bar{h} / h
$$

(2) Prove that Berry
curvature for adiabatic transport 15 of the states:

$$
\begin{aligned}
& \text { the states: } \\
& 1 \rightarrow\binom{\sin (\theta / 2) e^{-i \varphi}}{-\cos (\theta / 2)} e^{i \theta_{-}(\theta, \varphi)} \\
& \left.1+7=\binom{\cos (\theta / 2)}{\sin (\theta / 2)} e^{-i \varphi}\right)
\end{aligned}
$$

$\left\{\begin{array}{l}w h e r e \\ \text { functions. } \\ \theta_{ \pm}\end{array}(\theta, \varphi)\right.$ are smooth $\}$ is independent of the gauge choice determined by the arbitrary function $\theta_{ \pm}(\theta, \varphi)$.
(3) Calculate the Berry curvature $\omega_{0 \varphi}$ of the state $1+7$ and show that if is the opposite of that of $1-7$; thus the sum of the Berry curvatures of these two states is zero everywhere in the parameter state.

