
MID-TERM EXAMINATION - Spring 2020 

Problem 1. 

 

 

Hint:  For the validity criterion calculate the ratio:  
   

Problem 3. 

 
Hint:


 

Problem 4. 
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We obtain
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[
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+
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!ω .

13.4 Calculate the first and second-orders corrections to the energy eigenval-
ues of a linear harmonic oscillator with the cubic term −λµx3 added to
the potential. Discuss the condition for the validity of the approxima-
tion.

The Hamiltonian of the perturbed system is H = H(0) + λH(1) where

H(0) =
1

2m
p2x +

1

2
kx2, H(1) = −µx3. The first-order correction to energy

eigenvalues is given by

E(1)
n = 〈n|− µx3|n〉 = −µ

(

!

2mω

)3/2

〈n|(a+ a†)3|n〉 .

The expansion of (a+ a†)3 is

a3 + a2a† + aa†a+ a†a2 + a†2a+ a†aa† + aa†2 + a†3 .

In the above expansion each term has unequal powers of a and a†. Hence,

〈n|(a+a†)3|n〉 = 0 and E(1)
n = 0. The first-order correction to the energy
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Since E(2)
n is negative, all the energy eigenvalues are reduced. The

amount of reduction increases with n. This is because due to the cu-
bic term the potential flattens for large x.

The ratio of the change in energy due to the cubic term is

E(2)
n

E(0)
n

= −
µ2!

4m3ω5

(

30n2 + 30n+ 11
)

(2n+ 1)
.

A condition for the validity of the perturbation theory is that the above
ratio must be small. This requires both µ2!/(m3ω5) and α = (30n2 +
30n + 11)/4(2n+ 1) to be small. α is small provided n is limited to a
low number. We note that for sufficiently large x, the potential V (x)
is negative and below the origin. Hence, a state with energy below the
maximum, say, A is not truly a bound state but has a small probability
of tunneling out to the right. For low lying states this probability is
negligible. But for higher states the perturbation theory breaks down.

13.5 A harmonic oscillator Hamiltonian is perturbed by a quartic term in x
as λbx4 where b has units of energy/length4. Calculate the first-order
correction to the energy eigenvalues of the perturbed system treating
the harmonic oscillator as the unperturbed system.

The Hamiltonian of the perturbed system is

H = H(0) + λH(1) =
1

2m
p2x +

1

2
kx2 + λbx4 .

Now, E(1)
n is given by

E(1)
n = 〈n|H(1)|n〉 = b

(

!

2mω

)2

〈n|(a+ a†)4|n〉 .

In 〈n|(a+ a†)4|n〉 due to

a|n〉 =
√
n|n− 1〉 , a†|n〉 =

√
n+ 1|n+ 1〉 (13.1)

and the orthogonality relation, the terms containing unequal number of
a and a† vanish. Therefore, we need to consider only the nonvanishing
terms, namely, the terms containing equal powers of a and a†. The terms

that contribute to E(1)
n are obtained as

〈n|(a+ a†)4|n〉 = 〈n|(a2 + a†2 + aa† + a†a)2|n〉
= 〈n|a2a†2 + a†2a2 + aa†aa† + aa†a†a

+a†aaa† + a†aa†a|n〉 .
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14.6 A one-dimensional linear harmonic oscillator is acted upon by the force

F (t) =
F0τ/ω

τ2 + t2
, −∞ < t < ∞. At t = −∞, the oscillator is in the

ground state. Using the time-dependent perturbation theory to first-
order, calculate the probability that the oscillator is found to be in the
excited state at t = ∞.

The transition coefficient a(1)1 (t) for the given problem is

a(1)1 (t) = −
i

!

∫ ∞

−∞
eiωt′

〈

1
∣

∣

∣
H(1)

∣

∣

∣
0
〉

dt′

=
i

!

∫ ∞

−∞
eiωt′

〈

1 |x| 0
〉 F0τ/ω

τ2 + t′2
dt′

=
i

!

(

!

