
Crystal St ructure 12
Having introduced a number of important ideas in one dimension, we

must now deal with the fact that our world is actually spat ially three-

dimensional. While this adds a bit of complicat ion, really the important

concepts are no harder in three dimensions than they were in one di-

mension. Some of the most important ideas we have already met in one

dimension, but we will reint roduce them more generally here.

There are two things that might be difficult here. First , we do need to

wrest lewith a bit of geometry. Hopefully most will not find this too hard.

Secondly we will also need to establish a language in order to describe

st ructures in two and three dimensions intelligent ly. As such, much of

this chapter is just a list of definit ions to be learned, but unfortunately

this is necessary in order to be able to cont inue further at this point .

12.1 Lat t ices and Unit Cells

Definit ion 12.1 A lat t i ce1 is an infinite set of points defined by integer

1Warning: Some books (Ashcroft and

Mermin in part icular) refer to this as a

Bravais lattice. T his enables them to

use the term latti ce to descr ibe other

things that we would not cal l a lat t ice

(e.g., the honeycomb). However, the

defini t ion we use here is more common

among crystallographers, and more cor-

rect mathemat ically as well.

sums of a set of linearly independent primitive lattice2 vectors.

2Very frequent ly “ primit ive lat t ice vec-

tors” are called “ primit ive basis vec-

tors” (not the same use of the word

“ basis” as in Sect ion 10.1) or “ pr imi-

t ive t ranslat ion vectors” .

a1

a2

[1, 2] = a1 + 2a2

F ig. 12.1 A lat t ice is defined as integer

sums of of primit ive lat t ice vectors.

For example, in two dimensions, as shown in Fig. 12.1 the lat t ice

points are described as

R [n 1 n 2 ] = n1a1 + n2a2 n1, n2 ∈ Z (2d)

with a1 and a2 being the primit ive lat t ice vectors and n1 and n2 being

integers. In three dimensions points of a lat t ice are analogously indexed

by three integers:

R [n 1 n 2 n 3 ] = n1a1 + n2a2 + n3a3 n1, n2, n3 ∈ Z (3d).

(12.1)

Note that in one dimension this definit ion of a lat t ice fits with our pre-

vious descript ion of a lat t ice as being the points R = na with n an

integer.

It is important to point out that in two and three dimensions, the

choice of primit ive lat t ice vectors is not unique,3 as shown in Fig. 12.2.

(In one dimension, the single primit ive lat t ice vector is unique up to the

sign, or direct ion, of a.)
F ig. 12.2 T he choice of primit ive lat -

t ice vectors for a lat t ice is not unique.

(Four possible sets of primit ive lat t ice

vectors are shown, but there are an in-

fini t e number of possibil i t ies!)

3Given a set of primit ive lat t ice vectors ai a new set of primit ive lat t ice vectors may

be const ructed as b i = j m i j aj so long as m i j is an invert ible mat rix wit h integer

ent r ies and the inverse mat rix [m− 1 ]i j also has integer ent ries.
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Primitive	lattice	vectors

Red	(shorter)	vectors:	 and	

Blue	(longer)	vectors:	 and	

and	 are	primitive	lattice	vectors

and	 are	NOT	primitive	lattice	vectors

2

Integer	coefficients noninteger coefficients

Primitive lattice vectors

Primitive	lattice	vectors

Q:	How	can	we	describe	these	lattice	vectors	(there	are	an	infinite	number	of	them)?
A:	Using	primitive	lattice	vectors	(there	are	only	d	of	them	in	a	d-dimensional	space).

For	a	3D	lattice,	we	can	find	three primitive	lattice	vectors	(primitive	translation	vectors),	
such	that	any	translation	vector	can	be	written	as

where	 , and	 are	three	integers.

For	a	2D	lattice,	we	can	find	two primitive	lattice	vectors	(primitive	translation	vectors),	such	
that	any	translation	vector	can	be	written	as

where	 and	 are	two	integers.

