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The anomalous Hall effect �AHE� occurs in solids with broken time-reversal symmetry, typically in a
ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of
the AHE are reviewed, focusing on recent developments that have provided a more complete
framework for understanding this subtle phenomenon and have, in many instances, replaced
controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial
role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase
concepts has established a link between the AHE and the topological nature of the Hall currents. On
the experimental front, new experimental studies of the AHE in transition metals, transition-metal
oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic
trends. These two developments, in concert with first-principles electronic structure calculations,
strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic
ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the
Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect
crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly
conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which
incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry
curvatures and correctly combines the roles of intrinsic and extrinsic �skew-scattering and side-jump�
scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on
the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and
demonstrate the equivalence of all three linear response theories in the metallic regime. Building on
results from recent experiment and theory, a tentative global view of the AHE is proposed which
summarizes the roles played by intrinsic and extrinsic contributions in the disorder strength versus
temperature plane. Finally outstanding issues and avenues for future investigation are discussed.
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I. INTRODUCTION

A. A brief history of the anomalous Hall effect and new
perspectives

The anomalous Hall effect has deep roots in the his-
tory of electricity and magnetism. In 1879 Edwin H. Hall
�Hall, 1879� made the momentous discovery that when a
current-carrying conductor is placed in a magnetic field,
the Lorentz force “presses” its electrons against one side
of the conductor. Later, he reported that his “pressing
electricity” effect was ten times larger in ferromagnetic
iron �Hall, 1881� than in nonmagnetic conductors. Both
discoveries were remarkable, given how little was
known at the time about how charge moves through
conductors. The first discovery provided a simple el-
egant tool to measure carrier concentration in nonmag-
netic conductors and played a midwife’s role in easing
the birth of semiconductor physics and solid-state elec-
tronics in the late 1940s. For this role, the Hall effect was
frequently called the queen of solid-state transport ex-
periments.

The stronger effect that Hall discovered in ferromag-
netic conductors came to be known as the anomalous
Hall effect �AHE�. The AHE has been an enigmatic
problem that has resisted theoretical and experimental
assaults for almost a century. The main reason seems to
be that, at its core, the AHE problem involves concepts
based on topology and geometry that have been formu-
lated only in recent times. The early investigators
grappled with notions that would not become clear and
well defined until much later, such as the concept of the
Berry phase �Berry, 1984�. What is now viewed as the
Berry-phase curvature, earlier dubbed “anomalous ve-
locity” by Luttinger, arose naturally in the first micro-
scopic theory of the AHE by Karplus and Luttinger
�1954�. However, because understanding of these con-
cepts, not to mention the odd intrinsic dissipationless
Hall current they seemed to imply, would not be
achieved for another 40 years, the AHE problem was
quickly mired in a controversy of unusual endurance.
Moreover, the AHE seems to be a rare example of a
pure charge-transport problem whose elucidation has
not �to date� benefited from the application of comple-
mentary spectroscopic and thermodynamic probes.

Very early on, experimental investigators learned that
the dependence of the Hall resistivity �xy on applied per-
pendicular field Hz is qualitatively different in ferromag-
netic and nonmagnetic conductors. In the latter, �xy in-
creases linearly with Hz, as expected from the Lorentz
force. In ferromagnets, however, �xy initially increases
steeply in weak Hz but saturates at a large value that is
nearly Hz independent �Fig. 1�. Kundt noted that, in Fe,
Co, and Ni, the saturation value is roughly proportional
to the magnetization Mz �Kundt, 1893� and has a weak
anisotropy when the field �ẑ� direction is rotated with
respect to the crystal, corresponding to the weak mag-
netic anisotropy of Fe, Co, and Ni �Webster, 1925�.
Shortly thereafter, experiments of Pugh �1930� and Pugh
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and Lippert �1932� established that an empirical relation
between �xy, Hz, and Mz,

�xy = R0Hz + RsMz, �1.1�

applies to many materials over a broad range of external
magnetic fields. The second term represents the Hall-
effect contribution due to the spontaneous magnetiza-
tion. This AHE is the subject of this paper. Unlike R0,
which was already understood to depend mainly on the
density of carriers, Rs was found to depend subtly on a
variety of material specific parameters and, in particular,
on the longitudinal resistivity �xx=�.

In 1954, Karplus and Luttinger �KL� �Karplus and
Luttinger, 1954� proposed a theory for the AHE that, in
hindsight, provided a crucial step in unraveling the AHE
problem. KL showed that when an external electric field
is applied to a solid, electrons acquire an additional con-
tribution to their group velocity. KL’s anomalous velocity
was perpendicular to the electric field and therefore
could contribute to the Hall effects. In the case of ferro-
magnetic conductors, the sum of the anomalous velocity
over all occupied band states can be nonzero, implying a
contribution to the Hall conductivity �xy. Because this
contribution depends only on the band structure and is
largely independent of scattering, it has recently been
referred to as the intrinsic contribution to the AHE.
When the conductivity tensor is inverted, the intrinsic
AHE yields a contribution to �xy��xy /�xx

2 and therefore
it is proportional to �2. The anomalous velocity is depen-
dent only on the perfect crystal Hamiltonian and can be
related to changes in the phase of Bloch state wave
packets when an electric field causes them to evolve in
crystal momentum space �Chang and Niu, 1996;
Sundaram and Niu, 1999; Bohm et al., 2003; Xiao and
Niu, 2009�. As mentioned, the KL theory anticipated by
several decades the modern interest in the Berry phase
and the Berry curvature review here effects, particularly
in momentum space.

Early experiments to measure the relationship be-
tween �xy and � generally assumed to be of the power-
law form, i.e., �xy���, mostly involved plotting �xy �or
Rs� vs �, measured in a single sample over a broad inter-
val of T �typically 77–300 K�. As we explain below, com-

peting theories in metals suggested that either �=1 or 2.
A compiled set of results was published by Kooi �1954�;
see Fig. 2. The subsequent consensus was that such plots
do not settle the debate. At finite T, the carriers are
strongly scattered by phonons and spin waves. These in-
elastic processes, difficult to treat microscopically even
today, lie far outside the purview of the early theories.
Smit suggested that, in the skew-scattering theory �see
below�, phonon scattering increases the value � from 1
to values approaching 2. This was also found by other
investigators. A lengthy calculation by Lyo �1973�
showed that skew scattering at T��D �the Debye tem-
perature� leads to �xy���2+a��, with a as a constant. In
an early theory by Kondo considering skew scattering
from spin excitations �Kondo, 1962�, it may be seen that
�xy also varies as �2 at finite T.

The proper test of the scaling relation in comparison
with present theories involves measuring �xy and � in a
set of samples at 4 K or lower �where impurity scattering
dominates�. By adjusting the impurity concentration ni,
one may hope to change both quantities sufficiently to
determine accurately the exponent � and use this iden-
tification to tease out the underlying physics.

The main criticism of the KL theory centered on the
complete absence of scattering from disorder in the de-
rived Hall response contribution. The semiclassical
AHE theories by Smit and Berger focused instead on

FIG. 1. The Hall effect in Ni �data from Smith, 1910�. From
Pugh and Rostoker, 1953.

FIG. 2. Extraordinary Hall constant as a function of resistivity.
The shown fit has the relation Rs��1.9. From Kooi, 1954.
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the influence of disorder scattering in imperfect crystals.
Smit argued that the main source of the AHE currents
was asymmetric �skew� scattering from impurities caused
by the spin-orbit interaction �SOI� �Smit, 1955, 1958�.
This AHE picture predicted that Rs��xx ��=1�. Berger,
on the other hand, argued that the main source of the
AHE current was the side jump experienced by quasi-
particles upon scattering from spin-orbit coupled impu-
rities. The side-jump mechanism could �confusingly� be
viewed as a consequence of a KL anomalous velocity
mechanism acting while a quasiparticle was under the
influence of the electric field due to an impurity. The
side-jump AHE current was viewed as the product of
the side jump per scattering event and the scattering rate
�Berger, 1970�. One puzzling aspect of this semiclassical
theory was that all dependence on the impurity density
and strength seemingly dropped out. As a result, it pre-
dicted Rs��xx

2 with an exponent � identical to that of
the KL mechanism. The side-jump mechanism therefore
yielded a contribution to the Hall conductivity which
was seemingly independent of the density or strength of
scatterers. In the decade 1970–1980, a lively AHE de-
bate was waged largely between the proponents of these
two extrinsic theories. The three main mechanisms con-
sidered in this early history are shown schematically in
Fig. 3.

Some of the confusion in experimental studies
stemmed from a hazy distinction between the KL
mechanism and the side-jump mechanism, a poor under-
standing of how the effects competed at a microscopic
level, and a lack of systematic experimental studies in a
diverse set of materials.

One aspect of the confusion may be illustrated by con-
trasting the case of a high-purity monodomain ferromag-
net, which produces a spontaneous AHE current pro-
portional to Mz, with the case of a material containing
magnetic impurities �e.g., Mn� embedded in a nonmag-
netic host such as Cu �the dilute Kondo system�. In a
field H, the latter also displays an AHE current propor-

tional to the induced M=�H, with � as the susceptibility
�Fert and Jaoul, 1972�. However, in zero H, time-
reversal invariance �TRI� is spontaneously broken in the
former but not in the latter. Throughout the period
1960–1989, the two Hall effects were often regarded as a
common phenomenon that should be understood micro-
scopically on the same terms. It now seems clear that
this view impeded progress.

In the mid-1980s, interest in the AHE problem had
waned significantly. The large body of the Hall data gar-
nered from experiments on dilute Kondo systems in the
previous two decades showed that �xy�� and therefore
appeared to favor the skew-scattering mechanism. The
points of controversy remained unsettled, however, and
the topic was still mired in confusion.

Since the 1980s, the quantum Hall effect in two-
dimensional �2D� electron systems in semiconductor
heterostructures has become a major field of research in
physics �Prange and Girvin, 1987�. The accurate quanti-
zation of the Hall conductance is the hallmark of this
phenomenon. Both the integer �Thouless et al., 1982�
and fractional quantum Hall effects can be explained in
terms of the topological properties of the electronic
wave functions. For the case of electrons in a two-
dimensional crystal, it has been found that the Hall con-
ductance is connected to the topological integer �Chern
number� defined for the Bloch wave function over the
first-Brillouin zone �Thouless et al., 1982�. This way of
thinking about the quantum Hall effect began to have a
deep impact on the AHE problem starting around 1998.
Theoretical interest in the Berry phase and in its relation
to transport phenomena, coupled with many develop-
ments in the growth of novel complex magnetic systems
with strong spin-orbit coupling �notably the manganites,
pyrochlores, and spinels�, led to a strong resurgence of
interest in the AHE and eventually to deeper under-
standing.

Since 2003 many systematic studies, both theoretical
and experimental, have led to a better understanding of
the AHE in the metallic regime and to the recognition
of new unexplored regimes that present challenges to
future researchers. As it is often the case in condensed
matter physics, attempts to understand this complex and
fascinating phenomenon have motivated researchers to
couple fundamental and sophisticated mathematical
concepts to real-world material issues. The aim of this
review is to survey recent experimental progress in the
field and to present the theories in a systematic fashion.
Researchers are now able to understand the links be-
tween different views on the AHE previously thought to
be in conflict. Despite the progress in recent years, un-
derstanding is still incomplete. We highlight some in-
triguing questions that remain and speculate on the most
promising avenues for future exploration. In this paper,
we focus, in particular, on reports that have contributed
significantly to the modern view of the AHE. For previ-
ous reviews, see Pugh and Rostoker �1953� and Hurd
�1972�. For more recent short overviews focused on the
topological aspects of the AHE, see Sinova, Jungwirth,
and Cerne �2004� and Nagaosa �2006�. A review of the

a) Intrinsic deflection
Interband coherence induced by an
t l l t i fi ld i i t Eexternal electric field gives rise to a

velocity contribution perpendicular to
the field direction. These currents do
not sum to zero in ferromagnets.

Electrons have an anomalous velocity perpendicular to
the electric field related to their Berry’s phase curvaturenbEe

k
E

dt
rd

��
�
�

�
�

�
�

�

b) Side jump

The electron velocity is deflected in opposite directions by the opposite
electric fields experienced upon approaching and leaving an impurity.p p pp g g p y
The time-integrated velocity deflection is the side jump.

c) Skew scattering

Asymmetric scattering due toAsymmetric scattering due to
the effective spin-orbit coupling
of the electron or the impurity.

FIG. 3. �Color online� Illustration of the three main mecha-
nisms that can give rise to an AHE. In any real material all of
these mechanisms act to influence electron motion.
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modern semiclassical treatment of AHE was recently
written by Sinitsyn �2008�. The present paper has been
informed by ideas explained in the earlier works. Read-
ers who are not familiar with the Berry-phase concepts
may find it useful to consult the elementary review by
Ong and Lee �2006� and the popular commentary by
MacDonald and Niu �2004�.

Some of the recent advances in the understanding of
the AHE that will be covered in this review are the
following:

�1� When �xy
AH is independent of �xx, the AHE can often

be understood in terms of the geometric concepts of
the Berry phase and Berry curvature in momentum
space. This AHE mechanism is responsible for the
intrinsic AHE. In this regime, the anomalous Hall
current can be thought of as the unquantized ver-
sion of the quantum Hall effect. In 2D systems the
intrinsic AHE is quantized in units of e2 /h at tem-
perature T=0 when the Fermi level lies between the
Bloch state bands.

�2� Three broad regimes have been identified when sur-
veying a large body of experimental data for diverse
materials: �i� a high conductivity regime ��xx
	106 �
 cm�−1� in which a linear contribution to
�xy

AH��xx due to skew scattering dominates �xy
AH �in

this regime the normal Hall conductivity contribu-
tion can be significant and even dominate �xy�; �ii�
an intrinsic or scattering-independent regime in
which �xy

AH is roughly independent of �xx
�104 �
 cm�−1��xx�106 �
 cm�−1�; and �iii� a bad-
metal regime ��xx�104 �
 cm�−1� in which �xy

AH de-
creases with decreasing �xx at a rate faster than lin-
ear.

�3� The relevance of the intrinsic mechanisms can be
studied in depth in magnetic materials with strong
spin-orbit coupling, such as oxides and diluted mag-
netic semiconductors �DMSs�. In these systems a
systematic nontrivial comparison between the ob-
served properties of systems with well controlled
material properties and theoretical model calcula-
tions can be achieved.

�4� The role of band �anti-�crossings near the Fermi en-
ergy has been identified using first-principles Berry
curvature calculations as a mechanism which can
lead to a large intrinsic AHE.

�5� Semiclassical treatment by a generalized Boltzmann
equation taking into account the Berry curvature
and coherent interband mixing effects due to band
structure and disorder has been formulated. This
theory provides a clearer physical picture of the
AHE than early theories by identifying correctly all
the semiclassically defined mechanisms. This gener-
alized semiclassical picture has been verified by
comparison with controlled microscopic linear re-
sponse treatments for identical models.

�6� The relevance of noncoplanar spin structures with
associated spin chirality and real-space Berry curva-

ture to the AHE has been established both theoreti-
cally and experimentally in several materials.

�7� Theoretical frameworks based on the Kubo formal-
ism and the Keldysh formalism have been devel-
oped which are capable of treating transport phe-
nomena in systems with multiple bands.

The review is aimed at experimentalists and theorists
interested in the AHE. We have structured the review as
follows. In the remainder of this section, we provide the
minimal theoretical background necessary to understand
the different AHE mechanisms. In particular we explain
the scattering-independent Berry-phase mechanism
which is more important for the AHE than for any other
commonly measured transport coefficient. In Sec. II we
review recent experimental results on a broad range of
materials and compare them with relevant calculations
where available. In Sec. III we discuss some qualitative
aspects of the AHE theory relating to its topological
nature and in Sec. IV we discuss AHE theory from a
historical perspective, explaining links between different
ideas which are not always recognized and discussing the
physics behind some of the past confusion. Section V
discusses the present understanding of the metallic
theory based on a careful comparison between the
Boltzmann, Kubo, and Keldysh linear response theories
which are now finally consistent. In Sec. VI we present a
summary and outlook.

B. Parsing the AHE

The anomalous Hall effect is at its core a quantum
phenomenon which originates from quantum coherent
band mixing effects by both the external electric field
and the disorder potential. Like other coherent interfer-
ence transport phenomena �e.g., weak localization�, it
cannot be satisfactorily explained using traditional semi-
classical Boltzmann transport theory. Therefore, when
parsing the different contributions to the AHE, they can
be defined semiclassically only in a carefully elaborated
theory.

