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Metrology and microscopic picture
of the integer quantum Hall effect
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Since 1990, the integer quantum Hall effect has provided the electrical resistance
standard, and there has been a firm belief that the measured quantum Hall resistances
are described only by fundamental physical constants—the elementary charge e and
the Planck constant h. The metrological application seems not to rely on detailed
knowledge of the microscopic picture of the quantum Hall effect; however, technical
guidelines are recommended to confirm the quality of the sample to confirm the exactness
of the measured resistance value. In this paper, we give our present understanding of the
microscopic picture, derived from systematic scanning force microscopy investigations on
GaAs/(AlGa)As quantum Hall samples, and relate these to the technical guidelines.
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1. Introduction

The quantum Hall effect (QHE) [1] plays an important role in the discussion
about units of measurements based on fundamental constants. If the technical
guidelines for reliable measurements of the quantized Hall resistance are met [2],
accurate and reproducible results for resistances with a relative uncertainty of a
few parts in 109 can be obtained. A comparison between four GaAs/(AlGa)As
heterostructure devices in a Wheatstone bridge even shows that the relative
uncertainty for the quantized Hall resistance is smaller than 8 parts in 1011

[3]. Comparisons between devices from different materials, i.e. GaAs against Si
[4] and GaAs against graphene [5], demonstrate that, within the experimental
uncertainty of less than 3 parts in 109, identical resistances are observed. The
Committee on Data for Science and Technology (CODATA) Task Group on
Fundamental Constants concluded that there is no evidence for an inexactness
of the identity between the fundamental quantized Hall resistance and the
fundamental constant h/e2 [6]. Theories of the QHE confirm that the QHE
is not influenced by the gravitational field [7]; the only inexactness so far
predicted comes from quantum electrodynamics, which indicate a possible
radiative screening of electrical charge in a magnetic field leading to a correction
at the level of 1 part in 1020 of magnetic fields typical for QHE experiments [8].
Such corrections are immeasurable.
*Author for correspondence (j.weis@fkf.mpg.de).

One contribution of 15 to a Discussion Meeting Issue ‘The new SI based on fundamental constants’.

This journal is © 2011 The Royal Society3954

 on December 6, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

mailto:j.weis@fkf.mpg.de
http://rsta.royalsocietypublishing.org/


IQHE: metrology and microscopic picture 3955

Despite the fact that the quantized Hall resistance shows a universal behaviour,
the current distribution in real quantum Hall devices is complicated. For
more than a decade, we have performed scanning probe measurements on
a two-dimensional electron system (2DES) embedded in a GaAs/(AlGa)As
heterostructure under quantum Hall conditions at temperature T = 1.4 K. Here
we describe the role of the edges, the influence of contacts and disorder on the
current distribution, and make the connections between the empirically defined
guidelines for reliable QHE measurements and microscopic properties of QHE
devices.

2. Some basics of the quantum Hall effect

The quantum Hall effect and its relation to fundamental physical constants were
discovered in 1980 [1], and honoured by a Nobel prize in 1985:1 the Hall resistance
RH (Hall voltage divided by applied current) measured on a two-dimensional
charge carrier system (electron or hole system) at low temperatures (typically at
liquid helium temperature T = 4.2 K) and high magnetic fields (typically several
tesla) applied perpendicular to the plane of the charge carrier system shows
well-defined constant values for wide magnetic field or charge carrier density
variations. The values of these plateaus are perfectly described by

|RH| = h
(ne2)

. (2.1)

In the original discovery in 1980, n takes integer numbers, i = {1, 2, 3, 4, . . .}.
Later with increasing quality of the 2DES and lower temperature, for n certain
additional fractional numbers f have been discovered [10] (Nobel prize in 1998),
which seem to follow f = p/q with p = {1, 2, 3, . . .} and q = {3, 5, 7, . . .}, with
exceptions such as f = 5/2. The same plateau values are found by keeping the
magnetic flux density Bz constant and varying the sheet electron concentration
ns. Therefore, varying the ratio ns/Bz in certain ranges allows the Hall resistance
plateaus described by equation (2.1) to be observed.

A typical Hall resistance curve versus magnetic flux density, as measured on
a 2DES embedded in a GaAs/(AlGa)As heterostructure, is shown in figure 1. At
low magnetic field, the Hall resistance is linearly increasing with the magnetic
flux density Bz ,

|RH| = |Rxy | =
∣
∣
∣
∣

Vy

Ix

∣
∣
∣
∣
=

∣
∣
∣
∣

Bz

(−ens)

∣
∣
∣
∣
, (2.2)

and allows the determination of the respective sheet charge carrier density ns of
the 2DES. At higher magnetic flux density (i.e. magnetic field) in figure 1, the
Hall effect on the two-dimensional charge system shows Hall resistance values
in certain magnetic field ranges, which are independent of the magnetic field.
The values of these plateaus are perfectly described by equation (2.1). Such Hall
resistance values are expected owing to the comparison between equations (2.2)
and (2.1) only for certain well-defined ratios, ns/Bz = ne/h. The meaning of
this ratio can be expressed slightly differently: taking a certain area A out of
a homogeneous 2DES enclosing the integer number, N = nsA of electrons, the
1Historical remarks on the discovery can be found in von Klitzing [9].
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Figure 1. Hall resistance curve and longitudinal magneto-resistance curve measured on a two-
dimensional electron system. The Hall bar geometry and the respective electrical set-up are shown
on the left.

magnetic flux penetrating this area is given by F = ABz . The ratio between the
electron number N and the magnetic flux F in units of the magnetic flux quantum
F0 = e/h is then

n = N
(F/F0)