For	a	1D	lattice,	we	can	find	one	primitive	lattice	vector	(primitive	translation	vector),	such	
that	any	translation	vector	can	be	written	as

where	 is	an	integer.
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points live at the corners (or edges) of the cells. When a lat t ice point is

on the boundary of the unit cell, it should only be counted fract ionally

depending on what fract ion of the point is actually in the cell. So for

example in the convent ional unit cell shown in Fig. 12.6, there are two

lat t ice points within this cell. There is one point in the center, then four

points at the corners—each of which is one quarter inside the cell, so we

obtain 2 = 1+ 4( 1
4
) points in the cell. (Since there are two lat t ice points

in this cell, it is by definit ion not primit ive.) Similarly for the primit ive

cell shown in Fig. 12.6 (upper right ), the two lat t ice points at the far

left and the far right have a 60o degree slice (which is 1/ 6 of a circle)

inside the cell. The other two lat t ice points each have 1/ 3 of the lat t ice

point inside the unit cell. Thus this unit cell contains 2( 1
3
) + 2( 1

6
) = 1

point , and is thus primit ive. Note however, that we can just imagine

shift ing the unit cell a t iny amount in almost any direct ion such that a

single lat t ice point is completely inside the unit cell and the others are

completely outside the unit cell. This somet imes makes count ing much

easier.

F ig. 12.5 T he choice of a unit cel l is

not unique. A ll of these unit cel ls can

be used as “ t i les” t o perfect ly recon-

st ruct the full crystal.

A convent ional

unit cel l

A primit ive

unit cel l

W igner–Sei t z

unit cel l

F ig. 12.6 Some unit cel ls for the t r ian-

gular lat t ice.

Also shown in Fig. 12.6 is a so-called Wigner–Seitz unit cell

Definit ion 12.4 Given a lattice point, the set of all points in space

which are closer to that given lattice point than to any other lattice point

constitute the W i gner –Sei tz cel l of the given lattice point.5

5A const ruct ion analogous t o W igner–

Seit z can be performed on an irregular

collect ion of points as well as on a peri-

odic lat t ice. For such an irregular set of

point the region closer to one part icular

point t han to any other of t he point s is

known as a Voronoi cel l.

There is a rather simple scheme for construct ing such a Wigner–Seitz

cell: choose a lat t ice point and draw lines to all of it s possible near

neighbors (not just it s nearest neighbors). Then draw perpendicular

bisectors of all of these lines. The perpendicular bisectors bound the

Wigner–Seitz cell. I t is always t rue that the Wigner–Seitz const ruct ion

for a lat t ice gives a primit ive unit cell. In Fig. 12.7 we show another

example of the Wigner–Seitz const ruct ion for a two-dimensional lat t ice.

F ig. 12.7 T he W igner–Seit z const ruct ion for a lat t ice in two dimensions. On the left

perpendicular bisectors are added between t he darker point and each of it s neighbors.

T he area bounded defines t he W igner–Sei t z cel l. On the right it is shown that the

W igner–Seitz cell is a primit ive unit cell. (T he cells on t he right are exact ly t he same

shape as the bounded area on the left !)
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2D	Bravais	lattices

http://en.wikipedia.org/wiki/Bravais_lattice

5 Bravaus lattices in 2D
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Basis and location of atoms in unit cell

To  remember: CRYSTAL = LATTICE + BASIS
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(t riangular) lat t ice, where we can write the primit ive lat t ice vectors as

a1 = a x̂

a2 = (a/ 2) x̂ + (a
√

3/ 2) ŷ . (12.3)

In terms of the reference points of the lat t ice, the basis for the primit ive

unit cell, i.e., the coordinates of the two larger circles with respect to

the reference point , are given by 1
3
(a1 + a2 ) and 2

3
(a1 + a2 ).

a2

a1

1
3
(a1 + a2 )

2
3
(a1 + a2 )

F ig. 12.9 L eft : T he honeycomb from

Fig. 12.4 is shown with the two inequiv-

alent points of t he unit cel l given dif-

ferent shades. T he unit cell is out -

lined dot ted and the corners of the

unit cel l are marked with small black

dots (which form a t r iangular lat t ice).

R ight : T he unit cel l is expanded and

coordinates are given with respect to

the reference point at the lower left cor-

ner.

12.2 Lat t ices in T hree D imensions

F ig. 12.10 A cubic lat t ice, otherwise

known as cubic “ P” or cubic primit ive.

The simplest lat t ice in three dimensions is the simple cubic lat t ice shown

in Fig. 12.10 (somet imes known as cubic “P” or cubic-primit ive lat t ice).