In this section we identify three distinct contributions
which sum up to yield the full AHE: intrinsic, skew-
scattering, and side-jump contributions. We choose this
nomenclature to reflect the modern literature without
breaking completely from the established AHE lexicon
�see Sec. IV�. However, unlike previous classifications,
we base this parsing of the AHE on experimental and
microscopic transport theoretical considerations rather
than on the identification of one particular effect which
could contribute to the AHE. The link to semiclassically
defined processes is established after developing a fully
generalized Boltzmann transport theory which takes in-
terband coherence effects into account and is fully
equivalent to microscopic theories �Sec. V.A�. In fact,
much of the theoretical effort of the past few years has
been expended in understanding this link between semi-
classical and microscopic theories which has escaped co-
hesion for a long time.
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A natural classification of contributions to the AHE,
which is guided by experiment and by microscopic
theory of metals, is to separate them according to their
dependence on the Bloch state transport lifetime �. In
the theory, disorder is treated perturbatively and higher
order terms vary with a higher power of the quasiparti-
cle scattering rate �−1. As we will discuss, it is relatively
easy to identify contributions to the anomalous Hall
conductivity, �xy

AH, which vary as �1 and as �0. In experi-
ment a similar separation can sometimes be achieved by
plotting �xy vs the longitudinal conductivity �xx� when
� is varied by altering disorder or varying temperature.
More commonly �and equivalently� the Hall resistivity is
separated into contributions proportional to �xx and �xx

2 .
This partitioning seemingly gives only two contribu-

tions to �xy
AH, one �� and the other ��0. We define the

first contribution as the skew-scattering contribution,
�xy

AH-skew. Note that in this parsing of AHE contributions
it is the dependence on � �or �xx� which defines it and
not a particular mechanism linked to a microscopic or
semiclassical theory. We further separate the second
contribution proportional to �0 �or independent of �xx�
into two parts: intrinsic and side jump. Although these
two contributions cannot be separated experimentally
by dc measurements, they can be separated experimen-
tally �as well as theoretically� by defining the intrinsic
contribution �xy

AH-int as the extrapolation of the ac-
interband Hall conductivity to zero frequency in the
limit of �→�, with 1/�→0 faster than �→0. This then
leaves a unique definition for the third and last contri-
bution, termed side jump, as �xy

AH-sj��xy
AH−�xy

AH-skew

−�xy
AH-int.

We examine these three contributions below �still at
an introductory level�. It is important to note that the
above definitions have not relied on identifications of
semiclassical processes such as side-jump scattering
�Berger, 1970� or skew scattering from asymmetric con-
tributions to the semiclassical scattering rates �Smit,
1955� identified in earlier theories. Not surprisingly, the
contributions defined above contain these semiclassical
processes. However, it is now understood �see Sec. V�
that other contributions are present in the fully general-
ized semiclassical theory which were not precisely iden-
tified previously and which are necessary to be fully con-
sistent with microscopic theories.

The ideas explained in this section are substantiated
in Sec. II by analyses of tendencies in the AHE data of
several different material classes and in Secs. III–V by
an extensive technical discussion of AHE theory. We as-
sume throughout that the ferromagnetic materials of in-
terest are accurately described by a Stoner-like mean-
field band theory. In applications to real materials we
imagine that the band theory is based on spin-density-
functional theory �Jones and Gunnarsson, 1989� with a
local-spin density or similar approximation for the
exchange-correlation energy functional.

1. Intrinsic contribution to �xy
AH

Among the three contributions, the easiest to evaluate
accurately is the intrinsic contribution. We have defined
the intrinsic contribution microscopically as the dc limit
of the interband conductivity, a quantity which is not
zero in ferromagnets when SOI is included. There is,
however, a direct link to semiclassical theory in which
the induced interband coherence is captured by a
momentum-space Berry-phase related contribution to
the anomalous velocity. We show this equivalence below.

This contribution to the AHE was first derived by KL
�Karplus and Luttinger, 1954� but its topological nature
was not fully appreciated until recently �Jungwirth, Niu,
and MacDonald, 2002; Onoda and Nagaosa, 2002�. The
work of Jungwirth, Niu, and MacDonald �2002� was mo-
tivated by the experimental importance of the AHE in
ferromagnetic semiconductors and also by the thorough
earlier analysis of the relationship between momentum-
space Berry phases and anomalous velocities in semi-
classical transport theory by Chang and Niu �1996� and
Sundaram and Niu �1999�. The frequency-dependent in-
terband Hall conductivity, which reduces to the intrinsic
anomalous Hall conductivity in the dc limit, had been
evaluated earlier for a number of materials by Mainkar
et al. �1996� and Guo and Ebert �1995� but the topologi-
cal connection was not recognized.

The intrinsic contribution to the conductivity is de-
pendent only on the band structure of the perfect crys-
tal, hence its name. It can be calculated directly from the
simple Kubo formula for the Hall conductivity for an
ideal lattice, given the eigenstates �n ,k	 and eigenvalues
�n�k� of a Bloch Hamiltonian H,

�ij
AH-int = e2� 


n�n�
� dk

�2��d �f„�n�k�… − f„�n��k�…�

� Im
�n,k�vi�k��n�,k	�n�,k�vj�k��n,k	

��n�k� − �n��k��2 . �1.2�

In Eq. �1.2� H is the k-dependent Hamiltonian for the
periodic part of the Bloch functions and the velocity op-
erator is defined by

v�k� =
1

i�
�r,H�k�� =

1

�
�kH�k� . �1.3�

Note the restriction n�n� in Eq. �1.2�.
What makes this contribution quite unique is that, like

the quantum Hall effect in a crystal, it is directly linked
to the topological properties of the Bloch states �see Sec.
III.B�. Specifically it is proportional to the integration
over the Fermi sea of the Berry curvature of each occu-
pied band or equivalently �Haldane, 2004; Wang et al.,
2007� to the integral of the Berry phases over cuts of the
Fermi-surface �FS� segments. This result can be derived
by noting that

�n,k��k�n�,k	 =
�n,k��kH�k��n�,k	
�n��k� − �n�k�

. �1.4�

Using this expression, Eq. �1.2� reduces to
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�ij
AH-int = − �ij�

e2

�


n
� dk

�2��df„�n�k�…bn
��k� , �1.5�

where �ij� is the antisymmetric tensor, an�k� is the Berry-
phase connection, an�k�= i�n ,k��k�n ,k	, and bn�k� is the
Berry-phase curvature,

bn�k� = �k � an�k� , �1.6�

corresponding to the states �n ,k	�.
This same linear response contribution to the AHE

conductivity can be obtained from the semiclassical
theory of wave-packet dynamics �Chang and Niu, 1996;
Sundaram and Niu, 1999; Marder, 2000�. It can be shown
that the wave-packet group velocity has an additional
contribution in the presence of an electric field: ṙc
=�En�k� /��k− �E /���bn�k� �see Sec. V.A�. The intrinsic
Hall conductivity formula, Eq. �1.5�, is obtained simply
by summing the second �anomalous�, term over all occu-
pied states.

One of the motivations for identifying the intrinsic
contribution �xy

AH-int is that it can be evaluated accurately
even for relatively complex materials using first-
principles electronic structure theoretical techniques. In
many materials which have strongly spin-orbit coupled
bands, the intrinsic contribution seems to dominate the
AHE.

2. Skew-scattering contribution to �xy
AH

The skew-scattering contribution to the AHE can be
sharply defined; it is simply the contribution which is
proportional to the Bloch state transport lifetime. It will
therefore tend to dominate in nearly perfect crystals.

It is the only contribution to the AHE which appears
within the confines of traditional Boltzmann transport
theory in which interband coherence effects are com-
pletely neglected. Skew scattering is due to chiral fea-
tures which appear in the disorder scattering of spin-
orbit coupled ferromagnets. This mechanism was first
identified by Smit �1955, 1958�.

Treatments of semiclassical Boltzmann transport
theory found in textbooks often appeal to the principle
of detailed balance which states that the transition prob-
ability Wn→m from n to m is identical to the transition
probability in the opposite direction �Wm→n�. Although
these two transition probabilities are identical in a Fer-
mi’s golden-rule approximation, since Wn→n�
= �2� /����n�V�n�	�2��En−En��, where V is the perturba-
tion inducing the transition, detailed balance in this mi-
croscopic sense is not generic. In the presence of spin-
orbit coupling, either in the Hamiltonian of the perfect
crystal or in the disorder Hamiltonian, a transition which
is right handed with respect to the magnetization direc-
tion has a different transition probability than the corre-
sponding left-handed transition. When the transition
rates are evaluated perturbatively, asymmetric chiral
contributions appear first at third order �see Sec. V.A�.
In simple models the asymmetric chiral contribution to
the transition probability is often assumed to have the
form �see Sec. IV.B.1�,

Wkk�
A = − �A

−1k � k� · Ms. �1.7�

When this asymmetry is inserted into the Boltzmann
equation it leads to a current proportional to the longi-
tudinal current driven by E and perpendicular to both E
and Ms. When this mechanism dominates, both the Hall
conductivity �H and the conductivity � are approxi-
mately proportional to the transport lifetime � and the
Hall resistivity �H

skew=�H
skew�2 is therefore proportional to

the longitudinal resistivity �.
There are several specific mechanisms for skew scat-

tering �see Secs. IV.B and V.A�. Evaluation of the skew-
scattering contribution to the Hall conductivity or resis-
tivity requires simply that the conventional linearized
Boltzmann equation be solved using a collision term
with accurate transition probabilities since these will ge-
nerically include a chiral contribution. In practice our
ability to accurately estimate the skew-scattering contri-
bution to the AHE of a real material is limited only by
typically imperfect characterization of its disorder.

We emphasize that skew-scattering contributions to
�H are present not only because of spin-orbit coupling in
the disorder Hamiltonian but also because of spin-orbit
coupling in the perfect crystal Hamiltonian combined
with purely scalar disorder. Either source of skew scat-
tering could dominate �xy

AH-skew depending on the host
material and also on the type of impurities.

We end this section with a small note directed to the
reader who is more versed in the latest development of
the full semiclassical theory of the AHE and in its com-
parison to the microscopic theory �see Secs. V.A and
V.B.2�. We have been careful above not to define the
skew-scattering contribution to the AHE as the sum of
all the contributions arising from the asymmetric scatter-
ing rate present in the collision term of the Boltzmann
transport equation. We know from microscopic theory
that this asymmetry also makes an AHE contribution of
order �0. There exists a contribution from this asymme-
try which is actually present in the microscopic theoret-
ical treatment associated with the so-called ladder dia-
gram corrections to the conductivity and therefore of
order �0. In our experimentally practical parsing of AHE
contributions we do not associate this contribution with
skew scattering but place it under the umbrella of side-
jump scattering even though it does not physically origi-
nate from any side-step type of scattering.

3. Side-jump contribution to �xy
AH

Given the sharp definition we have provided for the
intrinsic and skew-scattering contributions to the AHE
conductivity, the equation

�xy
AH = �xy

AH-int + �xy
AH-skew + �xy

AH-sj �1.8�

defines the side-jump contribution as the difference be-
tween the full Hall conductivity and the two-simpler
contributions. In using the term side jump for the re-
maining contribution, we are appealing to the histori-
cally established taxonomy outlined in Sec. I.B.2. Estab-
lishing this connection mathematically has been the
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most controversial aspect of AHE theory and the one
which has taken the longest to clarify from a theoretical
point of view. Although this classification of Hall con-
ductivity contributions is often useful �see below�, it is
not generically true that the only correction to the in-
trinsic and skew contributions can be physically identi-
fied with the side-jump process defined as in the earlier
studies of the AHE �Berger, 1964�.

The basic semiclassical argument for a side-jump
contribution can be stated straightforwardly: when
considering the scattering of a Gaussian wave packet
from a spherical impurity with SOI �HSO
= �1/2m2c2��r−1�V /�r�SzLz�, a wave packet with incident
wave vector k will suffer a displacement transverse to k
equal to 1

6k�2 /m2c2. This type of contribution was first
noticed, but discarded, by Smit �1958� and reintroduced
by Berger �1964� who argued that it was the key contri-
bution to the AHE. This kind of mechanism clearly lies
outside the bounds of traditional Boltzmann transport
theory in which only the probabilities of transitions be-
tween Bloch states appear and not microscopic details of
the scattering processes. This contribution to the con-
ductivity ends up being independent of � and therefore
contributes to the AHE at the same order as the intrin-
sic contribution in an expansion in powers of scattering
rate. The separation between intrinsic and side-jump
contributions, which cannot be distinguished by their de-
pendence on �, has been perhaps the most argued aspect
of AHE theory �see Sec. IV.B.4�.

As explained in a recent review by Sinitsyn �2008�,
side-jump and intrinsic contributions have quite differ-
ent dependences on more specific system parameters,
particularly in systems with complex band structures.
Some of the initial controversy which surrounded side-
jump theories was associated with physical meaning as-
cribed to quantities which were plainly gauge depen-
dent, like the Berry connection which in early theories is
typically identified as the definition of the side step upon
scattering. Studies of simple models, for example, mod-
els of semiconductor conduction bands, also gave results
in which the side-jump contribution seemed to be the
same size but opposite in sign compared to the intrinsic
contribution �Nozieres and Lewiner, 1973�. We now un-
derstand �Sinitsyn et al., 2007� that these cancellations
are unlikely except in models with a very simple band
structure, e.g., one with a constant Berry curvature. It is
only through comparison between fully microscopic lin-
ear response theoretical calculations, based on equiva-
lently valid microscopic formalisms such as the Keldysh
�nonequilibrium Green’s function� or Kubo formalisms,
and the systematically developed semiclassical theory
that the specific contribution due to the side-jump
mechanism can be separately identified with confidence
�see Sec. V.A�.

Having said this, all the calculations comparing the
intrinsic and side-jump contributions to the AHE from a
microscopic point of view have been performed for very
simple models not immediately linked to real materials.
A practical approach, which is followed at present for
materials in which �AH seems to be independent of �xx,

is to first calculate the intrinsic contribution to the AHE.
If this explains the observation �and it appears that it
usually does�, then it is deemed that the intrinsic mecha-
nism dominates. If not, we can take some comfort from
understanding on the basis of simple model results that
there can be other contributions to �AH which are also
independent of �xx and can for the most part be identi-
fied with the side-jump mechanism. Unfortunately it
seems extremely challenging, if not impossible, to de-
velop a predictive theory for these contributions partly
because they require many higher order terms in the
perturbation theory that must be summed but more fun-
damentally because they depend sensitively on details of
the disorder in a particular material which are normally
unknown.

II. EXPERIMENTAL AND THEORETICAL STUDIES ON
SPECIFIC MATERIALS

In this section, we review the studies on the AHE in
each specific material, focusing primarily on the experi-
mental aspects. The interest here is how the intrinsic and
extrinsic contributions described in Sec. I appear in real
materials. In some cases, the dominance of the
scattering-independent contribution, dominated by the
intrinsic Berry phase of the material, is reasonably clear
by comparison between the experiments and theory, and
in some cases the extrinsic skew scattering is identified
by �xy� observed in the highly metallic region. How-
ever, the situation is not clear yet for many of the mate-
rials, and therefore we have tried to provide an unbiased
description of the information available at the moment
in those cases. The theoretical aspects in this section are
focused on showing the comparison between the theo-
retical results and the experimental data rather than go-
ing into full detail on the particular theoretical tech-
niques which can be obtained directly from the
references.

The AHE has been studied most intensively in transi-
tion metals, and most of the early theories were aimed at
understanding these materials. Although in early experi-
ments there were data supporting both the intrinsic and
extrinsic contributions, i.e., �xy�

2 and �xy�, respec-
tively, recent systematic studies on these systems have
revealed that there occurs a crossover from the extrinsic
skew-scattering region to the intrinsic region as the re-
sistivity � increases. Comparison with first-principles cal-
culations indicates that an appreciable part of the
scattering-independent AHE contribution comes from
the Berry-phase curvature in the momentum space,
termed as intrinsic contribution in Sec. I.B.3

The transition-metal oxides are the representative
strongly correlated systems, and some of them are me-
tallic ferromagnets. For SrRuO3, where the t2g electrons
determine the conduction properties, detailed compari-
son between the experiments and theory seems to indi-
cate that the band crossings near the Fermi energy and
the associated enhanced Berry-phase curvature seem to
be the origin of the nonmonotonic temperature depen-
dence of the AHE in this material. Manganites are the
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typical double-exchange system, where the localized
spins of t2g electrons are coupled to the conducting eg
electrons. In these systems, the focus has been the non-
coplanar spin configuration with the scalar spin chirality
Si ·Sj�Sk. This spin chirality is produced by the thermal
fluctuation of the spins and acts as a fictitious magnetic
field in the real space for the conduction electrons. Com-
bined with the relativistic spin-orbit interaction, the
thermal average of the spin chirality is biased �anti�par-
allel to the spontaneous magnetization, leading to the
AHE. In the spin-glass system, the frustration among
the exchange interactions leads to the noncollinear and
noncoplanar spin configurations providing also the
promising arena for the spin-chirality mechanism of
AHE. Actually, the AHE in metallic spin-glass systems
AuFe, AuMn, and CuMn has been discussed from this
viewpoint. The spiral magnet due to the Dzyaloshinsky-
Moriya interaction, e.g., MnSi, is another system where
the spin chirality is expected to play some role in the
AHE. This is because the noncollinear spin configura-
tion is already prepared by the Dzyaloshinsky-Moriya
interaction and the noncoplanar configuration is rather
easy to be realized. However, the detailed theoretical
analysis in this system is still missing.

