Dynamics of electrons in external field

- The motion of elects is define t by the shape of it's Fermi surface.
- E.e. for each point on the $E_{i}(\bar{p})=E_{i}$.Fermi we need to know the dispersion curve for a given tirection.
- Almost always we can consider the motion in a quasiclassical limit b / c
$\lambda_{B} \sim 2 \pi \hbar / p_{F}$ with $p_{F} \sim \frac{2 \pi}{a} h$ we jet $d_{B} \sim a$, while the mean free path for e^{-}is $>a$.
- Group velocity of e^{-}is always 1 to the $E_{i}(p): \frac{\partial E}{\partial \rho}=\bar{J}=\nabla_{p} E$
and in genear is $\frac{\partial p}{}$-collinear to its momentum".

Lets study the case when we apply electric field \bar{E} when $T=O K$ no scattering off phonons). Lets assume the dircetion of \bar{E} |l [001]
Lets assume we have only one e^{-}at the zone center: II point. where $p=0$ and $K=0$ how I turn on the field E and my e^{-}experiences $\bar{F}=-e \bar{E}$ and $p=1 e / E \cdot t$
if I have had a free electron then the momentan would keep growing?

But in the crystal all is changed!
We have crystal fielt meaning that

$$
\left(-\frac{\pi \hbar}{a}, 0\right) \text { and }\left(\frac{\hbar \hbar}{a}, \frac{2 \pi \hbar}{a}\right)
$$

are physically equal.

So we can translate the regions whicker are outside of $\left[-\frac{\pi}{a} \hbar ; \frac{\pi}{a} \hbar\right]$ by the crystal momentum we can get a set of curves all sitting in the , st zone.
i.e. when electrons reach the boundary
$p= \pm \frac{\pi \hbar}{a}$ its quasomomentum
jumps in to an opposite number, or
We could say the electron mirror uefeects from the zone boundary.

What happens to the velocity is very strange. $V=\frac{\partial E}{\partial \bar{p}}$ and so is the kinetic energy of e^{-} are periotic functions of \bar{p} with the period of $\frac{2 \pi \hbar}{a}$. So by taking terivative $\frac{\partial E}{\partial p}$ we get v_{g} (see figure on the previos
Now Rets return to our problem of e^{-}in \bar{E} Since $\bar{\sigma} 11 \mathrm{p}|v|$ is not proportions) $|p|$ since asp $\rightarrow \frac{\pi \hbar}{a} \quad v \rightarrow 0$

- Note for porrtive p and positive v we have lotion to the right and for $-p$ to the Deft.
in other words the periotic motion in the p-space we can have a periodic notion in the zeal space.
-Physical meaning: While at if p is small and the electron is free like when we apply E the romenturn r and $l_{\beta} \downarrow$, and thus the electron is getting close to the zone boundary.

And at some $|p|$ it reaches the zone boundary where $v=0$
After that the reaction of l office is stronger than $-e \bar{E}$ and at $p=\frac{\pi t}{a}$ the womentur changes its sign and the electron jumps from $A \rightarrow A$ ' and now the electron moves to the left against the external force and 1tsipl gets reduced and as e^{-}moves away from the BZ it experience len crystal eLation and at some point p^{\prime} it gets pushed to F point by -CE Where the electron velocity changes its sign.

Analogy

elastic bar
In other words by applyin -CE the electron experiences a periotic motion insiak the crystal.

So oddly enough we can conclude that if we apply a constan \bar{E} the electron moves periodically!

Lets determine it's frequency.
The period of oscillations is determined by the time τ it takes to move from A to A^{\prime} and $D_{E}=\frac{1}{\tau}=\frac{a|e| E \mid}{2 \pi \hbar}$
The Every change $E_{A}-E_{I I}=$ work done dy le| \bar{E} ores X

$$
\begin{aligned}
& E_{A}-E_{\mathbb{F}}=e(E) X \quad \\
& X=\frac{E_{A}-E_{S}}{2|e \| E|} \quad \text { but real/ } \\
& \quad E_{A}-E_{T} \text { is }
\end{aligned}
$$

the BANDWIDTH! \sim few $e V s$.
and for $E \sim 10^{-6} \frac{\mathrm{~V}}{\mathrm{~cm}} \quad X \sim 10^{6} \mathrm{~cm}$ and we could have observed those in the crystal, but. for zeal crystals and for $T \neq 0 K$ we will have multiple scattering from photons and defects and the mean free path (mf) $<1 \mathrm{~cm}$! <

This means that the reason we have conduction of electrons in a metal (as opposed to oscillations) is dee to SCATLERING!

Q: What would have hapfenge if WE HAD NO SCATTERINL? AND WHY?

Bloch oscillations in a cold atom system Calso see the wikipedia artick about Bloch oscillations)

Mass of electron in solids
In classical mechanics "the real" mass is defined as

$$
m_{0}=F / a
$$

In a corgsiall we have forces from ions which are not known in general.
But we can define the characteristic parameter called affective mass such as

$$
m_{0} \frac{d v}{d t}=\sum\left(r_{1 x}+F_{\text {ext }}\right) \Rightarrow m^{*} \frac{d v}{d t}=F_{\text {ext }} .
$$