, (2.3)

i.e. for each electron, n−1 magnetic flux quanta are present.
Electrons in the conduction band of GaAs are nicely described as free particles

with an effective mass and effective Landé g factor. The respective quantum
mechanical treatment of an infinite, homogeneous, two-dimensional electron gas
in high magnetic field leads to a discrete eigenenergy spectrum—the Landau
levels with level spacing given by the cyclotron energy and the Zeeman energy.
As the Landau level spacing and the degeneracy of each Landau level, given by
nL = e B/h, increases linearly with the magnetic field, more and more Landau
levels are depopulated with increasing magnetic field, leading to a sawtooth-like
shift of the chemical potential of the 2DES. This was directly visualized by using
a single-electron transistor as the local electrometer on top of a 2DES embedded
in a GaAs/(AlGa)As heterostructure [11–15].

For integer values of the ratio nL = ns/nL, the chemical potential mch lies
between two Landau levels; therefore, at a relatively low temperature, all Landau
levels below mch are occupied, while those above mch are unoccupied. As nL =
ns/nL = (Ans)/(AnL) = N /(F/F0) = n, we can state that a quantum Hall plateau
appears around the integer values of equation (2.3), which is equal to the
statement that the Landau level filling factor (in short: the filling factor) nL of an
infinite 2DES with electron density ns has an integer value. Under this condition,
the electronic system is incompressible, i.e. the chemical potential mch jumps with
increasing ns,

vmch

vns
→ ∞. (2.4)
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The absolute value of the energy gap between Landau levels is not visible in
the quantum Hall resistance measurements as long as (i) the thermal energy is
lower than the energy gap and (ii) the broadening of the Landau levels owing to
scattering is smaller than the energy gap. The cyclotron energy gap responsible for
the QHE plateau i = 6 at about 2.1 T in figure 1 is about one order of magnitude
larger than the Zeeman energy gap responsible for the QHE plateau i = 5 at
about 2.4 T. At magnetic fields below 1.1 T, the Zeeman gap is too small to be
resolved in the QHE plateaus.

Whenever a plateau is found in the Hall resistance, the (four-terminal)
longitudinal resistance Rxx = Vx/Ix vanishes, i.e. Rxx = 0 (figure 1): the occurrence
of the Hall plateau is accompanied by a dissipation-less current flowing along
the sample. However, this does not mean that there is no dissipation at all.
In the plateau regimes, the (two-terminal) resistance R′

xx = V ′
x/Ix measured

between the current-biased contacts is approximately the same as the Hall
resistance |RH|, i.e. the electrical power of about |RH|Ix

2 is dissipated. The
heat is created in two spot-like regions, one located close to each current-biased
contact [16–21]. Along the sample away from the hot spot regions, dissipation
is absent, as indicated by the absence of a voltage drop along the sample. In
the transition regimes between Hall plateaus, dissipation occurs along the whole
sample, measurable by Rxx > 0.

The Hall plateau values with i = 2 and i = 4 are reproducible to the standard
uncertainty of 10−9, independent of the charge carrier density, the sample
geometry and further properties of the material in which the two-dimensional
charge carrier system is embedded. This is why the quantum Hall resistance has
been used since 1990 as the resistance standard. The value of the quantized Hall
resistance has been fixed to RK-90 = 25812.807 U and is nowadays denoted as the
conventional von Klitzing constant. Mainly GaAs–(AlGa)As–HEMT devices are
used for this calibration. Devices based on graphene are now only just being
explored for metrological application. Let us again emphasize the universality of
the QHE: the two-dimensional charge carrier system is embedded in a crystal
structure. Electrons in the conduction band of GaAs are nicely described as
charged particles with an isotropic effective mass. In silicon, there exists a many
valley degeneracy in the conduction band, and, in graphene, the electrons and
holes behave, owing to the cone-like band structure, as mass-less Dirac particles.
Obviously, these ‘details’ do not play any role in the measured quantum Hall
plateau resistance. Only the ranges of magnetic field or density where the plateaus
appear are affected. Nowadays, QHE samples are classified as a type of topological
insulator [22].

To confirm the plateau values obtained on a certain sample for metrological
application, the flatness of the Hall plateau, the vanishing of the longitudinal
resistance Rxx = 0 and the invariance of the Hall resistance value by changing
the temperature and current level are checked [2]. Increasing the quality of the
samples results in the Hall plateaus becoming smaller. In consequence, a certain
amount of disorder is required to obtain well-defined Hall resistance plateaus
and therefore accuracy in the quantized Hall resistance value. For metrological
application, the density ns of the 2DES in a GaAs/(AlGa)As heterostructure
is typically in the range of 3–6 × 1015 m−2 with an electron mobility of
40–80 T−1 and the measurements are done at temperatures around T = 1.5 K
[2]. For high-precision measurements, it is desirable to have the current level as
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high as possible. However, the current level is limited for the respective sample, as
the QHE breaks down suddenly with increasing current beyond a certain critical
current level. The typical critical sheet current density Ix/w (w is the width of
the Hall bar) is of the order of 0.5–1.5 A m−1. Linear and sublinear behaviours
of the critical current density on sample width are observed. Also a significant
increase in the working temperature degrades the Hall plateau, and the plateaus
finally disappear.