The spin chirality also exists in the ground state peri-
odic spin configuration for the pyrochlore ferromagnets.
In this case, the strong single spin anisotropy of rare-
earth ions influences the conduction electrons leading to
the periodic distribution of the spin chirality. Then, the
Bloch wave function is well defined in this case, and the
Berry curvature in the momentum space appears to lead
to the intrinsic AHE.

Another interesting materials which can serve as a
benchmark for the understanding of AHE in metallic
ferromagnets are DMSs. These materials have relatively
uniform magnetization and have a simple but nontrivial
band structure of the carriers. Detailed theoretical
analysis based on the k ·p method is available, which can
be directly compared with the experiment. In these sys-
tems the intrinsic Berry-phase contribution seems to be
the dominant one in the relatively high conductive
DMS.

Note that the spin chirality and Berry curvature pic-
tures are real- and momentum-space counterparts. For
the periodic spin configuration, one can calculate the lat-
ter from the former for each example. However, the re-
lationship between the two is not yet explored well es-
pecially in the temporally and/or spatially nonperiodic
cases.

A. Transition metals

1. Early experiments

Four decades after the discovery of the AHE, an em-
pirical relation between the magnetization and the Hall
resistivity was proposed independently by Smith and
Pugh �Smith and Sears, 1929; Pugh, 1930; Pugh and Lip-
pert, 1932�; see Sec. I.A. Pugh investigated the AHE in
Fe, Ni, and Co and the alloys Co-Ni and Ni-Cu in mag-

netic fields up to 17 kG over large intervals in T
�10–800 K in the case of Ni� and found that the Hall
resistivity �H is comprised of two terms, viz.,

�H = R0H + R1M�T,H� , �2.1�

where M�T ,H� is the magnetization averaged over the
sample. Pugh defined R0 and R1 as the ordinary and
extraordinary Hall coefficients, respectively. The latter
R1=Rs is now called the anomalous Hall coefficient �as
in Eq. �1.1��.

On dividing Eq. �2.1� by �2, we see that it just ex-
presses the additivity of the Hall currents: the total Hall
conductivity �xy

tot equals �xy
NH+�xy

AH, where �xy
NH is the or-

dinary Hall conductivity and �xy
AH is the AHE conductiv-

ity. A second implication of Eq. �2.1� emerges when we
consider the role of domains. The anomalous Hall coef-
ficient in Eq. �2.1� is proportional to the AHE in a single
domain. As H→0, proliferation of domains rapidly re-
duces M�T ,H� to zero �we ignore pinning�. Cancella-
tions of �xy

AH between domains result in a zero net Hall
current. Hence the observed AHE term mimics the field
profile of M�T ,H�, as implied by Pugh’s term R1M. The
role of H is simply to align the AHE currents by rotating
the domains into alignment. The Lorentz-force term
�xy

NH is a “background” current with no bearing on the
AHE problem.

The most interesting implication of Eq. �2.1� is that, in
the absence of H, a single domain engenders a sponta-
neous Hall current transverse to both M and E. Under-
standing the origin of this spontaneous off-diagonal cur-
rent has been a fundamental problem of charge
transport in solids for the past 60 years. The AHE is also
called the spontaneous Hall effect and the extraordinary
Hall effect in the older literature.

2. Recent experiments

The resurgence of interest in the AHE motivated by
the Berry-phase approach �Sec. I.B� has led to many
new Hall experiments on 3d transition metals and their
oxides. Both the recent and the older literature on Fe
and Fe3O4 are reviewed in this section. An important
finding of these studies is the emergence of three distinct
regimes roughly delimited by the conductivity �xx and
characterized by the dependence of �xy

AH on �xx. The
three regimes are �i� a high conductivity regime for �xx

�106 �
 cm�−1 in which �xy
AH-skew��xx

1 dominates �xy
AH

and conductivity contribution dominates �xy; �ii� a good-
metal regime for �xx

AH�104–106 �
 cm�−1 in which �xy

��xx
0 ; and �iii� a bad-metal–hopping regime for �xx

�104 �
 cm�−1 in which �xy
AH��xx

1.6–1.8.
We discuss each of these regimes below.

a. High conductivity regime

The Hall conductivity in the high-purity regime, �xx
	0.5�106 �
 cm�−1, is dominated by the skew-
scattering contribution �xy

skew. The high-purity regime is
one of the least studied experimentally. This regime is
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challenging to investigate experimentally because the
field H required for saturating M also yields a very large
ordinary Hall effect �OHE� and R0 tends to be of the
order of Rs �Schad et al., 1998�. In the limit �c��1, the
OHE conductivity �xy

NH may be nonlinear in H ��c is the
cyclotron frequency�. Although �xy

skew increases as �, the
OHE term �xy

NH increases as �2 and therefore the latter
ultimately dominates, and the AHE current may be ir-
resolvable. Even though the anomalous Hall current can
not always be cleanly separated from the normal
Lorentz-force Hall effect in the high conductivity re-
gime, the total Hall current invariably increases with �xx
in a way which provides compelling evidence for a skew-
scattering contribution.

In spite of these challenges several studies have man-
aged to convincingly separate the competing contribu-
tions and have identified a dominant linear relation be-
tween �xy

AH and �xx for �xx�106 �
 cm�−1 �Majumdar
and Berger, 1973; Shiomi et al., 2009�. In an early study
Majumdar and Berger �1973� grew highly pure Fe doped
with Co. The resulting �xy

AH, obtained from Kohler plot
extrapolation to zero field, shows a clear dependence of
�xy

AH��xx �Fig. 4�a��. In a more recent study, a similar
finding �linear dependence of �xy

AH��xx� was observed
by Shiomi et al. �2009� in Fe doped with Co, Mn, Cr, and
Si. In these studies the high-temperature contribution to
�xy

AH �presumed to be intrinsic plus side jump� was sub-
tracted from �xy and a linear dependence of the result-
ing �xy

AH is observed �Figs. 4�a� and 4�b��. In this recent
study the conductivity is intentionally reduced by impu-
rity doping to find the linear region and reliably exclude
the Lorentz contribution. The results of these authors
showed, in particular, that the slope of �xx vs �xy

AH de-
pends on the species of the impurities as it is expected in
the regime dominated by skew scattering. It is reassuring
to note that the skewness parameters �Sskew=�AH /�xx�
implied by the older and more recent experiments are
consistent in spite of differences in the conductivity
ranges studied.

Sskew is independent of �xx �Majumdar and Berger,
1973; Shiomi et al., 2009� as it should be when the skew-
scattering mechanism dominates. Further experiments
in this regime are desirable to fully investigate the dif-
ferent dependences on doping, temperature, and impu-
rity type. Also, new approaches to reliably disentangle
the AHE and OHE currents will be needed to facilitate
such studies.

b. Good-metal regime

Experiments reexamining the AHE in Fe, Ni, and Co
have been performed by Miyasato et al. �2007�. These
experiments indicate a regime of �xy vs �xx in which �xy
is insensitive to �xx in the range �xx�104–106 �
 cm�−1

�see Fig. 5�. This suggests that the scattering-
independent mechanisms �intrinsic and side jump� domi-
nate in this regime. However, in comparing this phenom-
enology to the discussion of AHE mechanisms in Sec.
I.B, one must keep in mind that the temperature has

been varied in the Hall data on Fe, Ni, and Co in order
to change the resistivity even though it is restricted to
the range well below Tc �Fig. 5, upper panel�. In the
mechanisms discussed in Sec. I.B only elastic scattering
was taken into account. Earlier tests of the �2 depen-
dence of �xy carried by varying T were treated as suspect
in the early AHE period �see Fig. 2� because the role of
inelastic scattering was not fully understood. The effect
of inelastic scattering from phonons and spin waves re-
mains open in AHE theory and is not addressed in this
paper.

c. Bad-metal–hopping regime

Several groups have measured �xy in Fe and Fe3O4
thin-film ferromagnets �Feng et al., 1975; Miyasato et al.,
2007; Fernandez-Pacheco et al., 2008; Venkateshvaran et
al., 2008; Sangiao et al., 2009�; see Fig. 6. Sangiao et al.
�2009� studied epitaxial thin films of Fe deposited by
sputtering on single-crystal MgO�001� substrates at pres-
sures �5�10−9 Torr. To vary �xx over a broad range,
they varied the film thickness t from 1 to 10 nm. The �
vs T profile for the film with t=1.8 nm displays a resis-

(a)

(b)(b)

FIG. 4. �Color online� The AHE conductivity in Fe films. �a�
�xy

AH for pure Fe film doped with Cr, Co, Mn, and Si vs �xx at
low temperatures �T=4.2 and 5.5 K� in. In many of the alloys,
particularly in the Co-doped system, the linear scaling in the
higher conductivity sector, �xx	106 �
 cm�−1, implies that
skew scattering dominates �xy

AH. After Majumdar and Berger,
1973 and Shiomi et al., 2009. The data from Shiomi et al.
�2009�, shown also at a larger scale in �b�, is obtained by sub-
tracting the high-temperature contribution to �xy. In the data
shown the ordinary Hall contribution has been identified and
subtracted. Panel �b� from Shiomi et al., 2009.
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tance minimum near 50 K, below which � shows an up-
turn which has been ascribed to localization or electron
interaction effects �Fig. 7�. The magnetization M is
nominally unchanged from the bulk value �except possi-
bly in the 1.3 nm film�. AHE experiments were carried
out from 2 to 300 K on these films and displayed as �xy
vs �xx plots together with previously published results
�Fig. 6�. In the plot, the AHE data from films with t�2
nm fall in the weakly localized regime. The combined
plot shows that data of Sangiao et al. are collinear �on a
logarithmic scale� with those measured on 1-�m-thick

films by Miyasato et al. �2007�. For the three samples
with t=1.3–2 nm, the inferred exponent in the dirty re-
gime is on average �1.66. A concern is that the data
from the 1.3 nm film were obtained by subtracting a ln T
term from � �the subtraction procedure was not de-
scribed�. How localization affects the scaling plot is an
open issue at present.

In Sec. II.E, we discuss recent AHE measurements in
disordered polycrystalline Fe films with t�10 nm by Mi-
tra et al. �2007�. Recent progress in understanding weak-
localization corrections to the AHE is also reviewed
there.

In magnetite, Fe3O4, scaling of �xy��xx
� with �

�1.6–1.8 was already apparent in early experiments on
polycrystalline samples �Feng et al., 1975�. Recently, two
groups have reinvestigated the AHE in epitaxial thin
films �data included in Fig. 6�. Fernandez-Pacheco et al.
�2008� measured a series of thin-film samples of Fe3O4
grown by pulse laser deposition on MGO�001� sub-
strates in ultrahigh vacuum, whereas Venkateshvaran et
al. �2008� studied both pure Fe3O4- and Zn-doped mag-
netite Fe3−xZnxO4 deposited on MgO and Al2O3 sub-
strates grown by laser molecular-beam epitaxy under
pure Ar or Ar/O mixture. In both studies, � increases
monotonically by a factor of �10 as T decreases from
300 K to the Verwey transition temperature TV=120 K.
Below TV, � further increases by a factor of 10–100. The
results for � vs T from Venkateshvaran et al. �2008� are
shown in Fig. 8.

The large values of � and its insulating trend imply
that magnetite falls in the strongly localized regime in
contrast to thin-film Fe which lies partly in the weak-
localization �or incoherent� regime.

Both groups find good scaling fits extending over sev-
eral decades of �xx with ��1.6–1.8 when varying T.
Fernandez-Pacheco et al. �2008� plotted �xy vs �xx in the
range 150�T�300 K for several thicknesses t and in-
ferred an exponent �=1.6. Venkateshvaran et al. �2008�
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FIG. 5. �Color online� Measurements of the Hall conductivity
and resistivity in single-crystal Fe and in thin foils of Fe, Co,
and Ni. The top and lower right panels show the T dependence
of �xy and �xx, respectively. The lower left panel plots ��xy� vs
�xx. From Miyasato et al., 2007.
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thin-film Fe3−xZnxO4 between 90 and 350 K �Venkateshvaran
et al., 2008�, and above the Verwey transition �Fernandez-
Pacheco et al., 2008�.
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plotted �xy vs �xx from 90 to 350 K and obtained power-
law fits with �=1.69 in both pure and Zn-doped magne-
tite �data shown in Fig. 6�. Significantly, the two groups
find that � is unchanged below TV. There is presently no
theory in the poorly conducting regime which predicts
the observed scaling ��xx�10−1 �
 cm�−1�.

3. Comparison to theories

Detailed first-principles calculations of the intrinsic
contribution to the AHE conductivity have been per-
formed for bcc Fe �Yao et al., 2004; Wang et al., 2006�,
fcc Ni, and hcp Co �Wang et al., 2007�. In Fe and Co, the
values of �xy inferred from the Berry curvature 
z�k�
are 7.5�102 and 4.8�102 �
 cm�−1, respectively, in rea-
sonable agreement with experiment. In Ni, however, the
calculated value of −2.2�103 �
 cm�−1 is only 30% of
the experimental value.

These calculations uncovered the crucial role played
by avoided crossings of band dispersions near the Fermi
energy �F. The Berry curvature bz is always strongly en-
hanced near avoided crossings, opposite direction for
the upper and lower bands. A large contribution to �xy

int

results when the crossing is at the Fermi energy so that
only one of the two bands is occupied, e.g., near the
point H in Fig. 9. A map showing the contributions of
different regions of the Fermi surface to bz�k� is shown
in Fig. 10. The SOI can lift an accidental degeneracy at
certain wave vectors k. These points act as a magnetic
monopole for the Berry curvature in k space �Fang et al.,
2003�. In the parameter space of spin-orbit coupling, �xy
is nonperturbative in nature. The effect of these “parity
anomalies” �Jackiw, 1984� on the Hall conductivity was
first discussed by Haldane �1988�. A different conclusion
on the role of topological enhancement in the intrinsic
AHE was reported for a tight-binding calculation with
the two orbitals dzx and dyz on a square lattice �Kontani
et al., 2007�.

Motivated by the enhancement of �xy at the crossing
points discussed above, Onoda et al. �2006a, 2008� pro-
posed a minimal model that focuses on the topological
and resonantly enhanced nature of the intrinsic AHE
arising from the sharp peak in bz�k� near avoided cross-

ings. The minimal model is essentially a 2D Rashba
model �Bychkov and Rashba, 1984� with an exchange
field which breaks symmetries and accounts for the mag-
netic order and a random impurity potential to account
for disorder. The model is discussed in Sec. V.D. In the
clean limit, �xy is dominated by the extrinsic skew-
scattering contribution �xy

skew, which almost masks the in-
trinsic contribution �xy

int. Since �xy
skew�, it is suppressed

by increased impurity scattering, whereas �xy
int—an inter-

band effect—is unaffected. In the moderately dirty re-
gime where the quasiparticle damping is larger than the
energy splitting at the avoided crossing �typically the
SOI energy� but less than the bandwidth, �xy

int dominates
�xy

skew. As a result, one expects a crossover from the ex-
trinsic to the intrinsic regime. When skew scattering is
due to a spin-dependent scattering potential instead of
spin-orbit coupling in the Bloch states, the skew to in-

FIG. 8. �Color online� Longitudinal resistivity �xx vs T for
epitaxial Fe3−xZnxO4 films. The �001�, �110�, and �111� oriented
films were grown on MgO�001�, MgO�110�, and Al2O3 sub-
strates. From Venkateshvaran et al., 2008.

FIG. 9. First-principles calculation of the band dispersions and
the Berry-phase curvature summed over occupied bands. From
Yao et al., 2004.

FIG. 10. �Color online� First-principles calculation of the FS in
the �010� plane �solid lines� and the Berry curvature in atomic
units �color map�. From Yao et al., 2004.
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trinsic crossover could be controlled by a different con-
dition. In this minimal model, a plateau in the intrinsic
regime ranges over two orders of magnitude in �xx
where �xy decays only by a factor of 2 �Onoda, 2009�.
This crossover may be seen clearly when the skew-
scattering term shares the same sign as the intrinsic one
�Kovalev et al., 2009; Onoda, 2009�.

With further increase in the scattering strength, spec-
tral broadening leads to the scaling relationship �xy

�xx
1.6 as discussed above �Onoda et al., 2006b, 2008;

Kovalev et al., 2009; Onoda, 2009�. In the strong-
disorder regime, �xx is no longer linear in the scattering
lifetime �. A different scaling, �xy�xx

2 , attributed to
broadening of the electronic spectrum in the intrinsic
regime, has been proposed by Kontani et al. �2007�.

As discussed, there is some experimental evidence
that this scaling prevails not only in the dirty metallic
regime but also deep into the hopping regime. Sangiao
et al. �2009�, obtained the exponent ��1.7 in epitaxial
thin-film Fe in the dirty regime. In magnetite, the scaling
seems to hold, with the same nominal value of � even
below the Verwey transition where charge transport is
deep in the hopping regime �Fernandez-Pacheco et al.,
2008; Venkateshvaran et al., 2008�. These regimes are
well beyond the purview of either the minimal model,
which considers only elastic scattering, or the theoretical
approximations used to model its properties �Onoda et
al., 2006b, 2008�.