Lets compare it to the arb. dispersion eau:

$$
\frac{d v_{i}}{d t}=\frac{d v_{i}}{d p_{k}} \frac{d p_{k}}{d t}
$$

So the $i^{\text {th }}$ component of the eqn. is
$v_{i}=\frac{d E}{d p_{i}}$ and taking into account

$$
\begin{aligned}
& \frac{d p_{k}}{d t}=F_{k} \quad \text { we get } \quad \frac{d v_{i}}{d t}=\frac{\partial^{2} E}{\partial p_{k}^{\partial} p_{i}} F_{k} \\
& \frac{\partial^{2} E}{\partial p_{k} \partial p_{i}}=\frac{1}{m_{i j}^{*}} \quad m_{i j}^{*} \text { is called }
\end{aligned}
$$

the effective mass tensor.
Few utes:

1) Diagonal terms $m_{i i}^{*}$ on the isoenergy surface a rc positive e.g. for a sphere

$$
E=p^{2} / 2 m^{x} \Rightarrow m^{*}=\left(\partial^{2} E / \partial p^{2}\right)-1>0
$$

$b / c \frac{\partial E}{\partial p}>0$ for electrons $\left(\frac{\partial E}{\partial p}=v<0\right.$ forkoles)
2) \bar{a} the acceleration is not collinear with
3) Different K_{s} for different positions on the Fermi surface correspond different m** except for the extremal points.
4) The process of zelaxction depends on how inelastic is the scattering
e.g. for many scattering events within τ the notion of electrons or it' phase k as many resets. And as such one can think of it as a motion in the viscous enviroment.

The magnitude of the relaxation time define the boundary when one can talk about quasiparticels: e.g. from
$\triangle E \cdot \tau \underset{\sim}{\sim}$ is possible to talk about the quasiparticen if $\Delta E \ll E_{F}$
if we have a very disordered environment or strongly correlated "Bad" metal
where $l=V_{F} \cdot \tau \sim a$ (the so called Ioffer

$$
\begin{aligned}
& \text { where } l=v_{F} \cdot \tau \sim a \\
& \Delta E \sim \frac{\hbar}{\tau}=\frac{\hbar v_{F}}{l}=\frac{10^{-34} 10^{6} \mathrm{~J}}{10^{-10}}=10^{-18} \mathrm{~J} \sim 6 \mathrm{eV} \text { (the so called offer } \\
& \text {-Rögel } \\
& \text { limit }
\end{aligned}
$$

$\frac{\text { Boltzmann equation and }}{\text { relaxation time }}$
Bolt zmoun came up with a very general expression for all kinds of transport. This approach
is standard in modern condensed melter physics
since It describes the changes in the distribution function upon application of any perturbation.

* Relaxation time approximation:

Let's consider a single band and lets call $f(\bar{k}, t)$ the probability that a state with \bar{E} occurs at time t. Normally it would be the

Fermi - Dirac distribution in equilibrium, since E(a) If the solid is not at equal. we have different f

$$
\begin{aligned}
& \frac{d f}{d t}=\left[\frac{\partial t}{\partial t}\right]_{f \text { field }}+\left[\frac{\partial f}{\partial t}\right]_{\text {scat. }} \\
& {\left[\frac{\partial f}{\partial t}\right]_{\text {field }}=\lim _{\Delta t \rightarrow 0} \frac{f(a, t+\Delta t)-f(k, t)}{\Delta t} / f_{\text {field }}}
\end{aligned}
$$

Note K remains unchanged. Change in field during the time Δt.
e.g. in time Δt the static $k+\frac{e E}{\hbar} \cdot \Delta t \rightarrow$

$$
\begin{gathered}
f(k, t+\Delta t)=f\left(k+e^{t \Delta t / \hbar}, t\right)=f(k, t) \\
t e E \cdot \nabla_{k} f \Delta t / \hbar \Rightarrow \\
{\left[\frac{\partial f}{\partial t}\right]_{f i e l d}=t \frac{e E \nabla_{k} f}{t}}
\end{gathered}
$$

As for the scattering rate we take very generally

$$
\left[\frac{\partial f}{\partial t}\right]_{\text {scald }}=-\frac{f(k, t)-f_{0}(a)}{\tau} \underset{\text { relaxation }}{\Rightarrow}
$$

What we want is to vudrostand how the tendency to equilibrium gets zestorted after we applied the field, e.g. \bar{E}. It's simple
If $f>f_{0} \Rightarrow\left(\frac{\partial f}{\partial t}\right)_{s_{c a H}}>0$ and $f \lambda$.
Now suppose $f(k, 0) \quad t=0$ is in non-equaliboriun if $E=0$ we get

$$
\begin{aligned}
& \frac{\partial f}{\partial t}=-\left(f-f_{0}\right) / \tau \quad(\text { see prev. page }) \\
& f(k, t)=f_{0}(k)+\left[f(k, 0)-f_{0}(k)\right] e^{-t / \tau}
\end{aligned}
$$

the distribution relaxes exponeerticlly fast in time and for small τ ifs almost in equilibrium.
Now we turn on the field:

$$
\frac{\partial f}{\partial t}=\frac{e}{\hbar} \bar{E} \cdot \nabla_{k} f-\frac{f-f_{0}}{\tau}
$$

The famous Boltzmann transport equation
Take $f(\bar{k}, t)=f_{0}(\bar{k})+f_{1}(\bar{k}, t)$
\uparrow
small deviation from equilibrium

$$
\begin{aligned}
& \frac{\partial\left(f_{0}(k)+f_{1}(k, t)\right)}{\partial t}=\frac{e}{\hbar} E \cdot \nabla_{k}\left(f_{0}+f_{1}\right)- \\
& \frac{\partial f_{1}}{\partial t}=\frac{e}{\hbar} E \cdot \underbrace{Q_{k} f_{0}}_{\left.f_{0}+f_{1}\right)-f_{0}}-\frac{f_{1}}{\tau}= \\
& = \\
& e \overline{e E} \cdot v \frac{\partial f_{0}}{\partial E}-\frac{f_{1}}{\tau}=\nabla_{k} f_{0}=\frac{\partial f_{0}}{\partial E} \underbrace{\nabla_{k} E}_{=\hbar v}
\end{aligned}
$$