Metrological applications of quantum Hall samples in Wheatstone bridges or
in arrays [23]—representing other resistance values and providing higher current
levels—require their use as two-terminal devices. Depending on the magnetic
field orientation, the electrochemical potential of the source contact (S contact
in the set-up in figure 1) is found along one edge, whereas the electrochemical
potential of the drain contact (D) is found along the other edge. Without any
contact resistance between the source (drain) contact and the 2DES, the applied
voltage to the source and drain contacts would directly give the Hall voltage
present between both edges. In this case, the two-terminal resistance would be
equal to the quantum Hall resistance. However, finite contact resistances can
be measured in three-terminal configurations under quantum Hall conditions
in which the contact resistance is obtained from the voltage drop between the
source (drain) contact and the potential probing contact that does not include a
hot spot in between. Therefore, in this simple arrangement, the two-terminal
resistance is not quantized. However, accurate two-terminal resistances are
obtained by using the multi-connection technique [23]. To be practical, it requires
contact resistances below 10 U for all contacts measured in the three-terminal
configuration.

Since the discovery of the QHE, diverse microscopic models have been
developed, sometimes emphasizing the role of either the bulk or the edges
of the 2DES. Owing to the obvious effect on the plateau width, disorder
and inhomogeneities in the 2DES seem to be required. In the models for the
QHE, even different, sometimes contradicting, predictions about the current
distribution within the 2DES under quantum Hall conditions exist. The edge
state picture [24] for the integer QHE is the most popular and even presented
in general textbooks. Such a picture suggests that the externally injected
current flows exclusively close to the edge, which is incorrect. For more
than a decade, we have performed scanning probe microscopy investigations
on quantum Hall samples based on GaAs/(AlGa)As heterostructures at a
temperature of 1.4 K. Our studies have examined the changes in the local
electrostatic potential, i.e. we measure the difference between the local
electrostatic potential with and without a current flowing through the sample—
thermal equilibrium. These scan measurements directly deliver the Hall potential
profile [25]. They are insensitive to any electrostatic potential variations already
present in thermal equilibrium (Ix = 0). The properties of the GaAs/(AlGa)As
heterostructures used for these experiments are very similar to the samples
used in metrology, although the Hall bar mesa width has been restricted to
10–15 mm owing to the limited scan range of the scanning probe microscope
(20 × 20 mm). In the following, we will present an outline of the main
results, and focus on the role of contacts, the possible constraints for
metrological applications. Details of the measurements can be found in earlier
studies [25–33].
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3. Measured Hall potential profiles

Figure 2 shows the Hall potential profile for different magnetic field values around
a bulk Landau level filling factor of n = 2. The data are taken as y scans at x0 in the
middle of the Hall bar. In the inset of figure 2a, the quantum Hall curve around
n = 2 is plotted as the reference. The given (bulk) filling factor n is determined in
these measurements via the electron density ns obtained from low-magnetic-field
Hall measurements, n = ns/nL. Please note that, to measure the Hall potential
profiles presented in figure 2, we have applied, between the source and drain
contact, an r.m.s. voltage amplitude of 20 mV, which corresponds to a current
flow of about 1.5 mA for the quantum Hall plateau n = 2. We have ensured that
the profiles are also obtained at lower voltage amplitudes (1 mV).

Basically three different types of Hall potential profiles can be identified [26].
(i) Coming from high magnetic field values towards the quantum Hall plateau,
i.e. approaching the integer filling factor n = 2 from lower values, the Hall voltage
drops linearly across the whole sample (type I). (ii) Close to the integer filling
factor, at about n = 1.96, which is definitely within the quantum Hall plateau,
the profile flattens at the edges and drops rather arbitrarily in the inner region of
the Hall bar (type II). This is observed until n = 2.09 is reached. (iii) At n = 2.14,
which is still in the quantum Hall plateau regime, the Hall voltage drop occurs at
pronounced positions at the edge of the Hall bar and the profile is now flat in the
inner region of the sample (type III). At a filling factor n = 2.50, the Hall voltage
drops considerably linearly over the inner region, although a significant drop still
occurs at the edges. Before entering the Hall plateau of n = 3, the pronounced
voltage drops at the edges have disappeared and the drop is linear over the whole
sample, i.e. the profile of type I is obtained again before entering the next quantum
Hall plateau at lower magnetic fields.

In figure 2b, Hall potential profiles of type II are shown in comparison, taken
at slightly different x positions and slightly different magnetic fields at about
n = 2 [26]. As can be seen the Hall potential drops are nonlinear within the bulk
region. Changing the x position for the Hall potential scan slightly by 0.2 mm, the
profile is strongly modified. In addition, it is strongly affected by a small magnetic
field change (DB/B = 0.5%). The Hall potential drop can even be non-monotonic
from one edge to the other. All this hints at inhomogeneities within such samples.
Based on these observations, we can state here the somehow counterintuitive
result:

Although the Hall potential distribution is strongly affected around integer
values of the bulk filling factor by small magnetic field changes, the measured
Hall resistance is not affected at all.

In figure 2c, the Hall potential profiles are given in colour scale for a larger
magnetic field range, covering the filling factor regime 2 < n < 14. As can be
seen, this evolution of Hall potential profiles—from type I to type II to type
III—with lowering of the magnetic field clearly repeats at each even integer filling
factor n > 2, although with increasing filling factor (lower magnetic field) the
evolution becomes less pronounced. Around filling factor n = 3, this evolution is
also observable but to a weaker extent. This is not surprising as QHE plateaus
at odd integer filling factors are given here by the Zeeman gap, whereas QHE
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Figure 2. (a) Hall potential profile for different magnetic fields around filling factor n = 2 taken in
the middle of the two-terminal Hall bar sample. An offset is added to each curve. Three types of
Hall potential profiles are identified. Inset: Hall resistance Rxy around filling factor n = 2. (b) Hall
potential profiles at slightly different scan positions and under slightly different magnetic field
values close to n = 2. (c) Hall potential profiles in colour scale over a larger magnetic field range.
Note that (a–c) were measured on different samples; however, the results are consistent.

plateaus at even filling factors are due to the cyclotron energy, which makes
them less fragile against high Hall voltages (high current) and temperature.