2mω

)1/2

(F0τ/ω)

∫ ∞

−∞

eiωt′

τ2 + t′2
dt′ .

The integral in the above equation can be evaluated using contour inte-
gration. Its value is (π/τ)e−ωτ . Then

a(1)1 (t) =
i

!

(

!

2mω

)1/2 F0π

ω
e−ωτ .

and hence

∣

∣

∣
a(1)1 (t)

∣

∣

∣

2
=

F 2
0 π

2

2m!ω3
e−2ωτ .

The time τ → ∞ corresponds to turning the perturbation slowly,
that is, ωτ $ 1. Hence, the transition probability vanishes. The other
limit ωτ → 0 corresponds to the application of an impulsive pertur-

bation with lim
τ→0

τ

π(t2 + τ2)
= δ(t). Therefore, for τ → 0,

∣

∣

∣
a(1)1 (t)

∣

∣

∣

2
=

(F 2
0 π

2)/(2m!ω3).

14.7 At time t = 0 the infinite height potential V (x) = 0 for 0 < x < L and
∞ otherwise is perturbed by the additional term of the form Vp(x) = V0

for L/4 < x < 3L/4 and 0 otherwise. The perturbation is switched-off
at t = T . The system is initially in the ground state φ1. What is the
probability of finding it in the state φ3 after the time t = T ?

The energy eigenvalues and eigenfunctions of the unperturbed system
are

E(0)
n =

n2π2!2

2mL2
, φ(0)

n =
√

2/L sin(nπx/L) .
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First, we normalize the given trial eigenfunction:

1 =

∫

ψ∗ψ dτ

=
N2

πa30

∫ ∞

0

∫ π

0

∫ 2π

0
e−2r/a0

(

1 + 2qEr cos θ + q2E2r2 cos2 θ
)

×r2 sin θ dr dθ dφ

= N2
(

1 + q2E2a20
)

.

That is, N2 =
1

1 + q2E2a20
≈ 1− q2E2a20. Then

〈E0〉 =
N2

πa30

∫ ∞

0

∫ π

0

∫ 2π

0
(1 + qEr cos θ) e−r/a0

× (H0 − eEr cos θ) (1 + qEr cos θ)e−r/a0

×r2 sin θ dr dθ dφ

= −
e2

2a0
− E2a20

(

2qe−
q2e2

2a0

)

.

From ∂〈E0〉/∂q = 0 gives q = 2a0/e. Then

〈E0〉 = −
e2

2a0
− 2a30E

2 .

The polarizability is −∂2〈E0〉/∂E2 = 4a30.

16.8 A particle of mass m is acted on by the three-dimensional potential
V (r) = −V0e−r/a where !2/(V0a2m) = 3/4. Use the trial function e−r/β

to obtain a bound on the energy.

The normalization condition gives N =
√

1/(πβ3) . Since V is indepen-
dent of θ and φ

〈E〉 = −4πN2 !2

2m

∫ ∞

0
e−r/βr2

(

d2

dr2
+

2

r

d

dr

)

e−r/β dr

−4πN2V0

∫ ∞

0
e−2r/βe−r/ar2 dr .

Carrying out the differentiation the above integral we get

〈E〉 = −
4π!2N2

2mβ2

∫ ∞

0
e−2r/βr2 dr +

8π!2N2

2mβ

∫ ∞

0
e−2r/βr dr

−4πN2V0

∫ ∞

0
e−(

2
β+ 1

a )rr2 dr .
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In detail !



Problem 5. 
 

Problem 6. 
 

Note. Problem 2 is removed as it is  based on writing  a code for the variational method 
and is optional.  

 Let me know if you  are interested for extra points. 