$t=0$: we turn on the field and the solution is

$$
f_{1}(k, t)=\underbrace{e E \cdot \bar{v} \tau \frac{\partial f_{0}}{\partial E}}\left[1-e^{-t / \tau}\right]
$$

for $t \rightarrow \tau$ the electron system reacher the steady state:

$$
f(k)=f_{0}(k)+f_{1}(k)=f_{0}(k)+e \bar{E} \cdot \bar{v} \pi \frac{\partial f_{0}}{\partial E}
$$

Since $\frac{\partial f_{0}}{\partial E}<0$

Lets now study what average momentain deer

$$
\hbar \bar{g}=\sum_{\hbar} \bar{g} f\left(\bar{g}_{1}, t\right) / N
$$

$$
\begin{aligned}
& \hat{g} \text { reminder } \\
& \text { average } \\
& \text { momentum }
\end{aligned}
$$

going back to

$$
\sum_{\text {aver all }} \hbar \frac{-}{g} x \left\lvert\, \frac{\partial f}{\partial t}=\left[\frac{\partial t}{\partial t}\right]_{f i c / l}+\left[\frac{\partial f}{\partial t}\right]_{\text {scat }}\right.
$$ State in the band

$$
\begin{aligned}
& \longrightarrow \frac{d(\hbar \bar{\delta})}{d t}= \\
& =\left(\frac{d \hbar \bar{g}}{d t}\right)_{\text {field }} ?
\end{aligned}
$$

for each elector

$$
\frac{d \hbar g}{d t}=-e E \Rightarrow \sum_{\substack{\text { over momentum } \\ \text { states }}} \frac{d \hbar g}{d t}=-e E_{1}
$$

and if τ is indepentest of \bar{k}

$$
\left(\frac{d \hbar \bar{g}}{d t}\right)_{\text {scat }}=-\frac{\hbar \bar{g}}{\tau} \text { as the result }
$$

we have

$$
\frac{d \hbar \bar{g}}{d t}=-e E-\frac{\hbar g}{\tau}
$$

and in the steady stat $t \gg i$

$$
\hbar g^{-}=-e \in \tau \neq 0 \text { ! }
$$

Unlike the case when electrons are at equilibrium

This means for metals only band crossing E_{F} contribute to mobility μ.
Consider a hypotetical cubic ital:
μ is $=\mu$ scalar
for $i=j \quad v_{i} v_{j}$ and $-v_{i} v_{j}$ occur equally so all those terms will cancel out
Also $v_{x}^{2} v_{y}{ }^{2}, v_{z}{ }^{2}$ ate the same \Rightarrow

$$
\begin{gathered}
\mu x x=\mu y y=\mu z z \equiv \mu \Rightarrow \\
\bar{v}=-\mu E \quad \text { where } \mu=\frac{1}{3}\left(\mu x+\mu_{y y}+\mu_{z z}\right) \\
\mu^{e^{-}}=-\frac{e}{3 N} \sum \tau v^{2 \partial f_{0}^{e h e c t i o n s}} \frac{\text { eta }}{\partial E}
\end{gathered}
$$

Since $\frac{\partial f_{0}}{\partial E}<0 \Rightarrow \mu>0$ for electrons, tut $\bar{v} \uparrow \downarrow \bar{E}$
For non -cubic xtals its also ok but

$$
\tau=\tau(\bar{k})
$$

Similarly for hole we can write down S How Tit is?

Physical meaning of \bar{g} :
suppose at $t=0 \quad g=0$ then for the tire e τ it accelerates and becomes -RET but returns back to $g=0$ after scattering That is why τ is mean free time.

Mobility: In the steady state $\frac{E^{\prime} \cdots a v e r a g e ~ v e l o c i t y ~}{\sim}$ and thus:

often called electron
drift velocity
Lets try to obtain the expression for $\mu_{i j}$

1. Start with

$$
\bar{v}_{i}=\frac{1}{\lambda} \sum_{\substack{\lambda+a t e s}} v_{i}(k) f(k)
$$

\# of electrons in the band

$$
\begin{aligned}
& \text { and } f(k)=f_{0}(k)+e E \cdot \bar{v} \tau \frac{\partial f_{0}}{\partial \bar{\varepsilon}} \\
& =\frac{1}{N} \sum v_{i}(k) f_{0}(k)+\frac{1}{N} \sum v_{i} e E \bar{v} \tilde{\sim} \frac{\partial f_{0}}{\partial \bar{E}} \\
& \sum_{s+c t s} v_{i} \bar{E} \cdot \bar{v} \tau \frac{\partial f_{0}}{\partial E} \Rightarrow \\
& \mu_{i j}=-\frac{e}{N} \sum_{s+c t e s} \tau v_{i} v_{j} \frac{\partial f_{0}}{\partial \bar{E}}
\end{aligned}
$$

since $\frac{\partial f_{0}}{\partial E}$ spikes only at E_{F} only the state at the chem. potential matter.