From these observation we conclude that:

Around integer values of the filling factor the Hall potential drops are widely
spread in the bulk of the 2DES. Towards the lower magnetic field side of
the quantum Hall plateau, the Hall voltage drops become more confined
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electron density profiles ns(y) at the edges of the 2DES. (c) Measured Hall potential profile
(figure 2c) at one edge, compared with the expected position of the incompressible strips, given by
relation (4.1).

towards the edges of the 2DES and no drop is found in the bulk. Entering
the dissipative regime, i.e. leaving the quantum Hall plateau regime, the Hall
voltage drop is still strongly confined to the edges; however, also in the bulk
an increasing fraction of the drop is found. Before entering the regime of
the next quantum Hall plateau at lower magnetic field, the drop is almost
homogeneously distributed over the whole 2DES width.

This evolution of the Hall potential profile with varying n can be related to the
existence of compressible and incompressible strips running along the edges of
the 2DES, predicted in several theoretical works [34–36].

4. Compressible and incompressible strips

At the edges of the 2DES, within the depletion region, the electron density ns
changes from zero to its bulk value over a typical distance of 1 mm. Within
a Thomas–Fermi approximation, increasing the electron density from the edge
to the bulk requires a y-dependent population of more and more electronic
states. In thermodynamical equilibrium, the electron density profile ns(r) is
self-consistently calculated [36] within a Thomas–Fermi approximation

(i) by the constraint that the electrochemical potential melch, i.e. the local
chemical potential mch(r) plus the local effective electrostatic single-
electron energy −e · f(r), is constant within the whole 2DES, melch =
mch(r) − ef(r) = const.; and

(ii) by the Poisson equation that relates the local electrostatic potential f(r)
to the local electron density ns(r) by taking into account the existence of
ion charges and adequate boundary conditions for f(r) which are due to
the sample;
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(iii) to self-consistently solve the electron density profile, the dependence of the
chemical potential of a homogeneous 2DES on its electron density has to
be known.

Without the applied magnetic field, for an idealized infinite extended 2DES,
the density of states D(3) is constant versus the single-particle energy 3 (figure
3a). Therefore, the chemical potential mch increases linearly with the electron
density ns. Because of constraints (i) and (ii) discussed above, the profile ns(r)
changes smoothly from the edge to the bulk as sketched in figure 3a. With a
magnetic field applied perpendicularly to the plane of the 2DES, the profile is
different. The density of states shows discrete degenerate Landau levels (see figure
3b) and the chemical potential increases step-like whenever an energy level is
completely filled. Therefore, whenever a level is occupied, instead of requiring
a large amount of chemical energy for increasing the electron concentration
further towards the bulk, it is energetically favourable only to use a small
amount of electrostatic energy, i.e. to keep the electron concentration constant
for a region of finite width. Here, locally the 2DES is incompressible, i.e.
(vmch(r)/vns(r))−1 → 0, the Fermi level lies between Landau levels: the electrons
cannot re-arrange themselves for screening electrostatic potential variations and
there is no conductivity in the direction of an electrical field. In this sense,
this region behaves as an insulator. In contrast, in the adjacent compressible
regions, the electrons can re-arrange at the Fermi level and therefore screen any
electrostatic potential variations. Therefore, the electrostatic potential is flat in
these compressible regions. As a consequence, metal-like (constant electrostatic
potential) and insulator-like (constant electron concentration) strips—so-called
compressible and incompressible strips, respectively—are formed in the depletion
region of the 2DES [34–36].

As mch(ns) depends on the magnetic field, the incompressible strips shift with
increasing magnetic field from the edge towards the bulk as the ‘magic’ filling
factors appear with higher magnetic field at higher ns(r). At the same time, the
incompressible strips become broader as the density gradient towards the bulk
becomes smoother and the jump in mch(ns) becomes larger. At integer values of
the bulk filling factor, the innermost incompressible strips for both edges have
merged—the whole bulk is incompressible. In figure 3c, the measurements of the
potential profile at the edge of the mesa for n > 3 are presented on a larger scale.
For comparison, the expected centre positions y of the incompressible strips,
i.e. the positions of even local filling factor int(n)—calculated [36] for the case
of thermodynamic equilibrium, i.e. without biased current—are plotted as well.
The position relative to the mesa edge position y0 is obtained from the relation

y − y0 = d0

1 − (int(n)/n)2
, (4.1)

where d0 = 4e0e/pe2 · |Vg|/ns is the sample-dependent depletion width. The
dielectric constant of GaAs is taken as e ≈ 13. In our experiments, we have an
etched mesa where the surface charges pinned the Fermi level at the mesa surface
to the mid-gap of GaAs, and therefore here −e Vg is taken as half of the energy
gap of GaAs (1.4 eV). The agreement between the expected position and the Hall
potential drop is amazingly good (solid line in figure 3c).
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From the correlation between type III profiles and the expected position of
incompressible strips evolving from the edge towards the bulk with increasing
magnetic field, we can state that:

Approaching a quantum Hall plateau from lower magnetic field, the Hall
voltage drops mostly, then completely over the innermost incompressible
strips with the local filling factor nl = int(n) present at both edges of
the 2DES. At integer values of the bulk filling factor, the innermost
incompressible strips from both edges have merged, and the Hall potential
drops over the bulk width.