The primit ive unit cell in this case can most convenient ly be taken to

be a single cube—which includes 1/ 8 of each of its eight corners (see

Fig. 12.11).

F ig. 12.11 Unit cells for cubic, tet rag-

onal , and orthorhombic lat t ices.

Only slight ly more complicated than the simple cubic lat t ice are the

tetragonal and orthorhombic lat t ices where the axes remain perpendicu-

lar, but the primit ive lat t ice vectors may be of different lengths (shown

in Fig. 12.11). The orthorhombic unit cell has three different lengths of

its perpendicular primit ive lat t ice vectors, whereas the tet ragonal unit

cell has two lengths the same and one different .

a
a

a

Cubic
unit cel l

a
a

c

c ̸= a

Tet ragonal
unit cel l

a
b

c

a, b, c
all different

Orthorhombic
unit cel l
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12.2 Lat t ices in T hree D imensions

F ig. 12.10 A cubic lat t ice, otherwise

known as cubic “ P” or cubic primit ive.

The simplest lat t ice in three dimensions is the simple cubic lat t ice shown

in Fig. 12.10 (somet imes known as cubic “P” or cubic-primit ive lat t ice).

The primit ive unit cell in this case can most convenient ly be taken to

be a single cube—which includes 1/ 8 of each of its eight corners (see

Fig. 12.11).

F ig. 12.11 Unit cells for cubic, tet rag-

onal, and orthorhombic lat t ices.

Only slight ly more complicated than the simple cubic lat t ice are the

tetragonal and orthorhombic lat t ices where the axes remain perpendicu-

lar, but the primit ive lat t ice vectors may be of different lengths (shown

in Fig. 12.11). The orthorhombic unit cell has three different lengths of

its perpendicular primit ive lat t ice vectors, whereas the tet ragonal unit

cell has two lengths the same and one different .

a
a

a

Cubic
unit cel l

a
a

c

c ̸= a

Tet ragonal
unit cel l

a
b

c

a, b, c
all different

Orthorhombic
unit cel l
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Packing together these unit cells to fill space, we see that the lat t ice

points of a full bcc lat t ice can be described as being points having co-

ordinates [x, y, z] where either all three coordinates are integers [uvw]

t imes the lat t ice constant a, or all three are half-odd-integers t imes the

lat t ice constant a.

It isoften convenient to think of thebcc lat t iceasa simplecubic lat t ice

with a basisof two atoms per convent ional cell. The simple cubic lat t ice

contains points [x, y, z] where all three coordinates are integers in units

of the lat t ice constant . Within the convent ional simple-cubic unit cell

we put one point at posit ion [0, 0, 0] and another point at the posit ion

[ 1
2
, 1

2
, 1

2
] in units of the lat t ice constant . Thus the points of the bcc

lat t ice are writ ten in units of the lat t ice constant as

R cor n er = [n1, n2, n3]

R cen t er = [n1, n2, n3] + [ 1
2
, 1

2
, 1

2
]

as if the two different types of points were two different types of atoms,

although all points in this lat t ice should be considered equivalent (they

only look inequivalent because we have chosen a convent ional unit cell

with two lat t icepoints in it ). From this representat ion weseethat wecan

also think of the bcc lat t ice as being two interpenetrat ing simple cubic

lat t ices displaced from each other by [1
2
, 1

2
, 1

2
]. (See also Fig. 12.14.)

We may ask why it is that this set of points forms a lat t ice. In terms of

our first definit ion of a lat t ice (definit ion 12.1) wecan write the primit ive

lat t ice vectors of the bcc lat t ice as

a1 = [1, 0, 0]

a2 = [0, 1, 0]

a3 = [ 1
2
, 1

2
, 1

2
]

in units of the lat t ice constant . It is easy to check that any combinat ion

R = n1a1 + n2a2 + n3a3 (12.5)

with n1, n2, and n3 integers gives a point within our definit ion of the bcc

lat t ice (that the three coordinates are either all integers or all half-odd

integers t imes the lat t ice constant). Further, one can check that any

point sat isfying the condit ions for the bcc lat t ice can be writ ten in the

form of Eq. 12.5.