Nonetheless, the experimental reports have uncov-
ered a robust scaling relationship with � near 1.6, which
extends over a remarkably large range of �xx. The origin
of this scaling is an open issue at present.

B. Complex oxide ferromagnets

1. First-principles calculations and experiments on SrRuO3

The perovskite oxide SrRuO3 is an itinerant ferro-
magnet with a critical temperature Tc of 165 K. The
electrons occupying the 4d t2g orbitals in Ru4+ have a
SOI energy much larger than that for 3d electrons. Early
transport investigations of this material were reported
by Allen et al. �1996� and Izumi et al. �1997�. The latter
authors also reported results on thin-film SrTiO3. Re-
cently, the Berry-phase theory has been applied to ac-
count for its AHE �Fang et al., 2003; Mathieu, Asamitsu,
Takahashi, et al., 2004; Mathieu, Asamitsu, Yamada, et
al., 2004� which is strongly T dependent �Fig. 11�c��. Nei-
ther the KL theory nor the skew-scattering theory
seemed adequate for explaining the T dependence of
the inferred AHE conductivity �xy �Fang et al., 2003�.

The experimental results motivated a detailed first-
principles band-structure calculation that fully incorpo-
rated the SOI. The AHE conductivity �xy was calculated
directly using the Kubo formula Eq. �1.2� �Fang et al.,
2003�. To handle numerical instabilities which arise near
certain critical points, a fictitious energy broadening �
=70 meV was introduced in the energy denominator.
Fig. 12 shows the dependence of �xy��� on the chemical
potential �. In sharp contrast to the diagonal conductiv-

ity �xx, �xy��� fluctuates strongly, displaying sharp peaks
and numerous changes in sign. The fluctuations may be
understood if we map the momentum dependence of the
Berry curvature bz�k� in the occupied band. For ex-
ample, Fig. 13 displays bz�k� plotted as a function of
k�= �kx ,ky�, with kz fixed at 0. The prominent peak at
k�=0 corresponds to the avoided crossing of the energy
band dispersions, which are split by the SOI. As dis-
cussed in Sec. I.B, variation of the exchange splitting
caused by a change in the spontaneous magnetization M
strongly affects �xy in a nontrivial way.

From the first-principles calculations, one may esti-
mate the temperature dependence of �xy by assuming
that it is due to the temperature dependence of the
Bloch state exchange splitting and that this splitting is
proportional to the temperature-dependent magnetiza-

FIG. 11. �Color online� Anomalous Hall effect in SrRuO3. �a�
The magnetization M, �b� longitudinal resistivity �xx, and �c�
transverse resistivity �xy as functions of the temperature T for
the single crystal and thin-film SrRuO3, as well as for Ca-
doped Sr0.8Ca0.2RuO3 thin film. �B is the Bohr magneton.
From Fang et al., 2003.

FIG. 12. The calculated transverse conductivity �xy as a func-
tion of the chemical potential � for SrRuO3. The chaotic be-
havior is the fingerprint of the Berry curvature distribution
shown in Fig. 13. From Fang et al., 2003.
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tion. The new insight is that the T dependence of �xy�T�
simply reflects the M dependence of �xy: at a finite tem-
perature T�, the magnitude and sign of �xy may be de-
duced by using the value of M�T�� in the zero-T curve.
This proposal was tested against the results on both the
pure material and the Ca-doped material Sr1−xCaxRuO3.
In the latter, Ca doping suppresses both Tc and M sys-
tematically �Mathieu, Asamitsu, Takahashi, et al., 2004;
Mathieu, Asamitsu, Yamada, et al., 2004�. As shown in
Fig. 14 �upper panel�, the measured values of M and �xy,
obtained from five samples with Ca content 0.4�x�0,
fall on two continuous curves. In the inset, the curve for
the pure sample �x=0� is compared with the calculation.
The lower panel of Fig. 14 compares calculated curves of

�xy for cubic and orthorhombic lattice structures. The
sensitivity of �xy to the lattice symmetry reflects the
dominant contribution of the avoided crossing near �F.
The sensitivity to broadening is shown for the ortho-
rhombic case.

Kats et al. �2004� also studied the magnetic-field de-
pendence of �xy in an epitaxial film of SrRuO3. They
have observed sign changes in �xy near a magnetic field
B=3 T at T=130 K and near B=8 T at 134 K. This
seems to be qualitatively consistent with the Berry-
phase scenario. On the other hand, they suggested that
the intrinsic-dominated picture is likely incomplete �or
incorrect� near Tc �Kats et al., 2004�.

2. Spin-chirality mechanism of the AHE in manganites

In the manganites, e.g., La1−xCaxMnO3 �LCMO�, the
three t2g electrons on each Mn ion form a core local
moment of spin S= 3

2 . A large Hund energy JH aligns the
core spin S with the s= 1

2 spin of an itinerant electron
that momentarily occupies the eg orbital. Because this
Hund coupling leads to an extraordinary magnetoresis-
tance �MR� in weak H, the manganites are called colos-
sal magnetoresistance �CMR� materials �Tokura and To-
mioka, 1999�. The double-exchange theory summarized
by Eq. �2.2� is widely adopted to describe the onset of
ferromagnetism in the CMR manganites.

As T decreases below the Curie temperature TC
�270 K in LCMO, the resistivity � falls rapidly from
�15 to metallic values �2 m
 cm. CMR is observed
over a significant interval of temperatures above and be-
low TC, where charge transport occurs by hopping of
electrons between adjacent Mn ions �Fig. 15�a��. At each
Mn site i, the Hund energy tends to align the carrier spin
s with the core spin Si.

Early theories of hopping conductivity �Holstein,
1961� predicted the existence of a Hall current produced
by the phase shift �Peierls factor� associated with the
magnetic flux � piercing the area defined by three non-
collinear atoms. However, the hopping Hall current is
weak. The observation of a large �xy in LCMO that at-
tains a broad maximum in modest H �Fig. 15�b�� led
Matl et al. �1998� to propose that the phase shift is geo-
metric in origin, arising from the solid angle described
by s as the electron visits each Mn site �s"Si at each site
i as shown in Fig. 16�. To obtain the large �xy seen, one
requires Si to define a finite solid angle 
. Since Si
gradually aligns with H with increasing field, this effect
should disappear along with �
	, as observed in the ex-
periment. This appears to be the first application of a
geometric-phase mechanism to account for an AHE ex-
periment.

Subsequently, Ye et al. �1999� considered the Berry
phase due to the thermal excitations of the Skyrmion
�and anti-Skyrmion�. They argued that the SOI gives rise
to a coupling between the uniform magnetization M and
the gauge field b by the term �M ·b. In the ferromag-
netic state, the spontaneous uniform magnetization M
leads to a finite and uniform b, which acts as a uniform

FIG. 13. �Color online� The Berry curvature bz�k� for a band
as a function of k�= �kx ,ky� with the fixed kz=0. From Fang et
al., 2003.

FIG. 14. �Color online� The Hall conductivity in Ca-doped
strontium ruthenate. �Upper panel� Combined plots of the
Hall conductivity �xy vs magnetization M in five samples of the
ruthenate Sr1−xCaxRuO3 �0�x�0.4�. The inset compares data
�xy at x=0 �triangles� with calculated values �solid curve�.
�Lower panel� First-principles calculations of �xy vs M for cu-
bic and orthorhombic structures. The effect of broadening on
the curves is shown for the orthorhombic case. From Mathieu,
Asamitsu, Yamada, et al., 2004.
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magnetic field. Lyanda-Geller et al. �2001� also consid-
ered the AHE due to the spin-chirality fluctuation in the
incoherent limit where the hopping is treated perturba-
tively. This approach, applicable to the high-T limit,
complements the theory of Ye et al. �1999�.

The Berry phase associated with noncoplanar spin
configurations, the scalar spin chirality, was first consid-
ered in theories of high-temperature superconductors in
the context of the flux distribution generated by the
complex order parameter of the resonating valence
bond �RVB� correlation defined by �ij, which acts as the
transfer integral of the “spinon” between the sites i and
j �Lee et al., 2006�. The complex transfer integral also
appears in the double-exchange model specified by

H = − 

ij,�

tij�ci�
† cj� + H.c.� − JH


i
Si · ci�

† ���ci�, �2.2�

where JH is the ferromagnetic Hund coupling between
the spin � of the conduction electrons and the localized
spins Si.

In the manganese oxides, Si represents the localized
spin in t2g orbitals, while c† and c are the operators for eg
electrons. �In mean-field approximations of Hubbard-
like theories of magnetism, the localized spin may also
be regarded as the molecular field created by the con-
duction electrons themselves, in which case JH is re-
placed by the on-site Coulomb interaction energy U.� In
the limit of large JH, the conduction electron spin s is
forced to align with Si at each site. The matrix element
for hopping from i→ j is then given by

tij
eff = tij��i��j	 = tije

iaij cos��ij

2
� , �2.3�

where ��i	 is the two-component spinor spin wave func-
tion with quantization axis "Si. The phase factor eiaij acts
like a Peierls phase and can be viewed as originating
from a fictitious magnetic field which influences the or-
bital motion of the conduction electrons.

We next discuss how the Peierls phase leads to a
gauge field, i.e., flux, in the presence of noncoplanar
spin configurations. Let Si, Sj, and Sk be the local
spins at sites i, j, and k, respectively. The product
of the three transfer integrals corresponding to the loop
i→ j→k→ i is

�ni�nk	�nk�nj	�nj�ni	 = �1 + ni · nj + nj · nk + nk · nj�

+ ini · �nj � nk�

 ei�aij+ajk+aki� = ei
/2, �2.4�

where �ni	 is the two-component spinor wavefunction of
the spin state polarized along ni=Si / �Si�. Its imaginary
part is proportional to Si · �Sj�Sk�, which corresponds to
the solid angle 
 subtended by the three spins on the
unit sphere, and is called the scalar spin chirality �Fig.
16�. The phase acquired by the electron’s wave function
around the loop is ei
/2, which leads to the Aharonov-
Bohm effect and, as a consequence, to a large Hall re-
sponse.

In the continuum approximation, this phase factor is
given by the flux of the “effective” magnetic field b ·dS
=��a ·dS, where dS is the elemental directed surface
area defined by the three sites. The discussion implies
that a large Hall current requires the unit vector n�x�
=S�x� / �S�x�� to fluctuate strongly as a function of x, the
position coordinate in the sample. An insightful way to
quantify this fluctuation is to regard n�x� as a map from
the x-y plane to the surface of the unit sphere �we take a
2D sample for simplicity�. An important defect in a fer-
romagnet �the Skyrmion �Sondhi et al., 1993�� occurs
when n�x� points down at a point x� in region A of the
x-y plane but gradually relaxes back to up at the bound-
ary of A. The map of this spin texture wraps around the

FIG. 15. The field dependence of the resistivity and Hall resis-
tivity in the manganite �La,Ca�MnO3. �a� The colossal magne-
toresistance � vs H in La1−xCaxMnO3 �TC=265 K� at selected
T. �b� The Hall resistivity �xy vs H at temperatures of
100–360 K. Above TC, �xy is strongly influenced by the MR
and the susceptibility �. From Matl et al., 1998.

FIG. 16. Schematic view of spin chirality. When circulated
among three spins to which it is exchange coupled, it feels a
fictitious magnetic field b� with flux given by the half of the
solid angle 
 subtended by the three spins. From Lee et al.,
2006.
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sphere once as x� roams over A. The number of Skyrmi-
ons in the sample is given by the topological index

Ns = �
A

dxdyn · � �n
�x

�
�n
�y
� = �

A
dxdybz, �2.5�

where the first integrand is the directed area of the im-
age on the unit sphere. Ns counts the number of times
the map covers the sphere as A extends over the sample.
The gauge field b produces a Hall conductivity. Ye et al.
�1999� derived in the continuum approximation the cou-
pling between the field b and the spontaneous magneti-
zation M through the SOI. The SOI coupling produces
an excess of thermally excited positive Skyrmions over
negative ones or vice versa. This imbalance leads to a
net uniform “magnetic field” b �anti�parallel to M, and
the AHE. In this scenario, �xy is predicted to attain a
maximum slightly below Tc before falling exponentially
to zero as T→0.

The Hall effect in the hopping regime has been dis-
cussed by Holstein �1961� in the context of impurity con-
duction in semiconductors. Since the energies �j and �k
of adjacent impurity sites may differ significantly, charge
conduction must proceed by phonon-assisted hopping.
To obtain a Hall effect, we consider three noncollinear
sites �labeled as i=1, 2, and 3�. In a field H, the magnetic
flux � piercing the area enclosed by the three sites plays
the key role in the Hall response. According to Holstein,
the Hall current arises from interference between the
direct hopping path 1→2 and the path 1→3→2 going
via 3 as an intermediate step. Taking into account the
changes in the phonon number in each process, we have

�1,N�,N��� → �1,N� � 1,N��� → �2,N� � 1,N�� � 1� ,
�2.6�

�1,N�,N��� → �3,N� � 1,N��� → �2,N� � 1,N�� � 1� ,

where N�, N�� are the phonon numbers for the modes �,
��, respectively.

In a field H, the hopping matrix element from Ri to Rj

includes the Peierls phase factor exp�−i�e /c��Ri

Rjdr ·A�r��.
When we consider the interference between the two
processes in Eq. �2.6�, the Peierls phase factors combine
to produce the phase shift exp�i2�� /�0�, where �0
=hc /e is the flux quantum. By the Aharonov-Bohm ef-
fect, this leads to a Hall response.

As discussed, this idea was generalized for the manga-
nites by replacing the Peierls phase factor with the
Berry-phase factor in Eq. �2.4� �Lyanda-Geller et al.,
2001�. The calculated Hall conductivity is

�H = G����cos��ij/2�cos��jk/2�cos��ki/2�sin�
/2� ,

�2.7�

where �� is the set of the energy levels �a �a= i , j ,k� and
�ij is the angle between ni and nj. When the average of
�H over all directions of na is taken, it vanishes even for
finite spontaneous magnetization m. To obtain a finite
�xy, it is necessary to incorporate SOI.

Assuming the form of hopping integral with the SOI
given by

Vjk = Vjk
orb�1 + i� · gjk� , �2.8�

where gjk depends on the spin-orbit coupling for the spe-
cific material present in Vjk, the Hall conductivity is pro-
portional to the average of

�gjk · �nj � nk���n1 · n2 � n3� . �2.9�

Taking the average of n’s with m=M /Msat, where Msat is
the saturated magnetization, we finally obtain

�xy = �xy
0 m�1 − m2�2

�1 + m2�2 . �2.10�

This prediction has been tested by the experiment of
Chun et al. �2000� shown in Fig. 17. The scaling law for
the anomalous �xy as a function of �M� obtained near TC
is in good agreement with the experiment.

Similar ideas have been used by Burkov and Balents
�2003� to analyze the variable range hopping region in
�Ga,Mn�As. The spin-chirality mechanism for the AHE
has also been applied to CrO2 �Yanagihara and Sala-
mon, 2002, 2007� and the element Gd �Baily and Sala-
mon, 2005�. In the former case, the comparison between
�xy and the specific heat supports the claim that the criti-
cal properties of �xy are governed by the Skyrmion den-
sity.

The theories described assume large Hund coupling.
In the weak-Hund coupling limit, a perturbative treat-
ment in JH has been developed to relate the AHE con-
ductivity to the scalar spin chirality �Tatara and Kawa-
mura, 2002�. This theory has been applied to metallic
spin-glass systems �Kawamura, 2007�, as reviewed in
Sec. II.D.7.

3. Lanthanum cobaltite

The subtleties and complications involved in analyz-
ing the Hall conductivity of tunable ferromagnetic ox-
ides are well illustrated by the cobaltites. Samoilov et al.
�1998� and Baily and Salamon �2003� investigated the

FIG. 17. Comparison between experiment and theoretical pre-
diction Eq. �2.10�. Scaling behavior between the Hall resistivity
�H and the magnetization M is shown for layered manganite
La1.2Sr1.8Mn2O7. The solid line is a fit to Eq. �2.10�; the dashed
line is the numerator of Eq. �2.10� only. There are no fitting
parameters except the overall scale. From Chun et al., 2000.
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AHE in Ca-doped lanthanum cobaltite La1−xCaxCoO3,
which displays a number of unusual magnetic and trans-
port properties. They found an unusually large AHE
near TC as well as at low T and proposed the relevance
of spin-ordered clusters and orbital disorder scattering
to the AHE in the low-T limit. Subsequently, a more
detailed investigation of La1−xSrxCoO3 was reported by
Onose and Tokura �2006�. Figures 18�a�–18�c� summa-
rize the T dependence of M, �xy, and �xy, respectively, in
four crystals with 0.17�x�0.30. The variation of �xx vs
x suggests that a metal-insulator transition occurs be-
tween 0.17 and 0.19. Whereas the samples with x�0.2
have a metallic �xx-T profile, the sample with x=0.17 is
nonmetallic �hopping conduction�. Moreover, it displays
a very large MR at low T and large hysteresis in curves
of M vs H, features that are consistent with a ferromag-
netic cluster-glass state.