Because of potential fluctuations within the bulk region of the real 2DES,
the local electron density ns(r) in the bulk varies. Local electrostatic minima
and maxima exist. For long-range variations, a landscape of compressible and
incompressible regions is formed. Close to integer values of ns/nL, the bulk
is mainly incompressible with compressible droplets which reshape by varying
the mean sheet electron density ns or the magnetic field B. This explains
the strong dependence of the Hall potential profiles on small magnetic field
variations presented in figure 2b. These inhomogeneities are also responsible for
the connected incompressible bulk that exists for a finite magnetic field range.

Within the Thomas–Fermi approximation, the number of incompressible strips
which can be expected in the depletion region of one edge is equal to the integer
part of the bulk filling factor. However, incompressible strips become narrower
the closer they are positioned to the edge, as there the confining potential
becomes steeper: the Thomas–Fermi approximation breaks down, and actually
these outer incompressible strips do not exist owing to the finite extension of
the wave function. In our sample where the edges of the 2DES are defined by
an etched mesa, we can expect—before entering a quantum Hall plateau from
lower magnetic field values—at most one or two incompressible strips to exist
along such edges [37]. Defining the edges of the 2DES by gate electrodes on
top of the GaAs/(AlGa)As heterostructures leads at large negative voltages to
a smooth edge depletion where indeed more incompressible strips are expected.
The consequence of having more than one incompressible strip present at the
edge will be discussed later.

5. Current distribution and quantized Hall resistance

For an infinite 2DES with applied magnetic field in the z direction and a
homogeneous electric field Ey in the y direction, all Landau level states undergo a
drift in the x direction, so that the local sheet current density jx in the x direction
is given by

jx = n
e2

h
Ey . (5.1)

This current is flowing without dissipation as this drift is a property of the
eigenfunctions solving the respective Hamiltonian. Please note that, all Landau
levels contribute with their filling to this current density.

Actually for any smooth varying electrical field Ey(y), relation (5.1) remains
locally valid [38]. Integrating the sheet current density jx(y) over a certain
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for thermal equilibrium, in (b) and (e) for a small Hall voltage, and in (c) and (f ) for a large Hall
voltage exceeding the Landau level gap energy several times. The respective Hall potential profile is
shown in pink, indicating the electrochemical potential drop. On the top and at the bottom of the
figure, in the (x , y) plane, the landscape of compressible (grey) and incompressible (white) regions
is sketched, and the local current densities jx driven by local electrostatic potential gradients in
the y direction are indicated by arrows—at the top, for thermal equilibrium; at the bottom, for
large Hall voltage.

width y2 − y1 in the y direction, where the local filling factor is constant, the
integral current DIx = ∫y2

y1
jx(y) dy is given by the electrostatic potential drop

DFy = ∫y2
y1

Ey(y) dy over this width,

DIx = nl
e2

h
DFy . (5.2)

The integral current is therefore independent of the details of the electrostatic
potential drop along the path between y1 and y2.

Let us consider the situation around the integer value for the bulk filling
factor. The bulk is mainly incompressible with the local filling factor nl = i,
with inhomogeneities embedded. Already in thermal equilibrium, i.e. equal
electrochemical potential within the 2DES, the electrostatic potential varies
owing to these inhomogeneities (figure 4a). Local current densities encircle the
electrostatic potential minima and maxima, leading by integration within a cross
section over the sample width to zero net current. This is also true for the current
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densities present owing to the electrostatic potential increases towards the edges:
the current densities on the left and right edges are oriented in opposite directions
and compensate for each other (figure 4a (top)). As we found from our scanning
probe measurements, around the integer bulk filling factor, the Hall potential
drops over the bulk region of the 2DES (Hall potential profile of type II). This Hall
voltage between both edges superposes locally an additional electric field in the
y direction, modifying the current densities locally. As the changes are screened
in compressible regions, the Hall voltage drops appear only in the incompressible
regions of nl = i. Integrated over the whole sample width, a net current

Ix = i
e2

h
VH (5.3)

is obtained. Any variations in the compressible droplet landscape affect the local
current densities in the incompressible region; however, they are not visible in
the integral current.

With a reduction in the magnetic field (increasing the bulk filling factor to
n > i), a compressible region appears in the centre of the 2DES and the current
flow is restricted to the innermost incompressible strips which move towards
the two edges (profile type III with flat potential profile in the middle). The
Hall potential drops approximately symmetrically over these two incompressible
strips. As the measured Hall potential profile gives the change in the electrostatic
potential compared with the thermal equilibrium, the externally biased current
seems to be split between both edges. What happens microscopically? In figure 4d,
the Landau level bending is sketched under thermal equilibrium; in figure 4e,
under small Hall voltage bias VH.2 Because of this bias, the electrostatic potential
drop over the innermost incompressible strip on the left-hand edge is enhanced
by a VH (a ≈ 0.5); therefore, the dissipation-less current flowing along this
incompressible strip is increased by DIx = i e2/h · a VH. On the right-hand edge,
the drop is diminished by (1 − a) VH and therefore the current, flowing in the
opposite direction to the left edge, is decreased by about DIx = i e2/h · (1 − a) VH.
The electrostatic potential remains flat in the compressible regions. Integrated
over the whole sample width, a net current through this cross section results
from the Hall potential drops over the incompressible strips with local filling
factor nl = i; we obtain relation (5.3). At higher Hall voltage, the electrostatic
potential drop on the right-hand side has reversed, and the current densities in
the innermost incompressible strips on the left-hand and right-hand edges are
oriented in the same direction (figure 4e (bottom)). Relation (5.3) remains valid.