F ig. 12.13 T he W igner–Sei t z cel l of

the bcc lat t ice (this shape is a “ t run-

cated octahedron” ). T he hexago-

nal face is the perpendicular bisect ing

plane between the lat t ice point (shown

as a sphere) in the center and the lat t ice

point (also a sphere) on the corner. T he

square face is the perpendicular bisect -

ing plane between the lat t ice point in

the center of t he unit cel l and a lat t ice

point in the center of the neighboring

unit cel l.

F ig. 12.14 T he W igner–Seit z cells of

the bcc lat t ice pack together to t i le al l

of space. Note that the st ructure of the

bcc lat t ice is that of two interpenet rat -

ing simple cubic lat t ices.

We can also check that our descript ion of a bcc lat t ice sat isfies our

second descript ion of a lat t ice (definit ion 12.1.1) that addit ion of any

two points of the lat t ice (given by Eq. 12.5) gives another point of the

lat t ice.

More qualitat ively we can consider definit ion 12.1.2 of the lat t ice—

that the local environment of every point in the lat t ice should be the

same. Examining the point in the center of the unit cell, we see that

it has precisely eight nearest neighbors in each of the possible diagonal

direct ions. Similarly, any of the points in the cornersof the unit cells will

have eight nearest neighbors corresponding to the points in the center

of the eight adjacent unit cells.
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second descript ion of a lat t ice (definit ion 12.1.1) that addit ion of any

two points of the lat t ice (given by Eq. 12.5) gives another point of the

lat t ice.

More qualitat ively we can consider definit ion 12.1.2 of the lat t ice—

that the local environment of every point in the lat t ice should be the
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Simple	cubic

Lattice	sites:	 +	n	 )

Lattice	point	per	conventional	cell:	

Volume	(conventional	cell):	
Volume	(primitive	cell)	:	
Number	of	nearest	neighbors:	6
Nearest	neighbor	distance:	
Number	of	second	neighbors:	12

Second	neighbor	distance:	

Packing	fraction:		
	

Coordinates	of	the	sites:	
For	the	site	
6	nearest	neighbors:	 and	
12	nest	nearest	neighbors:	 and		
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Volume	(conventional	cell):	
Volume	(primitive	cell)	:	
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Number	of	second	neighbors:	12

Second	neighbor	distance:	

Packing	fraction:		
	

Coordinates	of	the	sites:	
For	the	site	
6	nearest	neighbors:	 and	
12	nest	nearest	neighbors:	 and		

bcc

Lattice	sites	

+	n	 )	and		

Lattice	point	per	conventional	cell:	

Volume	(conventional	cell):	
Volume	(primitive	cell)	:	
Number	of	nearest	neighbors:	8

Nearest	neighbor	distance:	

Number	of	second	neighbors:	6
Second	neighbor	distance:	

Packing	fraction:		
	

Coordinates	of	the	sites:	
For	the	site	

8	nearest	neighbors:	

6 nest	nearest	neighbors:	 ,	 and		



Packing fraction Packing	fraction

Packing	fraction:
We	try	to	pack	N	spheres	(hard,	cannot	deform).	

The	total	volume	of	the	spheres	is	

The	volume	these	spheres	occupy	 (there	are	spacing)

Packing	fraction=total	volume	of	the	spheres/total	volume	these	spheres	occupy

	 	 	

	

High	packing	fraction	means	the	space	is	used	more	efficiently



Packing fraction of simple cubic

Simple	cubic

Lattice	sites:	 +	n	 )

Lattice	point	per	conventional	cell:	

Volume	(conventional	cell):	
Volume	(primitive	cell)	:	
Number	of	nearest	neighbors:	6
Nearest	neighbor	distance:	
Number	of	second	neighbors:	12

Second	neighbor	distance:	

Packing	fraction:		
	

	

	 	 	 	

Ø About	half	(0.524=52.4%)	of	the	space	is	really	used	by	the	sphere.
Ø The	other	half	(0.476=47.6%)	is	empty.

Nearest	distance=	2	R
R= Nearest	distance/2=
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The coordination number of a lat t ice (frequent ly called Z or z) is the

number of nearest neighbors any point of the lat t ice has. For the bcc

lat t ice the coordinat ion number is Z = 8.