When the Hall conductivity is plotted vs M �Fig.
18�d�� �xy shows a linear dependence on M for the most
metallic sample �x=0.30�. However, for x=0.17 and 0.20,
there is a pronounced downturn suggestive of the ap-
pearance of a different Hall term that is electronlike in
sign. This is most apparent in the trend of the curves of
�xy vs T in Fig. 18�b�. Onose and Tokura �2006� proposed
that the negative term may arise from hopping of carri-
ers between local moments which define a chirality that
is finite, as discussed.

4. Spin-chirality mechanism in pyrochlore ferromagnets

In the examples discussed in Sec. II.B.3, the spin-
chirality mechanism leads to a large AHE at finite tem-

peratures. An interesting question is whether or not
there exist ferromagnets in which the spin chirality is
finite in the ground state.

Ohgushi et al. �2000� considered the ground state of
the noncoplanar spin configuration in the Kagome lat-
tice, which may be obtained as a projection of the pyro-
chlore lattice onto the plane normal to �1,1,1� axis. Con-
sidering double-exchange model Eq. �2.2�, they obtained
the band structure of the conduction electrons and the
Berry-phase distribution. Quite similar to the Haldane
model �Haldane, 1988� or the model discussed in Eq.
�3.21�, the Chern number of each band becomes non-
zero, and a quantized Hall effect results when the
chemical potential is in the energy gap.

Turning to real materials, the pyrochlore ferromagnet
Nd2Mo2O7 �NMO� provides a test bed for exploring
these issues. Its lattice structure consists of two interpen-
etrating sublattices comprised of tetrahedrons of Nd and
Mo atoms �the sublattices are shifted along the c axis�
�Yoshii et al., 2000; Taguchi et al., 2001�. While the ex-
change between spins on either sublattice is ferromag-
netic, the exchange coupling Jdf between spins of the
conducting d electrons of Mo and localized f-electron
spins on Nd is antiferromagnetic.

The dependences of the anomalous Hall resistivity �xy
on H at selected temperatures are shown in Fig. 19. The
spins of Nd begin to align antiparallel to those of Mo
below the crossover temperature T*�40 K. Each Nd
spin is subject to a strong easy-axis anisotropy along the
line from a vertex of the Nd tetrahedron to its center.
The resulting noncoplanar spin configuration induces a
transverse component of the Mo spins. Spin chirality is
expected to be produced by the coupling Jdf, which leads
to the AHE of d electrons. An analysis of the neutron
scattering experiment has determined the magnetic
structure �Taguchi et al., 2001�. The tilt angle of the Nd
spins is close to that expected from the strong limit of

FIG. 18. Temperature dependence of the �a� magnetization M,
�b� Hall resistivity �xy, �c� Hall conductivity �xy in four crystals
of La1−xSrxCoO3 �0.17�x�0.30� �all measured in a field H
=1 T�. In �a�–�c�, the data for x=0.17 and 0.20 were multiplied
by a factor of 200 and 50, respectively. �d� The Hall conductiv-
ity �xy at 1 T in the four crystals plotted against M. Results for
x=0.17 and 0.20 were multiplied by factors 50 and 5, respec-
tively. From Onose and Tokura, 2006.

FIG. 19. Anomalous Hall effect in Nd2Mo2O7. Magnetic-field
dependence of �a� the magnetization and �b� the transverse
resistivity ��xy� for different temperatures. From Taguchi et al.,
2001.
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the spin anisotropy, and the exchange coupling Jfd is es-
timated as Jfd�5 K. This leads to a tilt angle of the Mo
spins of �5°. From these estimates, a calculation of the
anomalous Hall conductivity in a tight-binding Hamil-
tonian of triply degenerate t2g bands leads to �H

�20 �
 cm�−1, consistent with the value measured at
low T. In a strong H, this tilt angle is expected to be
reduced along with �xy. This is in agreement with the
traces displayed in Fig. 19.

The T dependence of the Hall conductivity has also
been analyzed in the spin-chirality scenario by incorpo-
rating spin fluctuations �S. Onoda and Nagaosa, 2003�.
The result is that frustration of the Ising Nd spins leads
to large fluctuations, which accounts for the large � ob-
served. The recent observation of a sign change in �xy in
a field H applied in the �1,1,1� direction �Taguchi et al.,
2003� is consistent with the sign change of the spin
chirality.

In the system Gd2Mo2O7, in which Gd3+ �d7� has no
spin anisotropy, the low-T AHE is an order of magni-
tude smaller than that in NMO. This is consistent with
the spin-chirality scenario �Taguchi et al., 2004�. The ef-
fect of the spin-chirality mechanism on the finite-
frequency conductivity �H��� has been investigated
�Kezsmarki et al., 2005�.

In another work, Yasui et al. �2006, 2007� performed
neutron scattering experiments over a large region in

the �H ,T� plane with H along the �0, 1̄ ,1� and �0,0,1�
directions. By fitting the magnetization MNd�H ,T� of
Nd, the magnetic specific heat Cmag�H ,T�, and the mag-
netic scattering intensity Imag�Q ,H ,T�, they estimated
Jdj�0.5 K, which was considerably smaller than esti-
mated previously �Taguchi et al., 2001�. Furthermore,
they calculated the thermal average of the spin chirality
�Si ·Sj�Sk	 and compared its value with that inferred
from the AHE resistivity �xy. They have emphasized
that, when a 3 T field is applied in the �0,0,1� direction
�along this direction H cancels the exchange field from
the Mo spins�, no appreciable reduction of �xy is ob-
served. These recent conclusions have cast doubt on the
spin-chirality scenario for NMO.

A further puzzling feature is that, with H applied in
the �1,1,1� direction, one expects a discontinuous transi-
tion from the two-in, two-out structure �i.e., two of the
Nd spins point towards the tetrahedron center while two
point away� to the three-in, one-out structure for the Nd
spins. However, no Hall features that might be identified
with this cancellation have been observed down to very
low T. This seems to suggest that quantum fluctuations
of the Nd spins may play an important role despite the
large spin quantum number �S= 3

2 �.
Machida discussed the possible relevance of spin

chirality to the AHE in the pyrochlore Pr2Ir2O7
�Machida, Nakatsuji, Maeno, Tayama, and Sakakibara,
2007; Machida, Nakatsuji, Maeno, Tayama, Sakakibara,
and Onoda, 2007�. In this system, a novel “Kondo ef-
fect” is observed even though the Pr3+ ions with S=1 are
subject to a large magnetic anisotropy. The magnetic and

transport properties of R2Mo2O7 near the phase bound-
ary between the spin-glass Mott insulator and ferromag-
netic metal by changing the rare-earth ion R have been
studied �Katsufuji et al., 2000�.

5. Anatase and rutile Ti1−xCoxO2−�

In thin-film samples of the ferromagnetic semiconduc-
tor anatase Ti1−xCoxO2−�, Ueno et al. �2008� reported
scaling between the AHE resistance and the magnetiza-
tion M. The AHE conductivity �xy

AH scales with the con-
ductivity �xx as �xy

AH�xx
1.6 �Fig. 20�. A similar scaling re-

lation was observed in another polymorph rutile �see
also Ramaneti et al. �2007� for related work on codoped
TiO2�.

C. Ferromagnetic semiconductors

Ferromagnetic semiconductors combine semiconduc-
tor tunability and collective ferromagnetic properties in
a single material. The most widely studied ferromagnetic
semiconductors are diluted magnetic semiconductors
�DMSs� created by doping a host semiconductor with a
transition-metal element which provides a localized
large moment �formed by the d electrons� and by intro-
ducing carriers which can mediate a ferromagnetic cou-
pling between these local moments. The most exten-
sively studied are the Mn based �III,Mn�V DMSs, in
which substituting Mn for the cations in a �III,V� semi-
conductor can dope the system with hole carriers;
�Ga,Mn�As becomes ferromagnetic beyond a concentra-
tion of 1%.

The simplicity of this basic but generally correct
model hides within it a cornucopia of physical and ma-
terials science effects present in these materials. Among
the phenomena which have been studied are metal-
insulator transitions, carrier mediated ferromagnetism,
disorder physics, magnetoresistance effects, magneto-

FIG. 20. �Color online� Plot of AHE conductivity �AHE vs
conductivity � for anatase Ti1−xCoxO2−� �triangles� and rutile
Ti1−xCoxO2−� �diamonds�. Gray symbols are data taken by
other groups. The inset shows the expanded view of data for
anatase with x=0.05 �the open and closed triangles are for T
	150 K and T�100 K, respectively�. From Ueno et al., 2007.
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optical effects, coupled magnetization dynamics, post-
growth dependent properties, etc. A more in-depth dis-
cussion of these materials, from both the experimental
and theoretical points of view, can be found in Jungwirth
et al. �2006�.

The AHE has been one of the most fundamental char-
acterization tools in DMSs, allowing, for example, direct
electrical measurement of transition temperatures. The
reliability of electrical measurement of magnetic proper-
ties in these materials has been verified by comparison
with remnant magnetization measurements using a su-
perconducting quantum interference device magneto-
meter �Ohno et al., 1992�. The relative simplicity of the
effective band structure of the carriers in metallic DMSs
has made them a playing ground to understand AHE of
ferromagnetic systems with strong spin-orbit coupling.

Experimentally, it has been established that the AHE
in the archetypical DMS system �Ga,Mn�As is in the
metallic regime dominated by a scattering-independent
mechanism, i.e., �xy

AH�xx
2 �Edmonds et al., 2002; Ruzme-

tov et al., 2004; Chun et al., 2007; Pu et al., 2008�. The
studies of Edmonds et al. �2002� and Chun et al. �2007�
have established this relationship in the noninsulating
materials by extrapolating the low-temperature �xy�B� to
zero field and zero temperature. This is shown in Fig. 21
where metallic samples, which span a larger range than
the ones studied by Edmonds et al. �2002�, show a clear
Rs��xx

2 dependence.
DMS growth process requires nonequilibrium �low-

temperature� conditions and the as-grown �often insulat-
ing� materials and postgrown annealed metallic materi-
als show typically different behaviors in the AHE
response. A similar extrapolating procedure performed
on insulating �Ga,Mn�As seems to exhibit approximately
linear dependence of Rs on �xx. On the other hand, con-
siderable uncertainty is introduced by the extrapolation
to low temperatures because �xx diverges and the com-
plicated magnetoresistance of �xx is a priori not under-
stood in the low-T range.

A more recent study by Pu et al. �2008� of �Ga,Mn�As
grown on InAs, such that the tensile strain creates a

perpendicular anisotropic ferromagnet, has established
the dominance of the intrinsic mechanism in metallic
�Ga,Mn�As samples beyond any doubt. Measuring the
longitudinal thermoelectric transport coefficients ��xx,
�xy, �xy, and �xx where J=�E+��−�T��, one can show
that given the Mott relation �= ��2kB

2 T /3e���� /�E�EF
and the empirical relation �xy�B=0�=�Mz�xx

n , the rela-
tion between the four separately measured transport co-
efficients is

�xy =
�xy

�xx
2 ��2kB

2 T

3e

��

�
− �n − 2��xx�xx� . �2.11�

The fits to the �� /� and n parameters are shown in Fig.
22. Note that ��=�� /�EF but it is the ratio �� /� which is
the fitting parameter. Fixing n=1 does not produce any
good fit to the data as indicated by the dashed lines in
Fig. 22. These data exclude the possibility of a n=1 type
contribution to the AHE in metallic �Ga,Mn�As and fur-
ther verify the validity of the Mott relation in these ma-
terials.

Having established that the main contribution to the
AHE in metallic �Ga,Mn�As is given by scattering-
independent contributions rather than skew-scattering

FIG. 21. �Color online� The resistivity and anomalous Hall
coefficient in �Ga, Mn�As. �a� Ga1−xMnxAs samples that show
insulating and metallic behavior defined by ��xx /�T near T
=0. �b� Rs vs �xx extrapolated from �xy�B� data to zero field
and low temperatures. From Chun et al., 2007.

FIG. 22. �Color online� The Hall resistivity and Nernst effect
in �Ga,Mn�As grown on InAs substrate. �Top� Zero B field �xy
and �xx for four samples grown on InAs substrates �i.e., per-
pendicular to plane easy axis�. Annealed samples, which pro-
duce perpendicular to plane easy axes, are marked by an �.
The inset indicates the B dependence of the 7% sample at
10 K. �Bottom� Zero-field Nernst coefficient �xy for the four
samples. The solid curves indicate the best fit using Eq. �2.11�
and the dashed curves indicate the best fit setting N=1. From
Pu et al., 2008.
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contributions, DMSs are an ideal system to test our un-
derstanding of AHE. In the regime where the largest
ferromagnetic critical temperatures are achieved �for
doping levels above 1.5%�, semiphenomenological mod-
els that are built on the Bloch states for the band quasi-
particles rather than localized basis states appropriate
for the localized regime �Berciu and Bhatt, 2001� pro-
vide the natural starting point for a model Hamiltonian
which reproduces many of the observed experimental
effects �Sinova and Jungwirth, 2005; Jungwirth et al.,
2006�. Recognizing that the length scales associated with
holes in the DMS compounds are still long enough, a
k ·p envelope function description of the semiconductor
valence bands is appropriate. To understand the AHE
and magnetic anisotropy, it is necessary to incorporate
intrinsic spin-orbit coupling in a realistic way.

A successful model for �Ga,Mn�As is specified by the
effective Hamiltonian

H = HK-L + Jpd

I

SI · ŝ�r���r − RI� + Hdis, �2.12�

where HK-L is the six-band Kohn-Luttinger k ·p Hamil-
tonian �Dietl et al., 2001�, the second term is the short-
range antiferromagnetic kinetic-exchange interaction
between local spin SI at site RI and the itinerant hole
spin �a finite range can be incorporated in more realistic
models�, and Hdis is the scalar scattering potential repre-
senting the difference between a valence band electron
on a host site and a valence band electron on a Mn site
and the screened Coulomb interaction of the itinerant
electrons with the ionized impurities.

Several approximations can be used to vastly simplify
the above model, namely, the virtual crystal approxima-
tion �replacing the spatial dependence of the local Mn
moments by a constant average� and mean-field theory
in which quantum and thermal fluctuations of the local
moment spin orientations are ignored �Dietl et al., 2001;
Jungwirth et al., 2006�. In the metallic regime, disorder
can be treated by a Born approximation or by more
sophisticated exact-diagonalization or Monte Carlo
methods �Jungwirth, Abolfath, et al., 2002; Schliemann
and MacDonald, 2002; Sinova et al., 2002; Yang et al.,
2003�.

Given the above simple model Hamiltonian the AHE
can be computed if one assumes that the intrinsic Berry
phase �or Karplus-Luttinger� contribution will most
likely be dominant because of the large SOI of the car-
riers and the experimental evidence showing the domi-
nance of scattering-independent mechanisms. For prac-
tical calculations it is useful to use, as in the intrinsic
AHE studies in the oxides �Fang et al., 2003; Mathieu,
Asamitsu, Takahashi, et al., 2004; Mathieu, Asamitsu,
Yamada, et al., 2004�, the Kubo formalism given in Eq.
�1.2� with disorder induced broadening � of the band
structure �but no side-jump contribution�. The broaden-
ing is achieved by substituting one of the �n�k�−�n��k�
factors in the denominator by ��n�k�−�n��k�+ i��. Ap-
plying this theory to metallic �III,Mn�V materials using
both the four-band and six-band k ·p descriptions of the
valence band electronic structure one obtains results in

quantitative agreement with experimental data in
�Ga,Mn�As and �In,Mn�As DMSs �Jungwirth, Niu, and
MacDonald, 2002�. In a follow up calculation by Jung-
wirth et al. �2003�, a more quantitative comparison of the
theory with experiments was made in order to account
for finite quasiparticle lifetime effects in these strongly
disordered systems. The effective lifetime for transitions
between bands n and n�, �n,n��1/�n,n�, can be calculated
by averaging quasiparticle scattering rates obtained
from Fermi’s golden rule including both screened Cou-
lomb and exchange potentials of randomly distributed
substitutional Mn and compensating defects as done in
the dc Boltzmann transport studies �Jungwirth, Abol-
fath, et al., 2002; Sinova et al., 2002�. A systematic com-
parison between theoretical and experimental AHE
data is shown in Fig. 23 �Jungwirth et al., 2003�. The
results are plotted versus nominal Mn concentration x
while other parameters of the seven samples studied are
listed in the figure legend. The measured �AH values are
indicated by filled squares; triangles are theoretical re-
sults obtained for a disordered system assuming Mn-
interstitial compensation defects. The valence band hole
eigenenergies �nk and eigenvectors �nk	 are obtained by
solving the six-band Kohn-Luttinger Hamiltonian in the
presence of the exchange field, h=NMnSJpdẑ �Jungwirth
et al., 2006�. Here NMn=4x /aDMS

3 is the Mn density in the
MnxGa1−xAs epilayer with a lattice constant aDMS, the
local Mn spin S=5/2, and the exchange coupling con-
stant Jpd=55 meV nm−3.