Electric] Conduction in bands
$\bar{j}=q n \bar{v}$ in $E \sum_{i} M$
In solid state physics:
the carrier density $n=\frac{f(k)}{v}$

$$
\bar{j}=-\frac{e}{V} \sum_{\text {states }} f(\bar{k}) v(\bar{k})
$$

Sum over states can be done line 1-band at the time and $\sum f(\bar{k}) \bar{r}(\bar{k})$ overstates in the band can be identified as N.V $N=\#$ of e^{-}in the band, \vec{v} - average velocity
So: $\quad j=-e \sum_{b a n d s} \frac{N}{V} \cdot \bar{v}=-e \sum_{b a n d s} n \bar{v}$
where n is the contribution of the band to total election concentration.
Recal for the steady state $\bar{\sigma}_{i}=-\sum_{j} \mu_{i j} E_{j}$

$$
\dot{j}_{i}=e \sum_{b \text { and s }}\left[n \sum_{j} \mu_{i j} E_{j}\right] \quad \text { and }
$$

remembering Onm'l Law J $=\sigma E \Rightarrow$

$$
\begin{aligned}
j_{j} & =\sum_{j} \sigma_{i j} E_{j} \\
\sigma_{i j} & =e \sum_{\text {bands }} h \mu_{i j}
\end{aligned}
$$

where
the conductivity tensor

WITH THIS info LETS LEARN about ELECTRON - PHONON SCATTERING

1. Quasimomentur of e^{-}cosn't change when it moves in an ideal periotic lattice
2. It can change only interactions with NON periotic part of the potential.
e.g. phonons, tevets, dis locations, domain boundaries surface, interface, grain boundaries

AND $e-e$ interaction or $e-e$ scattering
3. we have inelastic and elastic procemes.

Now to the phonons: phonon is an elastic phave of deformation as the result we have an additional periodicity to the potential on which electrons can scatter oft.
The effect is connected to the \# phonous the electron can sorter.

Note: Similar to the phonon story throng the scattering act we should consider both N-procen and U-procen
momentum momentum.
But unlike phonons which has no chemical potenticel and thus no Fermi surface.
Electrons scattering is strongly pound to the topology of Fermi surface.

Electrical conductivity
Basses: in absence of ∇T and diffusion

$$
\bar{j}=\sigma \bar{E}
$$

\uparrow eunctrical conductivity
In isotropic cas $\bar{j} \| \bar{E}$ and σ is a scaler But we know that almost all real crystals have anisotropy of some sort, in this case:

$$
\begin{array}{r}
j_{i}=\sum_{k} \sigma_{i k} E_{k}, \quad \Longrightarrow \quad E_{i}=\sum_{k} \prod_{i k} p_{i k} j_{k} \\
\prod_{\text {resistance }} . \\
\text { tensor }
\end{array}
$$

the connection $\sigma_{i k} \rho_{i k}=\delta_{i k}$ also $\rho_{i k}=\rho_{k}$ i
The components can be determined by measuring electric field along crystal axis 1,2,3
along 1: e.g $E_{1}=\rho_{1} j_{1} \quad E_{2}=\rho_{21} j_{1}$ etc
along 2: $\quad E_{1}=\rho_{12} j_{2} \quad E_{2}=\rho_{22} j_{2}$ etc
In cubic xlal all un n diagonal terms $=0$ For a single axis materials:

$$
\rho_{11}=\rho_{22} \neq \rho_{33}
$$

$\frac{\text { Electrical conductivity in the model of }}{\text { fermi carriers }}$ fermi carriers

- Lets assume we deal only with close FS
- and the only scatterers are phonons.
- Also lets assume the Fs is close to spherical e.g.K, Li
$E(p)=\frac{p^{2}}{2 m^{*}}, \tau$ - time between scattering
$W_{k, k}$ is the probability of saattring from $k \rightarrow k^{\prime}$
$W_{k, k} \prime \sim \frac{1}{\tau}$. After that the electron moves $l=\sigma_{F} \cdot \tau$. Apply ERlang x.

All che trons get extra $\Delta p_{x}=-e E_{x} \tau$
The whole distribution moves in the opposite direction by ΔP_{x}.
without \bar{E} we have no j since for each e^{-}with $+\bar{p}$ we hove e^{-}with $-\bar{p}$ With application of z central symmetry is broken.
Now we have uncompensated charge in (1) and (3)
On the FS for election we have $m^{*}>0$ and $v_{F} 1$ to the FS. Ekedrons in 1 and 3 create a flow of electrons with $v \sim v_{f}$ along $\bar{F}=-e \bar{E}$ + The higher \bar{E} the large the volume.

Now consider hales: For hole $\frac{l_{p}}{d t}=-e \bar{t}$

In velure (1) we have e^{-}
(2) wa deplete electrons

As the result, e^{-}with $r \sim v_{f}$ in (1) and (3) create current in the same direction as electrons
As the result in metals, with electrons and holes, current is a sum of e^{-}and h.