As in two dimensions, a Wigner–Seitz cell can be constructed around

each lat t icepoint which enclosesall points in spacethat arecloser to that

lat t ice point than to any other point in the lat t ice. This Wigner–Seitz

unit cell for the bcc lat t ice is shown in Fig. 12.13. Note that this cell is

bounded by the perpendicular bisect ing planes between latt ice points.

These Wigner–Seitz cells, being primit ive, can be stacked together to fill

all of space as shown in Fig. 12.14.

12.2.2 T he Face-Cent ered Cubic (fcc) Lat t ice

F ig. 12.15 Convent ional unit cell for

the face-centered cubic (F) lat t ice.

L eft : 3D view. R ight : A plan view

of the convent ional unit cell. Unlabeled

points are both at heights 0 and a. a
a

a

Face-centered cubic

unit cell

a/ 2a/ 2

a/ 2

a/ 2

a

Plan view

The face-centered (fcc) lat t ice is a simple cubic lat t ice where there

is an addit ional lat t ice point in the center of every face of every cube

(this is sometimes known as cubic-F, for “ face-centered” ). The unit

cell is shown in the left of Fig. 12.15. A plan view of the unit cell is

shown on the right of Fig. 12.15 with heights labeled to indicate the

third dimension.

F ig. 12.16 The Wigner–Seit z cell of

the fcc lat t ice (this shape is a “ rhombic

dodecahedron” ). Each face is the per-

pendicular bisector between the cent ral

point and one of it s 12 nearest neigh-

bors.

In the picture of the fcc unit cell, there are eight lat t ice points on the

corners of the cell (each of which is 1/ 8 inside of the convent ional unit

cell) and one point in the center of each of the six faces (each of which

is 1/ 2 inside the cell). Thus the convent ional unit cell contains exact ly

four (= 8× 1/ 8 + 6 × 1/ 2) lat t ice points. Packing together these unit

cells to fill space, we see that the lat t ice points of a full fcc lat t ice can

be described as being points having coordinates (x, y, z) where either all

three coordinates are integers t imes the lat t ice constant a, or two of the

three coordinates are half-odd integers t imes the lat t ice constant a and

the remaining one coordinate is an integer t imes the lat t ice constant

a. Analogous to the bcc case, it is sometimes convenient to think of

the fcc latt ice as a simple cubic lat t ice with a basis of four atoms per

convent ional unit cell. The simple cubic lat t ice contains points [x, y, z]

where all three coordinates are integers in units of the lat t ice constant

a. Within the convent ional simple-cubic unit cell we put one point at

posit ion [0, 0, 0] and another point at the posit ion [1
2
, 1

2
, 0] another point
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2
, 1

2
, 0] another point
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at [ 1
2
, 0, 1

2
] and another point at [0, 1

2
, 1

2
]. Thus the lat t ice points of the

fcc lat t ice are writ ten in units of the lat t ice constant as

R cor n er = [n1, n2, n3] (12.6)

R f ace− x y = [n1, n2, n3] + [1
2
, 1

2
, 0]

R f ace− x z = [n1, n2, n3] + [1
2
, 0, 1

2
]

R f ace− yz = [n1, n2, n3] + [0, 1
2
, 1

2
].

Again, this expresses the points of the lat t ice as if they were four dif-

ferent types of points but they only look inequivalent because we have

chosen a convent ional unit cell with four lat t ice points in it . Since the

convent ional unit cell has four lat t ice points in it , we can think of the

fcc lat t ice as being four interpenetrat ing simple cubic lat t ices.

Again we can check that this set of points forms a lat t ice. In terms

of our first definit ion of a lat t ice (definit ion 12.1) we write the primit ive

lat t ice vectors of the fcc lat t ice as

a1 = [ 1
2
, 1

2
, 0]

a2 = [ 1
2
, 0, 1

2
]

a3 = [0, 1
2
, 1

2
]

in units of the lat t ice constant . Again it is easy to check that any

combinat ion

R = n1a1 + n2a2 + n3a3

with n1, n2, and n3 integers gives a point within our definit ion of the

fcc lat t ice (that the three coordinates are either all integers, or two of

three are half-odd integers and the remaining is an integer in units of

the lat t ice constant a).

F ig. 12.17 T he W igner–Seit z cells of

the fcc lat t ice pack together to t i le all

of space. A lso shown in the picture are

two convent ional (cubic) unit cells.