In reducing the magnetic field further, these incompressible strips move further
to the edges and become smaller, losing their insulating property, enhanced by
local inhomogeneities. Scattering of electrons from the compressible edge into the
compressible bulk and further to the opposite compressible edge becomes possible.
The Hall potential drop over the innermost incompressible strips is reduced and
hence so is the dissipation-less current flow. An electrochemical potential gradient
2A detailed description of the current distribution requires a self-consistent calculation of the
local electron density under current flow [37]: the positions and widths of compressible and
incompressible regions change with increasing Hall voltage, leading to asymmetrical voltage drops
at both edges. It can be expected that especially the smoothness of the confining potential plays
an important role in determining at which Hall voltage level the asymmetry becomes significant.
For simplification, this is ignored in figure 4.
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in the x direction appears, driving the electrons even in the compressible regions,
which in reverse is accompanied by a Hall voltage drop within the compressible
regions (profile type III with a potential drop in the middle). Because of electron
scattering between the compressible edge and the bulk, the Hall resistance is
no longer quantized. Before reaching the next Hall plateau at a lower magnetic
field, the incompressible strips at the edges obviously have completely lost any
insulating properties—they may not even exist. As a consequence, the whole
width of the 2DES behaves in a compressible way and the externally biased
current is more or less homogeneously distributed over the whole compressible
width of the Hall bar (profile type I).

From these considerations, we can state that:

As long as either well-pronounced incompressible strips along the edges
or the connected incompressible bulk exist, they represent dissipation-less
paths for a current driven as a Hall current by the electrochemical potential
difference between the left and right edges.

We have found that, if the integral relation (5.3) over the sample cross section
is valid, the condition of observing quantum Hall plateaus is given. However,
(i) to measure the Hall voltage, it requires contacts to probe the electrochemical
potentials at the edges and (ii) in the presence of more than one compressible
edge strip, we have to ensure that the Hall voltage drops happen only over the
innermost incompressible region, i.e. not over the incompressible strip embedded
between two compressible edge strips—these compressible strips must have the
same electrochemical potential.

6. Electrostatic depletion at alloyed contacts

Usually contacts to a 2DES at the edge of a 2DES are considered as an effective
way of equilibrating edge and bulk [39]. The edge channel picture of Büttiker [24]
assumes that one-dimensional channels along the edge are ideally transmitted
into the contacts. As our measurements show, the edge state picture should not
be taken literally. However, the Landauer–Büttiker formalism works rather well
to phenomenologically describe the so-called adiabatic transport features. There
the properties of contacts, expressed in terms of ideal and non-ideal contacts,
play a crucial role.

Figure 5a shows measurements of the potential landscape close to a potential
probing contact for n = 2 [28]. Obviously, the Hall potential drop drives the
current through the incompressible bulk, and the contact does not affect this
current distribution. Figure 5b shows the profile for the filling factor slightly
above an integer value, where the bulk is mainly compressible and pronounced
innermost incompressible edge strips exist; obviously, bulk and edge are on
different electrochemical potentials as is the case along the etched mesa edge.
Most importantly, bulk and edge are not equilibrated in their electrochemical
potentials by the presence of the contact. This is not surprising considering that
alloyed contacts and the 2DES have different work functions. Our measurements
show (figure 5) that:

For the GaAs/(AlGa)As heterostructure with low resistive NiGeAu contacts
a region of partial depletion is formed in front of the contact edge within the
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2DES which gives rise to the formation of compressible and incompressible
strips along the borderline to the contact.

The innermost incompressible strip decouples—at least beyond a certain width—
the bulk from the contact. Because of the electrochemical potential drop
over the incompressible strip, a current is flowing without dissipation within
the incompressible strip in front of the potential probing contact. It is part of
the current biased into the sample. It does not pass through the contact, which
would cause dissipation. The contact probes the electrochemical potential of the
compressible edge at this edge position. We can state that:

In the quantum Hall plateau regime, the externally biased current does not
pass through the ohmic contacts acting as potential probes along the Hall
bar edges.3

To emphasize, these are state-of-the-art low-resistive ohmic contacts to the
2DES. To contact the 2DES, we alloy layers of Au, Ge and Ni into our
GaAs/(AlGa)As heterostructure. Systematic investigations have been performed
to optimize the contact resistance between the alloyed metal and the 2DES. The
materials used and the method of characterizing the contact resistances at zero
magnetic field are given in the studies by Göktas et al. [40,41]. It turns out that the
contact resistance does not depend on the area below the contact but rather on
the length w of the borderline between the contact and the 2DES. Furthermore,
we observe an anisotropy for the contact resistance. For a borderline between
the 2DES and an alloyed metal oriented perpendicular to the [011] direction of
the heterocrystal, the contact resistance Rc is lowest, whereas for borderlines
perpendicular to the [011̄] direction, the contact resistances are higher. In the
easy direction (borderline perpendicular to [011]), the specific contact resistivity
value rc = Rcw is around 250 Umm, corresponding to Rc = 2.5 U for w = 100 mm,
and this value rc is almost constant for all borderline lengths w ranging from
100 down to 1 mm. On the other hand, contacts defined in the hard (borderline
perpendicular to [011̄]) direction show approximately a factor of 2 higher rc value
for a shallow-lying 2DES (about 60 nm depth) [33]; however, rc increases for
heterostructues with a deep-lying 2DES, although the amount of AuGeNi for
alloying has been scaled up [40]. In addition, in the hard direction, these rc values
show a large spread and the portion of working contacts drastically decreases as
the borderline becomes shorter. Therefore, the deeper the 2DES lies below the
heterostructure surface, the more pronounced the anisotropy between the easy
and hard directions. This anisotropy vanishes if a lower concentration of Ni is
used; however, the contact resistance significantly increases. Nevertheless, the
origin of anisotropy could not be clarified.