Electrical Conductivity

To derive the equation for σ, consider the spherical coordinates. Since $\Delta p \ll p_{F}$ any particle in 1 and 3 is along p and $v \sim v_{E}$ The projection of \checkmark outo-E is $p \cos \theta / \mathrm{m}^{*}$, since velerver (1) and (3) are practically identical, we calculate the current in (1) - inside $d v_{p}=p^{2} \sin \theta d p$ dod we have

$$
\Delta_{n}=\int_{s p \operatorname{int} \text { and } l}^{\frac{2 d v_{p}}{(2 \pi t)^{3}} \text { elections }}
$$

The contribution of those eke trons into current

$$
d j=e \Delta n v=e \frac{2 p^{2} \sin t d p d \theta d \varphi}{(2 \pi t)^{3}} v_{r} \cos \theta
$$

The total current created by e^{-}in the volumes 1 and 3 thus:

$$
\begin{gathered}
j=2 \cdot \frac{2 e v_{F}}{(2 \pi \hbar)^{3}} \int_{0}^{2 \pi} f \theta \int_{0}^{2 \pi} d \varphi \int_{p_{F}}^{p_{F}+\Delta p \cos \theta} p^{2} \sin \theta \cos \theta d p= \\
=j=\frac{8 \pi e p_{F} v_{F} \Delta p_{x}}{3(2 \pi \hbar)^{3}} \text { Show this }
\end{gathered}
$$

$4 \pi P_{F}^{2}$ = the ara of the isocuergy surface for e^{-} and stance $\Delta P_{x}=e E \tau=e . l m E / P_{F}$
$j=\frac{2}{3} \frac{e^{2} S_{F} l}{(2 \pi \hbar)^{3}} E$ and from $j=\sigma E \Rightarrow$
$\sigma=\frac{2}{3} \frac{e^{2} S_{F} l}{(2 \pi \hbar)^{3}} \quad$ this equip is known
It works for any dispersion as long as $E(p)=f\left(p^{2}\right)$ and f has ho singularities.

Lets consider the simplest case $E=P^{2} / 2 m^{*}$ (BTW the linear tispersion is also can be of this kind, i.g. $E^{ \pm}= \pm \alpha\left(p^{2}\right)^{1 / 2}$.) fir whic $p=0$ is a singularity.
Lets rewrite age for σ as:
the volume $S_{F}=\frac{3 \Delta_{F}}{P_{F}} \Leftarrow$ (indeed $S_{F}=4 \pi P_{F}^{2}$ and in monertum
space
Also zeal for isotropic dispersion

$$
p_{F}=m^{*} v_{F}
$$

We get $\sigma=\frac{2 e^{2} \Delta_{F} l}{(2 \pi \hbar)^{3} m^{*} r_{F}}=\frac{e \tau}{m^{*}} \frac{2 \Delta F}{(2 \pi \hbar)^{3}}$

$$
\sigma=\frac{e^{2} n \tau}{m^{*}}
$$

this is
thar we can write down
Which is exactly the famous formula $\sigma=$ en μ known as Drupe formula. clearly $\frac{e^{\lambda} y^{*} \tau}{m^{*}}=\kappa \mu \mu \Rightarrow \mu=\frac{e^{\tau}}{m^{*}}$ Mobility

Figure 18.1. Resistivity of potassium from 0.1 to 300 K . At the lowest temperatures, the resistance varies as T^{2}, from 2 to 20 K , it varies as T^{5}, and from 100 K upwards, it varies as T^{1}. [Source: Bass et al. (1990).]

TEMPERATURE DEPENDENCE OF CONDUCTIVITY
Clearly the T-dep. comes from the T - dependent $\tau(T)$ In this theory we consider that the only important processm are those when $\Delta p \sim p$ or the elections is transferred from (1) in (2) and as such we need the U - process.
The time which taker for the e^{-}to move from (1) \rightarrow (2) is called the transport relaxation time.

When $T>T_{D} e^{-}$and phonons have momentum whish $\sim \frac{\pi}{a} \cdot \hbar$. The $\#$ of phonous for $T>T_{D}$ $T>T_{D} \mid \sim T$, thus $\tau_{t} \sim \frac{1}{T}$ and $\sigma \sim \tau_{t} \sim \frac{1}{T}$

But when the momentum of phons is small $T \ll T_{D}$ we have a problem to move free (1) (2). which now can only happen as the result $\frac{\text { of diffusive motion }}{k \rightarrow k^{\prime}}$. (sec fig. on p.11)

As the result for each scattering act e^{-}with \bar{p} with phonon with \bar{q} the projection of of e^{-}monentan on to the direction of initial motion is:

$$
\Delta p=p(1-\cos \alpha)
$$

$$
\begin{gathered}
\Delta p=(1-\cos \alpha) \rho \\
\cos \alpha \sim 1-\alpha^{2} / 2 \\
\alpha=q / p
\end{gathered}
$$

So we get $\Delta p=p(1-\cos \alpha)=\frac{\alpha^{2} p}{2} \approx \frac{q^{2}}{2 p}$
Recal that $p \sim T \frac{\hbar}{a}$, and the inomentum of phonon is given by $\hbar \omega_{p h}^{\prime}=v_{a} q \ll k_{B} T \Rightarrow q \cong k_{B} T / v_{a}$
and also real that $T_{D} \sim \frac{\hbar_{\omega^{\text {max }}}}{k_{B}}$
for $w^{\max }$ we have $\lambda_{\min } \approx 2 a \Rightarrow$

$$
T_{D} \approx \frac{\hbar w^{\max }}{k_{B}}=\frac{2 \pi \hbar v_{a}}{2 a k_{B}} \approx \frac{v_{a} P}{k_{B}}
$$

and as the result we have

$$
\Delta p \approx \frac{q^{2}}{2 p}=\frac{k_{B}^{2} T^{2} v_{a}^{2} p}{2 v_{a}^{2} k_{B}^{2} T_{D}^{2}} \approx\left(\frac{T}{T_{D}}\right)^{2} p
$$