In general, when disorder is accounted for, the theory
is in a good agreement with experimental data over the
full range of Mn densities studied from x=1.5% to 8%.
The effect of disorder, especially when assuming Mn-
interstitial compensation, is particularly strong in the x
=8% sample shifting the theoretical �AH much closer to
experiment compared to the clean limit theory. The re-
maining quantitative discrepancies between theory and
experiment have been attributed to the resolution in
measuring experimental hole and Mn densities �Jung-
wirth et al., 2003�.

We conclude this section by mentioning the anoma-
lous Hall effect in the nonmetallic or insulating-hopping
regimes. Experimental studies of �Ga,Mn�As digital fer-
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romagnetic heterostructures, which consist of submono-
layers of MnAs separated by spacer layers of GaAs,
have shown longitudinal and Hall resistances of the hop-
ping conduction type, RxxT� exp��T0 /T���, and have
shown that the anomalous Hall resistivity is dominated
by hopping with a sublinear dependence of RAH on Rxx
�Allen et al., 2004; Shen et al., 2008� similar to experi-
mental observations on other materials. Studies in this
regime are still not as systematic as their metallic coun-
terparts which clearly indicate a scaling power of 2. Ex-
periments find a sublinear dependence of RAH�Rxx

� ,
with ��0.2–1.0 depending on the sample studies �Shen
et al., 2008�. A theoretical understanding for this hop-
ping regime remains to be worked out still. Previous the-
oretical calculations based on the hopping conduction
with the Berry phase �Burkov and Balents, 2003�
showed the insulating behavior RAH→� as Rxx→� but
failed to explain the scaling dependence of RAH on Rxx.

D. Other classes of materials

1. Spinel CuCr2Se4

As mentioned, a key prediction of the KL theory �and
its modern generalization based on the Berry-phase ap-
proach� is that the AHE conductivity �yx

AH is indepen-
dent of the carrier lifetime � �dissipationless Hall cur-
rent� in materials with moderate conductivity. This
implies that the anomalous Hall resistivity �yx

AH varies as
�2. Moreover, �xy

AH tends to be proportional to the ob-
served magnetization Mz. We write

�xy
AH = SHMz, �2.13�

with SH as a constant.
Previously, most tests were performed by comparing

�yx vs � measured on the same sample over an extended
temperature range. However, because the skew-
scattering model can also lead to the same prediction
�yx��2 when inelastic scattering predominates, tests at
finite T are inconclusive. The proper test requires a sys-
tem in which � at 4 K can be varied over a very large
range without degrading the exchange energy and mag-
netization M.

In the spinel CuCr2Se4, the ferromagnetic state is sta-
bilized by 90° superexchange between the local mo-
ments of adjacent Cr ions. The charge carriers play only
a weak role in the superexchange energy. The experi-
mental proof of this is that when the carrier density n is
varied by a factor of 20 �by substituting Se by Br�, the
Curie temperature TC decreases by only 100 K from
380 K. Significantly, M at 4 K changes negligibly. The
resistivity � at 4 K may be varied by a factor of 103

without weakening M. Detailed Hall and resistivity mea-
surements were carried out by Lee et al. �2004� on 12
crystals of CuCr2Se4−xBrx. They found that �yx measured
at 5 K changes sign �negative to positive� when x ex-
ceeds 0.4. At x=1, �yx attains very large values
��700 �
 cm at 5 K�.

Lee et al. �2004� showed that the magnitude ��yx� /n
varies as �2 over three decades in � �Fig. 24�, consistent
with the prediction of the KL theory.

The AHE in the related materials CuCr2S4,
CuxZnxCr2Se4 �x= 1

2 �, and Cu3Te4, has been investigated
by Oda et al. �2001�. These materials however are be-
lieved to have nontrivial spin structures below a tem-
perature Tm. For CuCr2S4 and Cu3Te4, the Hall resistiv-
ities were observed to deviate from ��H�=R0H
+4�RsM below Tm through sign changes in Rs. They
proposed adding a third term �aH3� to this standard
equation to understand the strong T dependence of the
Hall resistivity and argued that the nontrivial spin struc-
ture plays an important role.

The origin of this nontrivial behavior is believed to
hinge on the nontrivial magnetic structures although fur-
ther theoretical studies will be needed to establish this
connection.

2. Heusler alloy

The full Heusler alloy Co2CrAl has the L21 lattice
structure and orders ferromagnetically below 333 K.
Several groups �Galanakis et al., 2002; Block et al., 2004�
have argued that the conduction electrons are fully spin
polarized �“half metal”�. The absence of minority carrier
spins is expected to simplify the analysis of the Hall con-
ductivity. Hence this system is potentially an important
system to test theories of the AHE.

The AHE has been investigated on single crystals
with stoichiometry Co2.06Cr1.04Al0.90 �Husmann and
Singh, 2006�. Below the Curie temperature TC=333 K,

FIG. 24. �Color online� Log-log plot of ��xy� � /nh vs � in 12 crys-
tals of Br-doped spinel CuCr2Se4−xBrx with nh as the hole den-
sity �� is measured at 5 K; �xy is measured at 2 and 5 K�.
Samples in which �yx is electronlike �holelike� are shown as
open �closed� circles. The straight-line fit implies ��xy� � /nh
=A��, with �=1.95±0.08 and A=2.24�10−25 �SI units�. From
Lee et al., 2004.
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the magnetization M increases rapidly, eventually satu-
rating to a low-T value that corresponds to 1.65�B �Bohr
magneton�/f.u. Husmann and Singh showed that, below
�310 K, M�T� fits well to the form �1− �T /TC�2�1/2. As-
suming that the ordinary Hall coefficient R0 is negligible,
they found that the Hall conductivity �xy=�yx /�2 is
strictly linear in M �expressed as �xy=SH

1 M� over the T
interval 36–278 K �Fig. 25�. They interpret the linear
variation as consistent with the intrinsic AHE theory.
The value of �S

1 =0.383 G/ �4� 
 cm� inferred is similar
to values derived from measurements on the dilute Ni
alloys, half Heuslers, and silicides.

3. Fe1−yCoySi

The silicide FeSi is a nonmagnetic Kondo insulator.
Doping with Co leads to a metallic state with a low den-
sity p of holes. Over a range of Co doping �0.05�y
�0.8� the ground state is a helical magnetic state with a
peak Curie temperature TC�50 K. The magnetization
corresponds to 1�B �Bohr magneton� per Co ion. The
tunability allows investigation of transport in a magnetic
system with low p. Manyala et al. �2004� observed that
the Hall resistivity �H increases to �1.5 �
 cm �at 5 K�
at the doping y=0.1. By plotting the observed Hall con-
ductivity �xy against M, they found �xy=SHM with SH
�0.22 G/ �4� 
 cm�. In contrast, in heavy fermion sys-
tems �which include FeSi� �xy�M−3 �Fig. 26�.

4. MnSi

MnSi grows in the noncentrosymmetric B20 lattice
structure which lacks inversion symmetry. Competition
between the exchange energy J and Dzyaloshinsky-
Moriya term D leads to a helical magnetic state with a

long pitch � ��180 Å�. At ambient pressure, the helical
state forms at the critical temperature TC=30 K. Under
moderate hydrostatic pressure P, TC decreases mono-
tonically, reaching zero at the critical pressure Pc
=14 kbar. Although MnSi has been investigated for sev-
eral decades, interest has been revived recently by a
neutron scattering experiment which shows that, above
Pc, MnSi displays an unusual magnetic phase in which
the sharp magnetic Bragg spots at P�Pc are replaced by
a Bragg sphere �Pfleiderer et al., 2004�. Non-Fermi liquid
exponents in the resistivity � vs T are observed above
Pc.

Among ferromagnets, MnSi at 4 K has a low resistiv-
ity ���2–5 �
 cm�. The unusually long carrier mean
free path � implies that the ordinary term �xy

NH��2 is
greatly enhanced. In addition, the small � renders the
total Hall voltage difficult to resolve. Both factors
greatly complicate the task of separating �xy

NH from the
AHE conductivity. However, the long � in MnSi pre-
sents an opportunity to explore the AHE in the high-
purity limit of ferromagnets. Using high-resolution mea-
surements of the Hall resistivity �yx �Fig. 27�a��, Lee et
al. �2007� recently accomplished this separation by ex-
ploiting the large longitudinal magnetoresistance �MR�
��H�. From Eqs. �2.1� and �2.13�, they have �yx� �H�
=SH��H�2M�H�, where �yx� =�yx

AH=�yx−R0B. At each T,
the field profiles of �yx� �H� and M�H� are matched by
adjusting the two H-independent parameters SH and R0
�Fig. 27�b��. The inferred parameters SH and R0 are
found to be T independent below TC �Fig. 28�.

FIG. 25. �Color online� Combined plots of �xy in the Heusler
alloy Co2CrAl vs the magnetization M at selected tempera-
tures from 36 to 278 K. The inset shows the inferred values of
�xy

AH��xy /M at each T. From Husmann and Singh, 2006.

FIG. 26. �Color online� Hall conductivity �xy of ferromagnetic
metals and heavy fermion materials �collected at 1 kG and 5 K
unless otherwise noted�. Small solid circles represent
Fe1−yCoySi for 5�T�75 K and 500 G�H�50 kG with y
=0.1 �filled circles�, 0.15 �filled triangles�, y=0.2 ���, and 0.3
�filled diamonds�. MnSi data �5–35 K� are large, solid squares
connected by black line. Small asterisks are �GaMn�As data
for 5�T�120 K. The rising line �xy�M is consistent with the
intrinsic AHE in itinerant ferromagnets while the falling line
�xy�M−3 applies to heavy fermions. From Manyala et al.,
2004.
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The Hall effect of MnSi under hydrostatic pressure
�5–11.4 kbar� was measured recently �Lee et al., 2009�.
In addition to the AHE and OHE terms �xy

AH and �xy
NH,

Lee et al. observed a well-defined Hall term �xy
C with an

unusual profile. As shown in Fig. 29 �note that in the
figure �xy

AH and �xy
NH are labeled �xy

A and �xy
N , respec-

tively�, the new term appears abruptly at 0.1 T, rapidly
rises to a large plateau value, and then vanishes at
0.45 T �curves at 5, 7, and 10 K�. From the large magni-
tude of �xy

C and its restriction to the field interval in
which the cone angle is nonzero, they argued that it
arises from the coupling of the carrier spin to the chiral
spin textures in the helical magnetization, as discussed in
Sec. II.B. They noted that MnSi under pressure provides
a rare example in which the three Hall conductivities
coexist at the same T.

In the A phase of MnSi, which occurs at ambient pres-
sure in a narrow range of temperature �28�T�29 K�
and field �0.1�H�0.2 T�, Neubauer et al. �2009� ob-
served a distinct contribution to the Hall effect which
they identified with the existence of a Skyrmion lattice.
Diffraction evidence for the Skyrmion lattice in the A
phase has been obtained by small-angle neutron scatter-
ing.

5. Mn5Ge3

The AHE in thin-film samples of Mn5Ge3 was inves-
tigated by Zeng et al. �2006�. They expressed the AHE
resistivity �AH, which is strongly T dependent �Fig.
30�a��, as the sum of the skew-scattering term a�M��xx

and the intrinsic term b�M��xx
2 , viz.,

�AH = a�M��xx + b�M��xx
2 . �2.14�

The quantity b�M� is the intrinsic AHE conductivity
�AH-int.

FIG. 27. �Color online� The anomalous Hall effect in MnSi. �a�
Hall resistivity �yx vs H in MnSi at selected T from 5 to 200 K.
At high T, �yx is linear in H but gradually acquires an anoma-
lous component �yx� =�yx−R0B with a prominent “knee” fea-
ture below TC=30 K. �b� Matching of the field profiles of the
anomalous Hall resistivity �yx� to the profiles of �2M, treating
SH and R0 as adjustable parameters. Note the positive curva-
ture of the high-field segments. From Lee et al., 2007.

FIG. 28. �Color online� Comparison of the anomalous Hall
conductivity �xy

A and the ordinary term �xy
N measured in a 1 T

field in MnSi. �xy
A , inferred from the measured M �solid curve�

and Eq. �2.13�, is strictly independent of �. Its T dependence
reflects that of M�T�. �xy

N ��2 is calculated from R0. The con-
ductivity at zero H, ���, is shown as a dashed curve. From
Lee et al., 2007.

FIG. 29. �Color online� Weak-field peak anomaly in the Hall
effect of MnSi under pressure. −�yx vs H in MnSi under hydro-
static pressure P=11.4 kbar at several T�TC, with H nomi-
nally along �111�. The large Hall anomaly observed �electron-
like in sign� arises from a new chiral contribution �xy

C to the
total Hall conductivity. In the phase diagram �inset� the shaded
region is where �xy

C is resolved. The non-Fermi-liquid region is
shaded. From Lee et al., 2009.
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To separate the two terms, Zeng et al. plotted the
quantity �AH /M�T��xx against �xx with T as a parameter.
For T�0.8TC, the plot falls on a straight line with a
small negative intercept �solid squares in Fig. 30�b��. The
intercept yields the skew-scattering term a�M� /M,
whereas the slope gives the intrinsic term b�M� /M.
From the constant slope, they derive their main conclu-
sion that �AH-int varies linearly with M.

To account for the linear-M dependence, Zeng et al.
�2006� identified the role of long-wavelength spin waves
which cause fluctuations in the local direction of M�x�
�and hence of ��. They calculated the reduction in
�AH-int and showed that it varies linearly with M �Fig.
30�c��.

6. Layered dichalcogenides

The layered transition-metal dichalcogenides are com-
prised of layers weakly bound by the van der Waals
force. Parkin and Friend �1980� showed that a large
number of interesting magnetic systems may be synthe-
sized by intercalating 3d magnetic ions between the lay-
ers.

The dichalcogenide FexTaS2 typically displays proper-
ties suggestive of a ferromagnetic cluster-glass state at
low T for a range of Fe content x. However, at the com-
position x= 1

4 , the magnetic state is homogeneous. In
single crystals of Fe1/4TaS2, the easy axis of M is parallel

to ĉ �normal to the TaS2 layers�. Morosan et al. �2007�
observed that the curves of M vs H display very sharp
switching at the coercive field at all T�TC �160 K�. In
this system, the large ordinary term �xy

NH complicates the
extraction of the AHE term �xy

AH. Converting the �yx-H
curves to �xy-H curves �Fig. 31�, Checkelsky et al. �2008�
inferred that the jump magnitude ��xy equals 2�xy

AH by
assuming that Eq. �2.13� is valid. This method provided a
direct measurement of �xy

AH without knowledge of R0. As
shown in Fig. 31�b�, both the inferred �xy

AH and measured
M are nearly T independent below 50 K, but the former
deviates sharply downward above 50 K. Checkelsky et
al. �2008� proposed that the deviation represents a large
negative inelastic-scattering contribution �xy

in that in-
volves scattering from chiral textures of the spins which
increase rapidly as T approaches TC

−. In support, they
showed that the curve of �xy

in /M�T� vs T matches �within
the resolution� that of ����T��2 with ���T�=��T�−��0�.

7. Spin glasses

In canonical spin glasses such as dilute magnetic alloys
AuFe, AgMn, and CuMn, localized magnetic moments
of randomly distributed Fe or Mn ions interact with each
other through the Ruderman-Kittel-Kasuya-Yoshida in-
teraction mediated by conduction electrons �Binder and

FIG. 30. �Color online� The anomalous Hall effect in Mn5Ge3.
�a� The T dependence of �AH in Mn5Ge3 before �solid squares�
and after �solid circles� subtraction of the skew-scattering con-
tribution. The thin curve is the resistivity �. �b� Plots of
�AH / �M�xx� vs �xx before �solid squares� and after �solid
circles� subtraction of skew-scattering term. �c� Comparison of
calculated �AH-int vs Mz �open circles� with experimental val-
ues before �squares� and after �solid circles� subtraction of
skew-scattering term. From Zeng et al., 2006.

FIG. 31. �Color online� Jumps in the AHE conductivity in the
Fe-doped chalcogenide TaS2. �a� Hysteresis loops of �xy vs H
in Fe1/4TaS2 calculated from the measured � and �yx curves.
The linear portions correspond to �xy

NH, while the jump magni-
tude ��xy equals 2�xy

AH. �b� Comparison of ��xy with the mag-
netization M measured at 0.1 T. Within the resolution, ��xy
seems to be proportional to M below 50 K but deviates sharply
from M at higher temperatures, reflecting the growing domi-
nance of a negative inelastic-scattering term �xy

in . From Check-
elsky et al., 2008.
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Young, 1986; Campbell and Senoussi, 1992�. Then, upon
cooling, there occurs an equilibrium phase transition to
the spin glass state, for instance, at Tg=28 and 24 K for
AuFe 8 at. % Fe and AuMn 8 at. % Mn, respectively
�Pureur et al., 2004�. The theoretical understanding of
the spin-glass transition remains controversial. In fact,
from the experimental viewpoint, the spin-glass transi-
tion appears to be almost independent of the strength of
the spin anisotropy due to the Dzyaloshinsky-Moriya in-
teraction, though there is no finite-temperature spin-
glass transition in three-dimensional �3D� random iso-
tropic Heisenberg ferromagnets. A chirality-driven
mechanism for the spin-glass transition has been sug-
gested by Kawamura �1992�, who pointed out that for
small spin anisotropy the nature of the spin-glass transi-
tion is dominated by that of a transition to a chiral glass
�Kawamura, 1992�. He also argued that the AHE due to
the spin chirality, explained in Sec. II.B.4, should appear
in this class of materials and be useful as an experimen-
tal test of the mechanism �Kawamura, 2003�.