Wecan also similarly check that our descript ion of a fcc lat t ice sat isfies

our other two definit ions of (definit ion 12.1.1 and 12.1.2) of a lat t ice.

The Wigner–Seitz unit cell for the fcc lat t ice is shown in Fig. 12.16. In

Fig. 12.17 it is shown how these Wigner–Seitz cells pack together to fill

all of space.

12.2.3 Sphere Packing
F ig. 12.18 T op: Simple cubic, M id -

d le: bcc, B ot t om : fcc. T he left shows

packing of spheres into these lat t ices.

T he right shows a cutaway of the con-

vent ional unit cell exposing how the fcc

and bcc lat t ices leave much less empty

space than the simple cubic.

Although the simple cubic lat t ice (see Fig. 12.10) is conceptually the

simplest of all lat t ices, in fact , real crystals of atoms are rarely simple

cubic.9 To understand why this is so, think of atoms as small spheres

9Of all of the chemical elements, polo-

nium is the only one which can form a

simple cubic lat t ice wit h a single atom

basis. (I t can also form another crystal

st ructure depending on how it is pre-

pared.)

that weakly at t ract each other and therefore t ry to pack close together.

When you assemble spheres into a simple cubic lat t ice you find that it

is a very inefficient way to pack the spheres together—you are left with

a lot of empty space in the center of the unit cells, and this turns out

to be energet ically unfavorable in most cases. Packings of spheres into

simple cubic, bcc, and fcc lat t ices are shown in Fig. 12.18. It is easy

to see that the bcc and fcc lat t ices leave much less open space between

fcc

Lattice	sites	

+	n	 )

Lattice	point	per	conventional	cell:	

Volume	(conventional	cell):	
Volume	(primitive	cell)	:	
Number	of	nearest	neighbors:	12

Nearest	neighbor	distance:	

Number	of	second	neighbors:	6
Second	neighbor	distance:	

For	the	site	

12	nearest	neighbors:	 and	

6 nest	nearest	neighbors:	 ,	 and		
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mensions. While it isan extremely deep fact that thereareonly fourteen

lat t ice types in three dimensions, the precise statement of this theorem,

as well of the proof of it , are beyond the scope of this book. The key re-

sult is that any crystal, no matter how complicated, has a latt ice which

is one of these fourteen types.12

12
There is a real subt lety here in clas-

sifying a crystal as having a part icu-

lar lat t ice type. There are only these

fourteen lat t ice types, but in principle a

crystal could have one lat t ice, but have

the symmetry of another lat t ice. An ex-

ample of this would be if the a lat t ice

were cubic, but the unit cell did not

look the same from all six sides. Crys-

tallographers would not classify this as

being a cubic material even if the lat -

t ice happened to be cubic. The reason

for this is that if the unit cell did not

look the same from all six sides, there

would be no part icular reason that the

three primit ive lat t ice vectors should

have the same length—it would be an

insane coincidence were this to happen,

and almost certainly in any real mate-

rial the primit ive lat t ice vector lengths

would actually have slight ly different

values if measured more closely.

12.2.5 Some Real Crystals

Once we have discussed latt ices we can combine a lat t ice with a basis to

describe any periodic structure—and in part icular, we can describe any

crystalline structure. Several examples of real (and reasonably simple)

crystal structures are shown in Figs. 12.20 and 12.21.

F ig. 12.20 Top: Sodium forms a bcc

lat t ice. B ot t om : Caesium chloride

forms a cubic lat t ice with a two atom

basis. Note carefully: CsCl is not bcc!

In a bcc lat t ice all of the points (includ-

ing the body center) must be ident ical.

For CsCl, the point in the center is Cl

whereas the points in the corner are Cs.