To scatter e^{-}we must turn in into the angle $\pi / 2$ and the projection of the $\Delta p \sim p_{F} \Rightarrow$ The number of acts like this $\frac{P}{\substack{\text { Scales } \\ \text { with }}} \sim\left(\frac{T}{T}\right)^{2} \sim T^{2}$

The number of available phonons for $T \ll T_{\theta} \sim T^{3}$
$T \ll T_{D}$: Thus for the scattering of e^{-}on photons with $\omega \ll \omega^{\text {max }}$

$$
\tau_{t} \sim\left(\frac{1}{T^{2}}\right) \cdot\left(\frac{1}{T_{3}}\right) \Rightarrow \begin{aligned}
& \sigma \sim \frac{1}{T^{5}} \\
& \text { and } \rho \sim T^{5}
\end{aligned}
$$

For the case of spherical FS and very specific spherical distribution of phonon momentum these is a general formula called the
Bloch - Grüneisen formula.

$$
\rho_{\mathrm{el}-\mathrm{ph}}=\alpha_{\mathrm{el}-\mathrm{ph}}\left(\frac{T}{\theta}\right)^{n} \int_{0}^{\theta / T} \frac{x^{n}}{\left(\mathrm{e}^{x}-1\right)\left(1-\mathrm{e}^{-x}\right)} \mathrm{d} x
$$

U-process in e^{-}-phonon scattering

Here we have: $E\left(k^{\prime}\right)=\epsilon(k)+\hbar v_{q}$ and $\hbar k^{\prime}=\hbar k+\hbar q+\hbar_{g}$. xtal momentum
What is important, for a given k there will be a specific phonon with q, such that $w(q)=E\left(k^{\prime}\right)=E(k)+\hbar \omega$ \uparrow usomerg." surface
But unlike N-procen the intersection will dissappear at some $|g|=Q$.
The closer E_{F} 's in the neighboring $B Z$ arc the more important is U-procen.
C.9. in alkili metals U-proven is dominant event at $T=20 k$!

The resistivity of copper from low to high temperatures (near its melting temperature, 1358 K) on a log-log plot. Above about 100 K , $\rho \propto \mathrm{T}$, whereas at low temperatures, $\rho \propto \mathrm{T} 5$, and at the lowest temperatures ρ approaches the residual resistivity ρR. The inset shows the ρ versus T behavior below 100 K on a linear plot. (ρR is too small to see on this scale.)

Fig. 2.3 Scattering from lattice vibrations alone with a mean scattering time τ_{L}, and from impurities alone with a mean scattering time τ_{I}

Experiment shows
that the following ir correct:
if different independent
microscopic processes underlie the collisions of electrons at the Fermi surface the probalities of the cellisios are additive

SPECTRAL DENSITY OF STATES FOR e^{-}

Distribution of e^{-}stater by energy is one of the most important things to characterize the eleerronic spectrum excitations.

Lets introduce an important parameter THE DENSITY OF STATES.
if $N(E)$ is the $\#$ of stater with energy $E \Rightarrow$
$d N(E)$ is the \# of states ottwien E air $E+d E$
Spectral density of states $v(E)\left(\begin{array}{cc}E+d E \\ (\text { sometime } g(\varepsilon) \text { of }) \\ D(\varepsilon)\end{array}\right.$

$$
=\underbrace{\frac{d N(E)}{d V} / d E=\frac{d n(E)}{d E}}_{d n(E)}
$$

clearly we have a connection to esp)
ely, real for free electrons

$$
\begin{aligned}
& h^{3 D}=\frac{\left.2 m_{0} E_{F}(0)\right]^{3 / 2}}{3 \pi^{2} \hbar^{2}} \Rightarrow \\
& D=\frac{d n}{d E}=\frac{\left(2 m_{0}\right)^{3 / 2} \sqrt{E_{F}(0)}}{2 \pi^{2} \hbar^{3}}=\frac{\sqrt{2} m_{0}^{3 / 2} \sqrt{E_{F}(0)}}{\pi^{2} \hbar^{3}}
\end{aligned}
$$

\Rightarrow the cornier disity $n=\int_{0}^{E_{E}(0)} \frac{d N}{d E} d E=$
\Rightarrow For finite T, we meet to include

$$
h=\int_{0}^{\infty} f E_{n} \frac{d n}{d E} d E
$$

Lets derive the expression for 20
For 1 state the area is $\frac{(2 \pi \hbar)^{2}}{s}$ (compare $(2 \pi \hbar)^{3} / v$) For $E=\frac{p^{2}}{2 m^{*}}$
 isoenergctic surfaces The \# of states

$$
\begin{aligned}
& d N_{p}^{2 p}=\frac{4 \pi(p+d p)^{2}-v \pi p^{2}}{(2 \pi t} \frac{2}{2} \\
= & \frac{4 \pi s_{p} d p}{(2 \pi \hbar)^{2}}
\end{aligned}
$$

and $b / c \quad d E=\frac{4 p d p}{2 m^{*}} \Rightarrow$

$$
\begin{aligned}
& d p=\frac{m^{*}}{p m^{*}} d E \quad \Rightarrow N_{p}^{2}=\frac{4 \pi S m^{*}+E}{(2 \pi \hbar)^{2}}= \\
& p d p=m^{*} d E \\
& =\frac{4 \pi m^{*} d E}{(2 \pi \hbar)^{2}} \\
& \nu^{2 D}(E)=\frac{m^{*}}{\pi \hbar^{2}} \quad 1 \quad \text { ifis ihtepentut of Energy }
\end{aligned}
$$ for 2D

In general
however $\sum^{*} m^{*}$ depends on $E \quad\left\{\begin{array}{l}\text { by the effective } \\ \text { mass of nit } \\ \text { coo court for parabolic }\end{array}\right.$ $E=p^{2} / 2 m^{*}$.
Q: Show for anisotropic $E=P_{x}^{2} / 2 n_{i x}+P y^{2} / 2 m y$

$$
S^{2 D}(E)=\frac{\sqrt{m_{x} m_{y}}}{\pi \hbar^{2}}
$$

Q: Show that for $1 D$:

$$
\nu^{\mathbb{I D}}(E)=\frac{L \sqrt{m^{*}}}{\sqrt{2} \pi \hbar \sqrt{E}}
$$

L is the length of the $x t_{a}$.