In recent systematic investigations [33]—combining scanning probe imaging
with magneto-transport measurements—we demonstrated that the depletion
width in front of the alloyed contacts depends—consistent with the specific
contact resistivity—on the borderline orientation. Two Hall bars of the same
geometry, just turned in their orientation by 90◦ on the same piece of

3Current flow into the contact might be due to the finite internal resistance of the voltmeter used
for potential measurement.
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Figure 5. Hall potential profiles in the vicinity of alloyed ohmic contact for (a) n = 2.0, (b) n = 2.11
and (c) n = 2.22. The width of the Hall bar mesa is 10 mm; the width of the side arm mesa to the
alloyed contact is 4 mm. The profiles (b) and (c) indicate that, in extension of an incompressible
strip running along the mesa edge, the same incompressible strip is found along the interface line
with the alloyed metal contact (d).

(c)(a) (b)

borderline

Figure 6. Bad and good geometries for alloying ohmic Au/Ge/Ni contacts in GaAs/(AlGa)As
heterostructures. (a) Corbino-like contact where the alloyed metal (orange) is only in contact with
a 2DES bulk but does not overlap with a mesa edge. (b) The contact resistance scales reverse
linearly with the length of the borderline between the 2DES and the alloyed metal; however,
this also depends on the orientation relative to the underlying heterocrystal. The Cr/Au layer
(yellow), used to improve the bonding properties, must be kept behind the borderline to avoid
a depletion by gating along the borderline owing to the work function difference between the
2DES and the Cr/Au layer. (c) A meander-like borderline ensures good contacts in [011] and [011̄]
orientations.

heterostructure, show quantum Hall plateaus in different ranges of magnetic field.
These and further effects are attributed to the appearance of electrochemical
potential differences between compressible edge strips running along the same
edge. Obviously—although the specific contact resistivity is only approximately
a factor of 2 higher in these experiments—contacts in the hard orientation do not
necessarily equilibrate these edge strips, whereas those in the easy direction do.
We concluded that the extension of the partial depletion into the 2DES bulk is
different for the easy and hard directions. Please note that results such as those
in figure 5 were obtained for contacts in the easy direction, i.e. even contacts in
the easy direction allow for a non-equilibrium situation between a compressible
edge and the compressible bulk.

To ensure low-resistive contacts on Hall bars without taking special care
regarding the Hall bar orientation, we usually design meander-like borderlines
between the 2DES and the alloyed metal which contains long sections
perpendicular to the [011] direction (figure 6c). Au/Ge/Ni are alloyed even
beyond the border of the mesa to avoid the so-called Corbino contacts (figure 6a).
Furthermore, we ensure that the layer of Cr/Au which enhances the bonding
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Figure 7. The evolution of the compressible and incompressible landscape at equilibrium over the
regime of a quantum Hall plateau. The low magnetic field side might be enabled by the presence of
well-pronounced incompressible strips along the mesa edge and in front of alloyed contacts, whereas
the upper side is dominated by disorder and inhomogeneities in the 2DES bulk. The visibility of an
edge-enabled quantum Hall plateau depends on the level of disorder, the level of current—these are
related to the Hall bar size—as well as on the contact properties. The disorder-enabled quantum
Hall plateau allows for high current levels and is most insensitive to contact properties; therefore,
it is most suitable for metrological applications.

properties of the alloyed contact does not cover the heterostructure beyond the
borderline of the alloyed metal to the 2DES (figure 6b). This would otherwise
cause—owing to the workfunction difference—a depletion of the 2DES lying
below.

7. Quantum Hall plateaus, contacts, metrology

Figure 7 shows schematically the evolution of the compressible and incompressible
landscape within the 2DES over a quantum Hall plateau. Starting at low magnetic
fields in the dissipative regime, the whole 2DES is compressible. Approaching
the low magnetic field side of the quantum Hall plateau, well-pronounced
incompressible strips have developed along the mesa edges and even in front of the
alloyed contacts. At a certain magnetic field, the width of these incompressible
strips might be able to isolate the compressible bulk from the compressible edge
even under reasonably high Hall voltage drops. We are in the quantum Hall
plateau regime: by applying an electrochemical potential difference between the
source and the drain contact, the electrochemical potential of the source is carried
by the compressible strips along one edge and the potential of drain by the
compressible strips along the opposite edge into the sample. The difference is
then present as a Hall voltage driving the Hall current without dissipation along
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the incompressible strips on both edges through the sample. As the Hall voltage
drops only over incompressible regions with the same local filling factor, relation
(5.3) is valid. Entering further the quantum Hall plateau, the incompressible
strips merge and the whole bulk is mainly incompressible. The Hall voltage can
drop over almost the whole bulk width driving the current widely spread through
the bulk in the regions of the local integer filling factor. Leaving the quantum
Hall plateau at the high magnetic field side, the whole 2DES has become mainly
compressible again.