Sodium (Na)

Latt ice = Cubic-I (bcc)

Basis = Na at [000] Plan view
unlabeled points at z = 0, 1

1/ 2

Caesium chloride (CsCl)

Latt ice = Cubic-P

Basis = Cs at [000]

and Cl at [1
2

1
2

1
2
] Plan view

unlabeled points at z = 0, 1

1/ 2
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lat t ice types in three dimensions, the precise statement of this theorem,

as well of the proof of it , are beyond the scope of this book. The key re-

sult is that any crystal, no matter how complicated, has a lat t ice which

is one of these fourteen types.12

12
T here is a real subt lety here in clas-

sifying a crystal as having a part icu-

lar lat t ice type. T here are only these

fourteen lat t ice types, but in principle a

crystal could have one lat t ice, but have

the symmetry of another lat t ice. An ex-

ample of this would be if the a lat t ice

were cubic, but t he unit cell did not

look the same from all six sides. Crys-

tal lographers would not classify this as

being a cubic material even if the lat -

t ice happened to be cubic. T he reason

for this is that if the unit cell did not

look the same from all six sides, there

would be no part icular reason that t he

three primit ive lat t ice vectors should
have the same length— i t would be an

insane coincidence were this to happen,

and almost cert ainly in any real mate-

rial the primit ive lat t ice vector lengths

would actually have slight ly different

values if measured more closely.

12.2.5 Some Real Cryst als

Once we have discussed lat t ices we can combine a lat t ice with a basis to

describe any periodic st ructure—and in part icular, we can describe any

crystalline st ructure. Several examples of real (and reasonably simple)

crystal st ructures are shown in Figs. 12.20 and 12.21.

F ig. 12.20 T op: Sodium forms a bcc

lat t ice. B ot t om : Caesium chloride

forms a cubic lat t ice with a two atom

basis. Note careful ly: CsCl is not bcc!

In a bcc lat t ice all of the points (includ-

ing the body center) must be ident ical.

For CsCl, the point in the center is Cl

whereas the point s in the corner are Cs.

Sodium (Na)

Lat t ice = Cubic-I (bcc)

Basis = Na at [000] Plan view
unlabeled points at z = 0, 1

1/ 2

Caesium chloride (CsCl)

Lat t ice = Cubic-P

Basis = Cs at [000]

and Cl at [ 1
2

1
2

1
2
] Plan view

unlabeled points at z = 0, 1

1/ 2

Atoms	inside	a	unit	cell

Ø We	choose	three	lattice	vectors
Ø Three	lattice	vectors	form	a	primitive	or	a	conventional	unit	cell
Ø Length	of	these	vectors	are	called:	the	lattice	constants

We	can	mark	any	unit	cell	by	three	integers:	

Coordinates	of	an	atom:
We	can	mark	any	atom	in	a	unit	cell	by	three	real	numbers:	 .
The	location	of	this	atom:	
Notice	that	 and	 and	

Q:	Why	x	cannot	be	1?
A:	Due	to	the	periodic	structure.	1	is	just	0	in	the	next	unit	cell



Sodium	Chloride	structure

Face-centered	cubic	lattice
Na+	ions	form	a	face-centered	cubic	lattice
Cl- ions	are	located	between	each	two	
neighboring	Na+	ions

Equivalently,	we	can	say	that
Cl- ions	form	a	face-centered	cubic	lattice
Na+	ions	are	located	between	each	two	
neighboring	Na+	ions

Sodium Chloride 

Sodium	Chloride	structure

Primitive	cells



Cesium	chloride	structure

Simple	cubic	lattice
Cs+	ions	form	a	cubic	lattice
Cl- ions	are	located	at	the	center	of	each	cube

Equivalently,	we	can	say	that
Cl- ions	form	a	cubic	lattice
Cs+ ions	are	located	at	the	center	of	each	cube

Coordinates:
Cs:	000

Cl:		
(

+

(

+

(

+

Notice	that	this	is	a	simple	cubic	lattice
NOT	a	body	centered	cubic	lattice
Ø For	a	bcc	lattice,	the	center	site	is	the	

same	as	the	corner	sites
Ø Here,	center	sites	and	corner	sites	are	

different

Cesium	chloride	structure

Simple	cubic	lattice
Cs+	ions	form	a	cubic	lattice
Cl- ions	are	located	at	the	center	of	each	cube

Equivalently,	we	can	say	that
Cl- ions	form	a	cubic	lattice
Cs+ ions	are	located	at	the	center	of	each	cube

Coordinates:
Cs:	000

Cl:		
(

+

(

+

(

+

Notice	that	this	is	a	simple	cubic	lattice
NOT	a	body	centered	cubic	lattice
Ø For	a	bcc	lattice,	the	center	site	is	the	

same	as	the	corner	sites
Ø Here,	center	sites	and	corner	sites	are	

different

Cesium	chloride	structure

Simple	cubic	lattice
Cs+	ions	form	a	cubic	lattice
Cl- ions	are	located	at	the	center	of	each	cube