Van Hove singularities: Instil work on this
It is clear that to calculate vCE) one explasuol! Cisnot? needs to know $E(\bar{p})$. Haw ever we can try It to get an odea what happens when we fill up the PE. Consider a square lattice with a period a:

16 pyramids built on on the farces of the list BZ

The min of energy ir at $\pi=0$ for , st BZ The dispersion $p^{2} / 2 m^{*}$ and $D_{1}{ }^{3 D}(E) \sim \sqrt{E}$ Note for $E=0$ $\frac{d N}{d E} T \infty$
with increasing E the
sphere gets distorted Whet it approcahes the 2D BZ

Renormalization of density of states due to election phonon coupling.

The polarization of lattice eats to the fact that $m_{i j}^{*}$ is different from $\frac{\partial^{\frac{1}{E} E}}{\partial \partial_{J} \partial_{k j}}$ and often can be written as $\quad m^{*}=m_{\text {band }}(1+l)$ $l=$ electron -phonon coupling

m gets renormalized
Since $m a d(E) p$ ger ut nee ar the Fermi surface within $K_{B} T_{D} ;$ slice $\nu^{S D}(E) \sim\left(m^{*}\right)^{3 / 2} \Rightarrow$

$$
\nu^{3 D(E)}=(1+1)^{3 / 2} v_{\text {band }}(E) \Rightarrow
$$

hear E_{F} wa get a peak

λ	$N a$	$A l$	$P b$
	0.2	0.4	1.6

- Also e-ph coupling retuces EF since $E_{F} \sim \frac{1}{n_{i}^{*}}$ Second $w c$ know for $T=0 k \quad n=\int_{0} E_{F} v^{30}(t) d E$ if $v^{3 D} T \quad E_{F}$ mist go down
- Also l doent affect the size of ES as it only depends on n and the lattice geo netty.
- B / C of λ since $D^{3 D}(E) \uparrow$ within $k_{B} T_{D}$ the Fermi velocity goes down by $(1+\lambda)^{3 / 2}$ Proof: $|V|=\frac{\partial E}{\partial p}=\frac{\partial E}{\partial N} \frac{\partial N}{\partial p} \Rightarrow v=\frac{\partial N}{\partial p} \cdot \frac{1}{\mathcal{V}}(E)=\frac{1}{(1+\lambda)^{3 / 2}}$

Electronic heat capacity and thermal Conductivity

The every of quasi particles is given

$$
E=2 \cdot \frac{2 i^{1}}{(2 \pi \hbar)^{3}} \int_{p} E(p) f_{E_{n}} 4 \pi p^{2} d p
$$

two bo ranches. one for electrons and another for holes
electronic heat capacity $=$

$$
=\frac{1}{V}\left(\frac{\partial E}{\partial T}\right)_{V}=4 \int_{p_{F}}^{\infty} E(p) \frac{\partial f_{n}}{\partial T} \cdot \frac{4 \pi p^{2} d p}{(2 \pi \hbar)^{3}}
$$

using $\sin ^{3 D}(E)=\frac{\sqrt{2} m^{* 3 / 2} \sqrt{E}}{\sqrt{2} t^{3}}$, for isotropic motel

Q: Show that $\frac{1}{V}\left(\frac{\partial E}{\partial T}\right)_{V}=\int \therefore=\frac{\pi^{2}}{3} k_{B}^{2} V^{3 D}\left(E_{F}\right) T$
and using $\quad v^{3 D}\left(E_{F}\right) \Rightarrow C_{e}=\frac{P_{f} m^{*}}{3 \hbar^{3}} k_{3}^{2} T$
Thus we get $C_{e}(T) \sim T$ by measuring
C_{2} we can estimate $\frac{P_{E} m^{*}}{S_{\hbar^{3}}}$ or m^{*}
In fact this $\%$ the most popular method for getting m^{*} in crystals.

- Note E is the sum of all excitations Consider The orerge energy of one excitation $\sim k_{B} T$. and their \# Scales with the with of $E_{F} \sim k_{3} T$ slice $E_{F}=P_{F}^{2} / 2$ m $^{*} \rightarrow d E_{F}=P_{F} d_{F} / m_{m}^{*} \rightarrow d P_{F}=m^{*} d E_{F} / P_{F}$ $\approx m^{*} k_{B} T / p F$