The Hall transport experiments in these systems
started with pioneering works of McAlister and Hurd
�1976� and McAlister �1978�, who measured the Hall re-
sistivity of zero-field-cooled samples at a low field and
found a shoulder in the Hall coefficient around the spin-
glass transition. Pureur et al. performed more detailed
measurements across the spin-glass transition �Fig. 32�.
Below Tg, it clearly showed a bifurcation of the anoma-
lous Hall coefficient Rs depending on the condition of
cooling the sample, namely, whether the field cooling or
the zero-field cooling is adopted �Pureur et al., 2004�.
Taniguchi et al. also performed the Hall transport mea-
surements on the canonical spin-glass AuFe, reproduced

the above result, and showed that �xy basically scales
with the magnetic susceptibility at least at the field H
=0.05 T, as shown in Fig. 33. They also analyzed the
data of �xy by assuming

Rs = Rs
0 + C�X + X 

nlM2� , �2.15�

which was introduced by Tatara and Kawamura �2002�
and Kawamura �2003� for the anomalous Hall coefficient
Rs in the empirical relation �xy�R0H+RsM. Here X 

and X 
nl are the linear susceptibility and the nonlinear

susceptibility of the uniform spin chirality. Their experi-
mental results of Rs are shown in Fig. 34, which indicate
that after removing the bifurcation of M by dividing �xy
by M, the data contain a bifurcation irrespective of the
applied field strength and thus the value of M. Since the
resistivity does not contain the hysteresis, this suggests

FIG. 32. The anomalous Hall coefficient Rs for AuMn 8 at. %
Mn and AuFe 8 at. % Fe. under field-cooled and zero-field-
cooled protocols. From Pureur et al., 2004.

FIG. 33. The Hall resistivity �xy and magnetization M simulta-
neously measured for AuFe 8 at. % Fe at a field H=500 G.
From Taniguchi et al., 2004.

FIG. 34. The temperature dependence of Rs=�xy /M for AuFe
8 at. % at several magnetic fields The arrows indicate the
freezing temperature at each field strength. From Taniguchi et
al., 2004.
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that the linear chirality susceptibility X bifurcates be-
low the freezing temperature Tf. This is consistent with
the chirality hypothesis for the spin-glass transition pro-
posed by Kawamura �1992� in that the chirality shows a
cusp at the transition temperature.

The chirality-induced contribution to the AHE in re-
entrant alloys of AuFe with higher Fe concentrations
was also found �Pureur et al., 2004; Taniguchi et al., 2004;
Fabris et al., 2006�, where a cusp appears in at the reen-
trant spin-glass transition at Tk=75 T from the collinear
ferromagnetic phase �TC�165 K� for AuFe 18 at. % Fe
�Pureur et al., 2004�. In this low-temperature phase be-
low Tk, the transverse components of spins freeze and
hence the material becomes a ferromagnet having a qua-
sistatic spin canting. Then, they attributed it to an onset
of this noncoplanarity and the associated spin chirality
at Tk.

Direct experimental estimates on the noncoplanar
chiral spin configuration or the spin chirality together
with microscopic arguments are required and will need
for further studies.

E. Localization and the AHE

The role of localization in the anomalous Hall effect is
an important issue. �For a review of theoretical works,
see Woelfle and Muttalib �2006�.�

The weak-localization effect on the normal Hall effect
due to the external magnetic field has been studied by
Altshuler et al. �1980� and Fukuyama �1980�, and the
relation ��xy

WL /�xy=2��xx
WL /�xx has been obtained,

where �OWL represents the correction of the physical
quantity O by the weak-localization effect. This means
that the Hall coefficient is not subject to the change due
to the weak localization, i.e., ��xy

NH=0. An early experi-
ment by Bergmann and Ye �1991� on the anomalous
Hall effect in the ferromagnetic amorphous metals
showed almost no temperature dependence of the
anomalous Hall conductivity, while the diagonal conduc-
tivity shows the logarithmic temperature dependence.
Langenfeld and Wolfle �1991�, Woelfle and Muttalib
�2006�, Muttalib and Woelfle �2007�, and Misra et al.
�2009� studied theoretically the model

H = 

k,�

�kck,�
† ck,� + 


i



k,k�,�

ei�k−k��·Ri

��V + i�k � k�� · Ji�ck�,��
† ck,�, �2.16�

where Ji is proportional to the angular momentum of
the impurity at Ri and the term containing it describes
the spin-orbit scattering. They discussed the logarithmic
correction to the anomalous Hall conductivity in this
model and found that Coulomb anomaly terms vanished
identically; the weak-localization correction was cut off
by the phase-breaking lifetime �� due to the skew scat-
tering, explaining the experiment of Bergmann and Ye
�1991�. Dugaev et al. �2001� found that for the two-
dimensional case the correction to the Hall conductivity
was logarithmic in the ratio max��tr /�SO,�tr /���, with �tr

being the transport lifetime and �SO being the lifetime
due to the spin-orbit scattering. More recently, Mitra et
al. �2007� first observed the logarithmic temperature de-
pendence of the anomalous Hall conductivity in the ul-
trathin film of polycrystalline Fe of sheet resistance Rxx
less than �3 k
. They defined the quantities �N�Q�
= �1/R0L00��Q /Q for the physical quantity Q with re-
spect to the reference temperature T=T0=5 K by �Q
=Q�T�−Q�T0�, R0=Rxx�T0�, and L00=e2 /2�2�. Defining
the coefficients AR and AH by

�N��xx� = AR ln�T0

T
� ,

�2.17�

�N��xy� = �2AR − AAH�ln�T0

T
� .

Figure 35 shows the R0 dependence of the coefficients
AR and AAH defined in Eq. �2.17�.

The change in the interpretation comes from the fact
that the phase-breaking lifetime �� in the Fe film is
mostly from scattering by the magnons and not from
skew scattering, which allows a temperature regime
where max�1/�s ,1 /�SO,�H�!1/��!1/�tr ��s—spin-flip
scattering time; �H—internal magnetic field in the ferro-
magnet�. In this region, they found that the weak-
localization effect can lead to coefficient of the logarith-
mic temperature dependence of �xy proportional to the
factor �xy

SSM / ��xy
SSM+�xy

SJM�, where �xy
SSM ��xy

SJM� is the con-
tribution from the skew-scattering �side-jump� mecha-
nism. Assuming that ratio �xy

SJM /�xy
SSM decreases as the

sheet resistance R0 increases, they were able to explain
the sample dependence of the logarithmic correction to
the anomalous Hall conductivity �Mitra et al., 2007�. The
absence of the logarithmic term of Bergmann and Ye
�1991� is interpreted as being due to a large ratio of
�xy

SJM /�xy
SSM in their sample. It is interesting that the ratio

�xy
SJM /�xy

SSM can be estimated from the coefficient of the
logarithmic term. Another recent study on weak local-

FIG. 35. �Color online� The resistance �R0� temperature de-
pendence of the coefficients AR and AAH defined in Eq. �2.17�.
Different symbols correspond to different methods of sample
preparation. From Mitra et al., 2007.
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ization was done by Meier et al. �2009� on granular fer-
romagnetic materials which were found to be in agree-
ment with normal metals.

Up to now we have discussed the weak-localization
effect. When the disorder strength increases, a metal-
insulator transition will occur. For a normal metal under
external magnetic field, the system belongs to the uni-
tary class, and in two dimensions all the states are local-
ized for any disorder �Lee and Ramakrishnan, 1985�. In
the quantum Hall system, however, the extended states
can survive at discrete energies at the center of the
broadened density of states at each Landau level. This
extended state carries the quantum Hall current. Field
theoretical formulation of this localization problem has
been developed �Prange and Girvin, 1987�. In the pres-
ence of the external magnetic field, a Chern-Simons
term appears in the nonlinear sigma model whose coef-
ficient is �xy. Therefore, the scaling variables are �xx and
�xy, i.e., the two-parameter scaling theory should be ap-
plied instead of the single-parameter scaling. It has been
discussed that the scaling trajectory in the �xy-�xx plane
has the fixed point at ��xy ,�xx�= „�n+1/2��e2 /h� ,�0…,
where �0 is some finite value and �xy scales to the quan-
tized value n�e2 /h� when the initial value �given by the
Boltzmann transport theory� lies in the range �n
−1/2��e2 /h���xy

�0�� �n+1/2��e2 /h�. In contrast to this
quantum Hall system, there is no external magnetic field
or the Landau-level formation in the anomalous Hall
system, and it is not trivial that the same two-parameter
scaling theory applies to this case.

M. Onoda and Nagaosa �2003� studied this problem
using the generalized Haldane model �Haldane, 1988�
which shows the quantum Hall effect without the exter-
nal magnetic field. They calculated the scaling function
of the localization length in the finite-width stripe
sample in terms of the iterative transfer matrix method
by MacKinnon and Kramer �1983� and found that two-
parameter scaling holds even without an external mag-
netic field or Landau-level formation. For the experi-
mental realization of this quantized anomalous Hall
effect, ��xy

�0�� given by Boltzmann transport theory �with-
out the quantum correction� is larger than e2 / �2h�, and

the temperature is lower than TLoc��Fe−c�xx
�0�/�xy

�0�
, where

�F is the Fermi energy and c is a constant of the order of
unity. Therefore, the Hall angle �xy

�0� /�xx
�0� should not be

so small, hopefully of the order of 0.1. However, in the
usual case, the Hall angle is at most 0.01, which makes
the quantized anomalous Hall effect rather difficult to
realize.

III. THEORY OF THE AHE: QUALITATIVE
CONSIDERATIONS

In this section, we review recent theoretical develop-
ments as well as the early theoretical studies of the
AHE. First, we give a pedagogical discussion on the dif-
ference between the normal Hall effect due to the Lor-
entz force and the AHE �Sec. III.A�. In Sec. III.B, we
discuss the topological nature of the AHE. In Sec. IV,

we present a wide survey of the early theories from a
modern viewpoint in order to bring them into the con-
text of the present linear transport theoretical formal-
isms now used as a framework for AHE theories.

A. Symmetry considerations and analogies between normal
Hall effect and AHE

Before describing these recent developments, we pro-
vide an elementary discussion that may facilitate under-
standing of the following sections.

The AHE is one of the fundamental transport phe-
nomena in solid-state physics. Its occurrence is a direct
consequence of broken time-reversal symmetry in the
ferromagnetic state, T. The charge current J is T odd,
i.e., it changes sign under time reversal. On the other
hand, the electric field E is T even. Therefore, Ohm’s law

J = �E �3.1�

relates two quantities with different T symmetries, which
implies that the conductivity � must be associated with
dissipative irreversible processes, and indeed we know
that the Joule heating Q=�E2 /2 always accompanies
the conductivity in Eq. �3.1�. This irreversibility appears
only when we consider macroscopic systems with con-
tinuous energy spectra.

Next, we consider the other aspect of the T symmetry,
i.e., the consequences of the T symmetry of the Hamil-
tonian which governs the microscopic dynamics of the
system. This important issue has been formulated by
Onsager, who showed that the response functions satisfy
the following relation �Landau et al., 2008�:

K���� ;r,r�;B� = ����K���� ;r�,r ;− B� , �3.2�

where K���� ;r ,r� ;B� is the response of a physical quan-
tity � at position r to the stimulus conjugate to the quan-
tity � at position r� with frequency �. Here ������= ±1
specifies the symmetry property of � ��� with respect to
the T operation. B suggests a magnetic field but repre-
sents any time-reversal breaking field. In the case of a
ferromagnet B can be associated with the magnetization
M, the spontaneously generated time-reversal symmetry
breaking field of a ferromagnet. The conductivity tensor
�ab at a given frequency is proportional to the current-
current response function. We can therefore make the
identification �→Ja, �→Jb, where Ji �i=x ,y ,z� are the
components of the current operator. Since ��=��=−1,
we can conclude that

�ab�� ;B� = �ba�� ;− B� . �3.3�

Hence, we conclude that �ab is symmetric with respect
to a and b in systems with T symmetry. The antisymmet-
ric part �ab���−�ba��� is finite only if T symmetry is
broken.

Now we turn back to irreversibility for the general
form of the conductivity �ab, for which the dissipation is
given by Landau et al. �2008�,
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Q =
1
4


ab
��ab

* + �ba�EaEb
*

=
1
4


ab
�Re��ab + �ba�Re�EaEb

*�

+ Im��ab − �ba�Im�EaEb
*�� . �3.4�

The real part of the symmetric combination �ab+�ba and
the imaginary part of the antisymmetric combination
�ab−�ba contribute to the dissipation, while the imagi-
nary part of �ab+�ba and the real part of �ab−�ba rep-
resent the dispersive �dissipationless� responses. There-
fore, Re��ab−�ba�, which corresponds to the Hall
response, does not produce dissipation. This means that
the physical processes contributing to this quantity can
be reversible, i.e., dissipationless, even though they are
not necessarily so. This point is directly related to the
controversy between intrinsic and extrinsic mechanisms
for the AHE.

The origin of the ordinary Hall effect is the Lorentz
force due to the magnetic field H,

F = −
e

c
v � H , �3.5�

which produces an acceleration of the electron perpen-
dicular to its velocity v and H. For free electrons this
leads to circular cyclotron motion with frequency �c
=eH /mc. The Lorentz force leads to charge accumula-
tions of opposite signs on the two edges of the sample.
In the steady state, the Lorentz force is balanced by the
resultant transverse electric field, which is observed as
the Hall voltage VH. In the standard Boltzmann-
theoretical approach, the equation for the electron dis-
tribution function f�p ,x� is given by �Ziman, 1967�

�f

�t
+ v ·

�f

�x
+ F ·

�f

�p
= � �f

�t
�

coll
, �3.6�

where p and x are the momentum and real-space coor-
dinates, respectively. Setting F=−e�E+ v

c �H� and using
the relaxation time approximation for the collision term,
�−1�f− feq�, with feq being the distribution function in
thermal equilibrium, one can obtain the steady-state so-
lution to this Boltzmann equation for a uniform system
as

f�p� = feq�p� + g�p� , �3.7�

with

g�p� = − �e
�feq

��
v · �E −

e�

mc
H � E� , �3.8�

where order H2 terms have been neglected and the mag-
netic field Hz is assumed to be small, i.e., �c�!1. The
current density J=−e��d3p / �2��3�� p

m �f�p� is obtained
from Eq. �3.8� to order O�E� and O�EH� as

J = �E + �HH � E , �3.9�

where

� = −
2
3 � d3p

�2��3v2e2�
�feq

��
�3.10�

is the conductivity, while

�H =
2
3 � d3p

�2��3v2e2�
�feq

��

e�Hz

mc
�3.11�

is the ordinary Hall conductivity.
Now we fix the direction of the electric and magnetic

fields as E=Eyey and H=Hzez. Then the Hall current is
along the x direction and we write it as

Jx = �HEy, �3.12�

with the Hall conductivity �H=ne3�2Hz /m2c with n be-
ing the electron density. The Hall coefficient RH is de-
fined as the ratio VH /JxHz, and from Eqs. �3.10� and
�3.11� one obtains

RH = −
1

nec
. �3.13�

This result is useful to determine the electron density n
experimentally since it does not contain the relaxation
time �. Note here that for fixed electron density n, Eq.
�3.13� means �HH�xx

2 and that �HH, independent of
the relaxation time � �or equivalently �xx�. In other
words, the ratio ��H� /�xx=�c�!1. This relation will be
compared with the AHE case below.

What happens in the opposite limit �c��1? In this
limit, the cyclotron motion is completed many times
within the lifetime �. This implies that the closed cyclo-
tron motion is repeated many times before being dis-
rupted by scattering. When treated quantum mechani-
cally the periodic classical motion leads to kinetic-
energy quantization and Landau-level formation. As is
well known, in the 2D electron gas realized in semicon-
ductor heterostructures, Landau-level quantization leads
to the celebrated quantum Hall effect �Prange and
Girvin, 1987�. If we consider the free electrons, i.e., com-
pletely neglecting the potential �both periodic and ran-
dom� and the interaction among electrons, one can show
that �H is given by �e2 /h�", where " is the filling factor of
the Landau levels. In combination with electron local-
ization, gaps at integer filling factors lead to quantization
of �H. For electrons in a two-dimensional crystal, the
Hall conductance is still quantized, a property which can
be traced to the topological properties of Bloch state
wavefunctions discussed below �Prange and Girvin,
1987�.