Equivalently,	we	can	say	that
Cl- ions	form	a	cubic	lattice
Cs+ ions	are	located	at	the	center	of	each	cube

Coordinates:
Cs:	000

Cl:		
(

+

(

+

(

+

Notice	that	this	is	a	simple	cubic	lattice
NOT	a	body	centered	cubic	lattice
Ø For	a	bcc	lattice,	the	center	site	is	the	

same	as	the	corner	sites
Ø Here,	center	sites	and	corner	sites	are	

different

Cesium Chloride



Diamond	lattice	is	NOT	a	Bravais	Lattice	either

Same	story	as	in	graphene:
We	can	distinguish	two	different	type	of	carbon	sites	(marked	by	different	color)
We	need	to	combine	two	carbon	sites	(one	black	and	one	white)	together	as	a	(primitive)	unit	cell
If	we	only	look	at	the	black	(or	white)	sites,	we	found	the	Bravais	lattice:	fcc

Diamond is not a Bravais lattice
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Definit ion 13.3 A fami ly of lat t i ce planes is an infinite set of equally

separated parallel lattice planes which taken together contain all points

of the lattice.

In Fig. 13.1, several examples of families of lat t ice planes are shown.

Note that the planes are parallel and equally spaced, and every point of

the lat t ice is included in exact ly one lat t ice plane.

(010) family of lat t ice planes

(110) family of lat t ice planes

(111) family of lat t ice planes

F ig. 13.1 Examples of families of lat -

t ice planes on the cubic lat t ice. Each of

these planes is a lat t ice plane because

it intersects at least three non-collinear

lat t ice points. Each picture is a fam-

ily of lat t ice planes since every lat t ice

point is included in one of the parallel

lat t ice planes. T he families are labeled

in M iller index notat ion. T op (010);

M idd le (110); B ot t om (111). In the

top and middle the x-axis points to the

right and the y-axis point s up. In the

bot t om figure the axes are rotated for

clar ity.

I now make the following claim:

Claim 13.1 The families of lattice planes are in one-to-one correspon-

dence9 with the possible directions of reciprocal lattice vectors, to which

they are normal. Further, the spacing between these lattice planes is

d = 2π/ |G m in | where G m in is the minimum length reciprocal lattice

vector in this normal direction.

This correspondence is made as follows. First we consider the set of

planes defined by points r such that for some integer m,

G · r = 2πm. (13.7)

This defines an infinite set of parallel planes normal to G. Since ei G ·r =

1 we know that every lat t ice point is a member of one of these planes

(since this is the definit ion of G in Eq. 13.1). However, for the planes

defined by Eq. 13.7, not every plane needs to contain a lat t ice point (so

generically this is a family of parallel equally spaced planes, but not a

family of lat t ice planes). For this larger family of planes, the spacing

between planes is given by

d =
2π

|G | .

(13.8)

To prove this we simply note (from Eq. 13.7) that two adjacent planes

must have

G · (r 1 − r 2 ) = 2π.

Thus in the direct ion parallel to G , the spacing between planes is2π/ |G |

as claimed.

Clearly different values of G that happen to point in the same direc-

t ion, but have different magnitudes, will define parallel sets of planes.

As we increase the magnitude of G , we add more and more planes. For

example, examining Eq. 13.7 we see that when we double the magnitude

of G we correspondingly double the density of planes, which we can see

from the spacing formula Eq. 13.8. However, whichever G we choose, all

of the lat t ice points will be included in one of the defined planes. If we

choose the maximally possible spaced planes, hence the smallest possi-

ble value of G allowed in any given direct ion which we call G m in , then

in fact every defined plane will include lat t ice points and therefore be

9For this one-t o-one correspondence to be precisely t rue we must define G and − G to

be the same direct ion. I f t his sounds like a cheap excuse, we can say t hat “ orient ed”

families of lat t ice planes are in one-t o-one correspondence with the direct ions of

reciprocal lat t ice vectors, t hus keeping t rack of the two possible normals of t he family

of lat t ice planes.

Examples of families of lattice planes on the cubic lattice. 

Each of these planes is a lattice plane because it intersects 

at least three non-collinear lattice points. 