Good luck ! 
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Then

mA

k!2

∣

∣

∣

∣

∫ ∞

0

(

e2ikr − 1
)

∫ ∞

α
e−α′r dα′ dr

∣

∣

∣

∣

" 1

=⇒
∣

∣

∣

∣

mA

k!2

∫ ∞

α

∫ ∞

0

(

e(2ik−α′)r − e−α′r
)

dr dα′
∣

∣

∣

∣

" 1

=⇒

∣

∣

∣

∣

∣

mA

k!2

∫ ∞

α

[

e(2ik−α′)r

2ik − α′ +
e−α′r

α′

]∞

0

dα′

∣

∣

∣

∣

∣

" 1

=⇒
∣

∣

∣

∣

mA

k!2

∫ ∞

α

[

1

α′ − 2ik
−

1

α′

]

dα′
∣

∣

∣

∣

" 1

=⇒
∣

∣

∣

∣

mA

k!2

[

ln

(

1−
2ik

α′

)]∞

α

∣

∣

∣

∣

" 1

=⇒
∣

∣

∣

∣

mA

k!2

[

− ln

(

1−
2ik

α

)]∣

∣

∣

∣

" 1

=⇒
∣

∣

∣

∣

mA

k!2
ln

(

1−
2ik

α

)∣

∣

∣

∣

" 1 .

For lower velocities k is very small, k/α " 1. Then

ln

(

1−
2ik

α

)

≈
2k

α
.

Hence, the validity condition becomes 2mA/(!2α) " 1. Hence, the Born
approximation is valid only if A/α is very small. The interaction must
be weak and the range of the interaction must be 1/α fairly small.

For higher velocities k is very large and hence the validity condition

becomes
mA

!2k
ln(2k/α) " 1. Since the range of the Yukawa potential,

1/α, is very small, this condition is not generally valid for heavy nuclei.

17.8 Calculate the differential cross-section for a central Gaussian potential
V (r) = (V0/

√
4π)e−r2/4a2

under Born approximation.

Under the Born approximation

f = −
2mV0

s!2
√
4π

∫ ∞

0
r sin(sr) e−r2/(4a2) dr

=
2mV0

s!2
√
4π

∂

∂s

∫ ∞

0
cos sr e−r2/4a2

dr

=
mV0

s!2
√
4π

∂

∂s

∫ ∞

−∞
cos(sr) e−r2/4a2

dr .

Writing cos(sr) = (eisr + e−isr)/2 and defining x = (r/2a) − isa, y =
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16.2 Estimate the ground state of the infinite-well (one-dimensional box)
problem defined by

V =

{

0, for |x| < L

∞, for |x| > L,

using the trial eigenfunction φ = |L|α − |x|α with α the trial parameter
and compare it with the exact energy value.

We obtain

〈E〉 =

−
!2

2m

∫ L

−L

(

φ∗ d
2φ

dx2

)

dx

∫ L

−L
φ∗φdx

=

!2

2m
α(α − 1)

∫ L

0
(Lα − xα) xα−2 dx

∫ L

0

(

L2α − 2Lαxα + x2α
)

dx

=
(α+ 1)(2α+ 1)

2α− 1

(

!2

4mL2

)

.

From ∂〈E〉/∂α = 0 we get α = (1 ±
√
6 )/2. Since α has to be positive

for physically acceptable solution we choose α = (1 +
√
6 )/2 ≈ 1.72.

Then using Eexact = !2π2/(8mL2) we obtain

〈E〉 =
2.72× 4.44× 2× Eexact

2.44× π2
= 1.003Eexact .

The percentage of error is 0.3%.

16.3 Using the calculation of variation, show that the time-independent
Schrödinger equation is the Euler–Lagrange equation that minimizes
the functional I(c) =

∫∞
−∞ φ∗

α(x, c)H(x)φα(x, c) dx with respect to vari-

ation of φα(x) and φ∗
α(x) with

∫∞
−∞ φ∗

α(x)φα(x) dx = 1 and the Lagrange
multiplier being the energy eigenvalue.

We have

I(c) =

∫ ∞

−∞
φ∗
α(x, c)H(x)φα(x, c) dx

=

∫ ∞

−∞

(

!2

2m

dφ∗
α

dx

dφα

dx
+ φ∗

αV φα

)

dx (using problem 1)

=

∫ ∞

−∞
F

(

x,φα,φ
∗
α,

dφα

dx
,
dφ∗

α

dx

)

dx .
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