The total every of elementary excitation inside $d E$ is $E \sim N K B T$ and the \# of states

$$
N=\frac{4 \pi P_{F}{ }^{2} d P_{F}}{(2 \pi \hbar)^{3}} \approx \frac{\varphi \pi p_{F}^{2}}{(2 \pi)^{3}} \frac{m^{*} k_{B} T}{\rho_{F}}
$$

and this the energy $E \sim N_{k B T}=\frac{4 \pi P_{F} m^{*} k_{B}^{2} T^{2}}{\left(2 \pi \hbar^{3}\right)^{3}}$

$$
\Rightarrow c_{e}=\frac{\partial E}{\partial T} \sim \frac{8 \pi p_{f} k_{B}^{2} n^{*} T}{(2 \pi \hbar)^{3}}=\frac{\left(2 \pi \hbar^{\prime}\right)^{3}}{p_{f} n^{*} k_{B}^{2} T}
$$

for $k_{B} T \ll E_{F}$
Let compare it to the Debye expression for C_{e}

$$
\begin{aligned}
& C_{\text {Debye }}^{30}=\frac{12 \pi^{4} k_{B} N}{F}\left(\frac{T}{T_{D}}\right) \approx 234 k_{B} N\left(\frac{T}{T_{D}}\right)^{3} \\
& \frac{P_{P} m^{*} k_{B}^{2} T}{\pi^{2} \hbar^{3}} \rightleftarrows 234 k_{B} N \frac{T^{3}}{T_{D}^{3}} \Rightarrow \\
& { }^{3 D} \text { Reboge }=C_{e} \text { at } T \sim 0.145 \sqrt{\frac{k_{B} T_{D}}{E_{F}}} T_{D}
\end{aligned}
$$

meaning that if $T<T^{\prime}$. the rain contribution comes from elections! Lets estimate whin it happens $E F=\frac{P_{F}}{2 m_{0}} \sim \frac{1}{2 n_{i}}\left(\frac{\pi \hbar}{a}\right)^{2}$ and $\theta_{D i b} \sim \frac{2 \pi v_{a}}{a}$ with $v_{a} \sim 10^{5} \mathrm{~cm} / \mathrm{s}$ and $a=10^{-8} \mathrm{~cm} T^{\prime} / T_{D} \sim 3 \cdot 10^{-3}$ and $T \sim 0.5 K$ Which means that C_{e} dominates at $T \sim T$ helium.

Electronic Thermal Conductivity
$T C$ in reels is rate of γe^{-}and γ phonons
so $\gamma=\gamma_{e}+\gamma_{p h}$
As for electric conductivity $C_{e}^{\text {heat }}=\frac{1}{\gamma_{e}}$ and in general
$\omega_{e}=\sum_{i} w_{e}$ Notice under thermal scattering we assume such procimes when after interaction the quasiparticle loses a portion of heat energy ~ $k_{B} T$ but gets extra momentum tue to lect gradient Every act like this is character zed by τ_{i} and

$$
\ell_{i}=v_{g} \tau_{i}
$$

and like for electricity \% $\mathrm{c}_{e}=\sum_{i}\left(\frac{1}{\tau_{e}}\right)$ i Lets assume a gas mode:

$$
\gamma_{e}=\frac{1}{3} c_{e} v^{2} \tau \quad \gamma_{e}=\frac{1}{3} c_{0} v l \quad l=v \tau \Rightarrow
$$

As shown on p.25 $C_{e} \sim T$ and $\delta \sim V_{F} \Rightarrow$

$$
\begin{array}{r}
w_{e}=\frac{1}{\nu_{e}} \sim \frac{1}{T_{v_{F}}^{2} T}=\frac{1}{T v_{F}^{2}}\left(\frac{1}{\tau_{e-p h}}+\right. \\
\left.+\frac{1}{\tau_{e-d e f e c t}}+\frac{1}{\tau_{e-e}}\right)=\frac{1}{T_{v_{F}}^{2}}\left(\nu_{e-p}+v_{e-d+U_{e-e}}\right)
\end{array}
$$

Notice for thermal conductivity charge plays no role so for the $I^{\text {st }}$ approx. holes and electrons are the same. Since the average energy of quasiparcticles $k_{B} T$ the single scattering may lest to exchange root

This means that the probality of. scattering on phonon is largely defined by the $\#$ of photons

For good crystals, the number of ph is always $>$ defects. and the last term is usually $<\frac{1}{\tau_{c-p}}$ and $\frac{1}{\tau_{e-b}}$
So for kish enough $T \geqslant T_{D}$

$$
W_{c} \sim \frac{\nu_{e}^{N}+\nu_{e}-p}{T V_{F}^{2}}
$$

For $T T_{p}$ the \# of phonons $\sim T$ and the $W e \frac{\text { is independent of } T}{T \geqslant T_{D}}$

For T LCTD NN NT ${ }^{3}$

$$
\begin{aligned}
& D_{e-p} \sim e^{-\frac{v_{a} Q}{k_{B} T}} \quad p^{p_{0}} \text { de } \\
& \left.W_{e} \sim \frac{1}{T_{v_{F}}^{2}}\left(\alpha T^{3}+\beta e^{-\frac{v_{a} Q}{k_{B} T}}\right)\right) \\
& \sim \frac{1}{v_{F}^{2}}\left(\alpha T^{2}+\frac{1}{T} \beta e^{-v_{a} Q / k B T}\right)
\end{aligned}
$$

and the number of scatterings is determined ky the \# of phonon with $q>Q$

In the aria where we can neglect V processes compared to N. we get
$w_{e} \sim T^{2}$ and $\gamma_{2} T^{2}$ For very PouT $\nu_{e}-d e f \geqslant V_{e}-p$
and e_{e}, T_{e} and ν_{e} become T-independent. Thus we jet in this area ye $\sim T \rightarrow$ (all terns in side the bracket T = inge-- Ven dent.)