This evolution of the incompressible and compressible landscape within the
2DES shows that the low and high magnetic field sides of the quantum Hall
plateau might not be equal. The lower side is governed by the insulating
properties of the incompressible edge strips, whereas the higher magnetic field
part is dominated by the presence of inhomogeneities and disorder, stabilizing
the connected incompressible bulk. In particular, the incompressible strips in
front of the contacts play a crucial role whether, under the condition of a
compressible bulk and pronounced incompressible edge strips, a quantum Hall
plateau is observable. However, the electrostatic depletion along the 2DES
edges and in front of the ohmic contacts allows a quantum Hall plateau to be
obtained at even the highest quality of the 2DES, where disorder vanishes. In
this sense:

The quantum Hall effect does not necessarily require disorder to be present.
The depletion at the 2DES edges and in front of the alloyed contacts might
be enough.

Under high current levels, which are mandatory for metrological application of
the quantum Hall effect, the Hall voltage becomes large, so that a spatially wide
drop of the Hall voltage is preferable.

Samples for metrological application have to rely on inhomogeneities
(=disorder) where the Hall potential drop and the current are widely spread
over the 2DES bulk. This means that the magnetic field position indicated
as n = i in figure 7 should be used for high-precision QHE experiments.

In figure 8, different scenarios for the transition region between the 2DES
and the alloyed metal contact are shown. From figure 8a–c, the sample is at
an integer value of the bulk filling factor. In the experimentally found case of a
partial reduction of the electron concentration in front of the alloyed contact
(cases (a) and (b)), the compressible strip—present in the depletion region
of the 2DES along the mesa edge—is also present along the interface line to
the alloyed metal. Between the metal contact and the compressible region in
front of the contact, there exists a sample-dependent contact resistance which
leads in the case of current flow to a voltage drop in this interface region.
This contact resistance should be as small as possible; values smaller than 10 U
are mentioned in the guidelines for quantum Hall measurements. This could
be achieved by choosing respective long borderlines between the 2DES and
the alloyed metal. In the (virtual) case of a flatband condition (figure 8f ), the
contact region between the alloyed contact and the compressible edge would be
rather limited.
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Figure 8. The compressible and incompressible landscape in the vicinity of an alloyed contact
for different scenarios: for different bulk filling factors (upper and lower rows), wide and narrow
depletion or flatband condition along the borderline to the contact, and the presence of one ((a)–(f ))
or two ((g)–(l)) compressible edge strips.

To observe the quantum Hall plateau in the case of pronounced incompressible
edge strips with a compressible bulk, a contact with a rather wide depletion
region (d) is preferable. However, a long interface line between the contact and
the 2DES might enhance the probability of scattering over the incompressible
strip—the quantum Hall plateau gets lost. A narrow depletion (e) or even flatband
condition (f ) would also not allow the observation of edge-enabled quantum Hall
plateaus.

What about the detailed structure of compressible and incompressible strips
at the edges? A smooth confining potential along the edges of the 2DES causes
the presence of some compressible and incompressible strips along the edges.
In consequence, the Hall potential might drop over incompressible regions of
different local filling factors. Therefore, any electrochemical potential difference
between compressible edge strips has to be avoided. In this case, the contacts play
a crucial role in equilibrating the compressible edge strips. Detailed comparisons
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between adiabatic transport features and scanning force microscopy investigations
can be found in Dahlem et al. [32,33]. Because of the scenarios given in figure 8g–l,
a perfect quantum Hall plateau can be expected in case (h), where an equilibration
happens within the rather narrow depletion region in front of the contact. A longer
borderline ensures full equilibration. Under some circumstances, the situation
(k) also allows—similar to case (d)—for the observation of a quantum Hall
plateau.

8. Conclusion

Probing the Hall potential profiles of quantum Hall samples allows us to clarify the
current distribution within such samples for the different magnetic field regimes.
Theoretical work, inspired by our experiments, could reproduce the types of
Hall potential profiles and predict the occurrence of quantum Hall plateaus even
without localization [37].

We found at the low magnetic field side of the quantum Hall plateau that the
externally biased current is confined to the pronounced innermost incompressible
edge strips on both Hall bar sides, which gradually move and widen with
increasing magnetic field. Finally, the Hall current is widely distributed over
the mostly incompressible bulk. The quantized Hall resistances come from the
fact that the Hall voltage drops over incompressible regions of same integer-
valued local filling factor; the number of compressible or incompressible edge
strips, resolved at the edges, does not play a role. However, in the case of
a non-equilibrium situation between compressible edge strips, dissipation-less
current might flow in incompressible regions of different integer-valued local filling
factors—the Hall resistance quantization is lost. Furthermore, the compressible
and incompressible landscape in front of the contacts and their implications for
the QHE have been discussed.

As the Hall potential and current distribution are obviously related to the
occurrence of incompressible regions, it is obvious that fractional quantum Hall
states, being incompressible, will have a similar influence.

The application of the QHE in metrology requires the use of high current,
resulting in high Hall voltage drops. They should not happen on narrow spatial
widths of incompressible strips at the edge; therefore, metrological applications
have to rely on the disorder and inhomogeneities in the 2DES bulk. The detailed
Hall potential profile is governed by inhomogeneities within the 2DES, and also
by the electrostatic environment, namely the presence of gate electrodes.

The exactness of quantum Hall plateaus relies on the contact properties, and
the suppression of thermal activations and of precursors to the breakdown. We
will perform further scanning probe experiments to investigate the electrically
induced breakdown of the QHE. This should help to further understand and to
identify weak links in respective samples for metrological applications.
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