Now consider the magnetic-field effect for electrons
under the influence of the periodic potential. For sim-
plicity we study the tight-binding model,

H = 

ij

tijci
†cj. �3.14�

The magnetic field adds the Peierls phase factor to the
transfer integral tij between sites i and j, viz.,

tij → tij exp�iaij� , �3.15�

with
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aij =
e

�c
�

i

j

dr · A�r� . �3.16�

Note that the phase factor is periodic with the period 2�
with respect to its exponent. Since the gauge transforma-
tion

ci → ci exp�i�i� �3.17�

together with the redefinition

aij → aij + �i − �j �3.18�

keeps the Hamiltonian invariant, aij itself is not a physi-
cal quantity. Instead, the flux �=aij+ajk+akl+ali per
square plaquette is the key quantity in the problem �see
Fig. 36�

One may choose, for example, a gauge in which tij

along the directions ±ŷ is a real number t, while tii+x
= t exp�−i�iy� to produce a uniform flux distribution � in
each square plaquette. Here iy is the y component of the
lattice point position i= �ix , iy�. The problem is that the iy
dependence breaks the periodicity of the Hamiltonian
along the y axis, which invalidates the Bloch theorem.
This corresponds to the fact that the vector potential
A�r�= �−Hy ,0� for the uniform magnetic field H is y de-
pendent, so that momentum component py is no longer
conserved. However, when � / �2�� is a rational number
n /m, where n and m are integers that do not share a
common factor, one can enlarge the unit cell by m times
along the y direction to recover the periodicity because
exp�−i��iy+m��=exp�−i�iy�. Therefore, there appear m
subbands in the first-Brillouin zone, each of which is
characterized by a Chern number related to the Hall
response as described in Sec. III.B �Thouless et al.,
1982�. The message here is that an external commensu-
rate magnetic field leads to a multiband structure with

an enlarged unit cell, leading to the quantized Hall re-
sponse when the chemical potential is within the gap
between the subbands. When � / �2�� is an irrational
number, on the other hand, one cannot define the Bloch
wavefunction and the electronic structure is described
by the Hofstadter butterfly �Hofstadter, 1976�.

Since flux 2� is equivalent to zero flux, a commensu-
rate magnetic field can be equivalent to a magnetic-field
distribution whose average flux is zero. Namely, the total
flux penetrating the m plaquettes is 2�n, which is
equivalent to zero. Interestingly, spatially nonuniform
flux distributions can also lead to quantum Hall effects.
This possibility was first considered by Haldane �1988�,
who studied a tight-binding model on the honeycomb
lattice. He introduced complex transfer integrals be-
tween the next-nearest-neighbor sites in addition to the
real one between the nearest-neighbor sites. The result-
ant Hamiltonian has translational symmetry with respect
to the lattice vectors, and the Bloch wavefunction can be
defined as the function of the crystal momentum k in the
first-Brillouin zone. The honeycomb lattice has two sites
in the unit cell, and the tight-binding model produces
two bands separated by the band gap. The wavefunction
of each band is characterized by the Berry-phase curva-
ture, which acts like a magnetic field in k space, as will
be discussed in Secs. III.B and V.A.

The quantum Hall effect results when the Fermi en-
ergy is within this band gap. Intuitively, this can be in-
terpreted as follows. Even though the total flux pen-
etrating the unit cell is zero, there are loops in the unit
cells enclosing a nonzero flux. Each band picks up the
flux distribution along the loops with different weights
and contributes to the Hall response. The sum of the
Hall responses from all the bands, however, is zero as
expected. Therefore, the “polarization” of Hall re-
sponses between bands in a multiband system is a gen-
eral and fundamental mechanism of the Hall response,
which is distinct from the classical picture of the Lorentz
force.

There are several ways to realize a flux distribution
within a unit cell in momentum space. One is the rela-
tivistic spin-orbit interaction given by

HSOI =
�e

2m2c2 �s � �V� · p , �3.19�

where V is the potential, s is the spin, and p is the mo-
mentum of the electron. This Hamiltonian can be writ-
ten as

HSOI = ASOI · p , �3.20�

with ASOI= ��e /2m2c2��s��V� acting as the effective
vector potential. Therefore, in the magnetically ordered
state, i.e., when s is ordered and can be regarded as a c
number, ASOI plays a role similar to the vector potential
of an external magnetic field. Note that the Bloch theo-
rem is valid even in the presence of the spin-orbit inter-
action since it preserves the translational symmetry of
the lattice. However, the unit cell may contain more
than two atoms and each atom may have multiple orbit-
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FIG. 36. Tight-binding model on a square lattice under the
magnetic flux � for each plaquette. We choose the gauge
where the phase factor of the transfer integral along x direc-
tion is given by e−i�iy, with iy being the y component of the
lattice point position i= �ix , iy�.
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als. Hence, the situation is similar to that described
above for the commensurate magnetic field or the
Haldane model.

The following simple model is instructive. Consider
the tight-binding model on a square lattice given by

H = − 

i,�,a=x,y

tssi,�
† si+a,� + H.c. + 


i,�,a=x,y
tppi,a,�

† pi+a,a,�

+ H.c. + 

i,�,a=x,y

tspsi�
† pi+a,a,� + H.c.

+ �

i,�

��pi,x,�
† − i�pi,y,�

† ��pi,x,� + i�pi,y,�� . �3.21�

On each site, we put the three orbitals s, px, and py
associated with the corresponding creation and annihila-
tion operators. The first three terms represent the trans-
fer of electrons between the neighboring sites as shown
by Fig. 37. The signs in front of t’s are determined by the
relative sign of the two orbitals connected by the trans-
fer integrals, and all t’s are assumed to be positive. The
last term is a simplified SOI in which the z component of
the spin moment is coupled to that of the orbital mo-
ment. This six-band model can be reduced to a two-band
model in the ferromagnetic state when only the �=+1
component is retained. By the spin-orbit interaction, the
p orbitals are split into

�p ± 	 =
1
�2

��px	 ± i�py	� �3.22�

at each site, with the energy separation 2�. Therefore,
when only the lower energy state �p− 	 and the s orbital
�s	 are considered, the tight-binding Hamiltonian be-
comes H=
k#

†�k�h�k�#�k�, with #�k�= �sk,�=1 ,pk,−,�=1�T

and

h�k�

= ��s − 2ts�cos kx + cos ky� �2tsp�i sin kx + sin ky�
�2tsp�− i sin kx + sin ky� �p + tp�cos kx + cos ky� � .

�3.23�

Note that the complex orbital �p− 	 is responsible for the
complex off-diagonal matrix elements of h�k�. This pro-
duces the Hall response as one can easily see from for-
mulas Eqs. �1.5� and �1.6� in Sec. I.B. When the Fermi
energy is within the band gap, the Chern number for
each band is ±1 when �s−4ts��p+2tp and they are zero
otherwise. This can be understood by considering the
effective Hamiltonian near k=0, which is given by

h�k� = �̄ + m�z + �2tsp�ky�x − kx�y� , �3.24�

with �̄= ���s−4ts�+ ��p+2tp�� /2 and m= ��s−4ts�
− ��p+2tp�, which is essentially the Dirac Hamiltonian in
�2+1� dimensions. One can calculate the Berry curva-
ture b±�k�=�bz�k��ez defined in Eq. �1.6� for the upper
��� and lower ��� bands as

bz�k�� =
m

2�k�
2 + m2�3/2 . �3.25�

The integral over the two-dimensional wave vector k�

= �kx ,ky� leads to Hall conductance �H= 1
2 sgn�m�e2 /h in

this continuum model when only the lower band is fully
occupied �Jackiw, 1984�. The distribution Eq. �3.25� indi-
cates that the Berry curvature is enhanced when the gap
m is small near this avoided band crossing. Note that the
continuum model Eq. �3.24� cannot describe the value of
the Hall conductance in the original tight-binding model
since the information is not retained over all the first-
Brillouin zone. Actually, it has been proven that the Hall
conductance is an integer multiple of e2 /h due to the
single valudeness of the Bloch wave function within the
first-Brillouin zone. However, the change of the Hall
conductance between positive and negative m can be
described correctly.

Onoda and Nagaosa �2002� demonstrated that a simi-
lar scenario also emerges for a six-band tight-binding
model of t2g orbitals with SOI. They showed that the
Chern number of each band can be nonzero leading to a
nonzero Hall response arising from the spontaneous
magnetization. This suggests that the anomalous Hall ef-
fect can be of topological origin, a reinterpretation of
the intrinsic contribution found by Karplus and Lut-
tinger �1954�. Another mechanism which can produce a
flux is a noncoplanar spin structure with an associated
spin chirality as discussed in Sec. II.B.

The considerations explained here have totally ne-
glected the finite lifetime � due to the impurity and/or
phonon scattering, a generalization of the parameter �c�
which appeared in the case of the external magnetic
field. A full understanding of disorder effects usually re-
quires the full power of the detailed microscopic theo-
ries reviewed in Sec. V. The ideas explained in this sec-
tion though are sufficient to understand why the intrinsic
Berry-phase contribution to the Hall effect can be so

t p

t s

t s p

p x - i p y

s

FIG. 37. �Color online� Tight-binding model on a square lat-
tice for a three-band model made from s and px− ipy orbitals
with polarized spins. The transfer integrals between s and px
− ipy orbitals become complex along the y direction in a way
that is equivalent to effective magnetic flux.
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important. The SOI produces an effective vector poten-
tial and a “magnetic flux distribution” within the unit
cell. The strength of this flux density is usually much
larger than the typical magnetic-field strength available
in the laboratory. In particular, the energy scale ��c re-
lated to this flux is that of the spin-orbit interaction for
Eq. �3.20� and hence of the order of 30 meV in 3d
transition-metal elements. This corresponds to a mag-
netic field of the order of 300 T. Therefore, one can ex-
pect that the intrinsic AHE is easier to observe com-
pared with the quantum Hall effect.

B. Topological interpretation of the intrinsic mechanism:
Relation between Fermi sea and Fermi surface properties

The discovery and subsequent investigation of the
quantum Hall effect led to numerous important concep-
tual advances �Prange and Girvin, 1987�. In particular,
the utility of topological considerations in understanding
electronic transport in solids was first appreciated. In
this section, we provide an introduction to the applica-
tion of topological notions such as the Berry phase and
the Chern number to the AHE problem and explain the
long-unsuspected connections between these consider-
ations and KL theory. A more elementary treatment is
given by Ong and Lee �2006�.

The topological expression given in Eq. �1.5� was first
obtained by Thouless, Kohmoto, Nightingale, and Nijs
�TKNN� �Thouless et al., 1982� for Bloch electrons in a
2D insulating crystal lattice immersed in a strong mag-
netic field H. They showed that each band is character-
ized by a topological integer called the Chern number

Cn � −� dkxdky

�2��2 bn
z�k� . �3.26�

According to Eq. �1.5�, the Chern number Cn gives the
quantized Hall conductance of an ideal 2D insulator,
viz., �xy=e2Cn /h. As mentioned, these topological argu-
ments were subsequently applied to semiclassical trans-
port theory �Sundaram and Niu, 1999� and the AHE
problem in itinerant ferromagnets �Jungwirth, Niu, and
MacDonald, 2002; Onoda and Nagaosa, 2002�, and the
equivalence to the KL expression �Karplus and Lut-
tinger, 1954� for �H was established.

Although the intrinsic Berry-phase effect involves the
entire Fermi sea, as is clear from Eq. �1.5�, it is usually
believed that transport properties of Fermi liquids at
low temperatures relative to the Fermi energy should be
dependent only on Fermi-surface properties. This is a
simple consequence of the observation that at these
temperatures only states near the Fermi surface can be
excited to produce nonequilibrium transport.

The apparent contradiction between conventional
Fermi liquid theoretical ideas and the Berry-phase
theory of the AHE was resolved by Haldane �2004�, who
showed that the Berry-phase contribution to the AHE
could be viewed in an alternate way. Because of its to-
pological nature, the intrinsic AHE, which is most natu-
rally expressed as an integral over the occupied Fermi

sea, can be rewritten as an integral over the Fermi sur-
face. We start with the topological properties of the
Berry phase. The Berry-phase curvature bnk is gauge in-
variant and divergence-free except at quantized mono-
pole and antimonopole sources with the quantum ±2�,
i.e.,

�k · bnk = 

i

qni�
3�k − kni�, qni = ± 2� . �3.27�

These monopoles and antimonopoles appear at isolated
k points in three dimensions. This is because in complex
Hermitian eigenvalue problems accidental degeneracy
can occur by tuning the three parameters of k.

To gain further insight on the topological nature of 3D
systems, it is useful to rewrite Eq. �1.5� as

�ij = �ij�
e2

h

K�

2�
, �3.28�

where

K = 

n

Kn, �3.29�

Kn = −
1

2�
�

F.B.Z.
d3kf��nk�bnk. �3.30�

We note that if the band dispersion �nk does not cross �F,
Kn

� is quantized in integer multiples �Cna� of a primitive
reciprocal lattice vector Ga at T=0. We have

Kn = 

a

CnaGa, �3.31�

where the index a runs over the three independent
primitive reciprocal lattice vectors �Kohmoto, 1985�.

We next discuss the nonquantized part of the anoma-
lous Hall conductivity. In a real material with multiple
Fermi surface �FS� sheets indexed by �, we can describe
each sheet by kF

����s�, where s= �s1 ,s2� is a parametriza-
tion of the surface. It is convenient to redefine the
Berry-phase connection and curvature as

ãi�s� = a„k�s�… · �sik�s� , �3.32�

b̃�s� = �ij�siãj�s� , �3.33�

with �ij as the rank-2 antisymmetric tensor.
By integrating Eq. �3.30� by parts, eliminating the in-

tegration over the Brillouin zone boundary for each
band, and dropping the band indices, we may write �at
T=0� the vector K in Eq. �3.29� as

K = 

a

CaGa + 

�

K�, �3.34�
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K� =
1

2�
�

S�

ds1 ∧ ds2b̃�s�kF
����s�

+
1

4�

i

G�i�
�S�

i
ds · ã�s� . �3.35�

Here Ca is the sum of Cna over the fully occupied bands,
� labels sheets of the Fermi surface S�, and �S�

i is the
intersection of the Fermi surface S� with the Brillouin
zone boundary i where kF

����s� jumps by G�i. Note that
the quantity

1

2�
�

S�

ds1 ∧ ds2b̃�s� �3.36�

gives an integer Chern number. Hence gauge invariance
requires that



�

1

2�
�

S�

ds1 ∧ ds2b̃�s� = 0. �3.37�

The second term in Eq. �3.35� guarantees that K� is un-
changed by any continuous deformation of the Brillouin
zone into another primitive reciprocal cell.

IV. EARLY THEORETICAL STUDIES OF THE AHE

A. Karplus-Luttinger theory and the intrinsic mechanism

The pioneering work of Karplus and Luttinger �KL�
�Karplus and Luttinger, 1954� was the first theory of the
AHE fully based on Bloch states #nk. As a matter of
course, their calculations uncovered the important role
played by the mere existence of bands and the associ-
ated overlap of Bloch states. The KL theory neglects all
lattice disorder, so that the Hall effect it predicts is based
on an intrinsic mechanism.

In a ferromagnet, the orbital motion of the itinerant
electrons couples to spin ordering via the SOI. Hence all
theories of the AHE invoke the SOI term, which, as
mentioned, is described by the Hamiltonian given by
Eq. �3.19�, where V�r� is the lattice potential. The SOI
term preserves lattice translation symmetry and we can
therefore define spinors which satisfy Bloch’s theorem.
When SO interactions are included the Bloch Hamil-
tonian acts in a direct product of orbital and spin space.
The total Hamiltonian HT can be separated into contri-
butions as follows:

HT = H0 + HSOI + HE, �4.1�

where H0 is the Hamiltonian in the absence of SOI and
HE is the perturbation due to the applied electric field E.
In simple models the consequences of magnetic order
can be represented by replacing the spin operator in Eq.
�3.19� by the ordered magnetic moment Ms as s
→ �� /2��Ms /M0�, where M0 is the magnitude of the satu-
rated moment. The matrix element of HE=−eEbxb can
be written as

�nk�HE�n�k�	 = − eEb�i�n,n�
�

�kb
�k,k� + i�k,k�Jb

nn��k�� ,

�4.2�

where the “overlap” integral

Jb
nn��k� = �




drunk
* �r�

�

�kb
un�k�r� �4.3�

is regular function of k. In hindsight, Jb
nn��k� may be rec-

ognized as the Berry-phase connection an�k� discussed
in Sec. I.B.1.

We next divide HE into HE
r +HE

a , where HE
a �HE

r � cor-
responds to the first �second� term on the right-hand side
�rhs� of Eq. �4.2�. Absorbing HE

r into the unperturbed
Hamiltonian, i.e., Hp=H0+HSOI+HE

r , KL treated the re-
maining term HE

a as a perturbation. Accordingly, the
density matrix � was written as

� = �0�Hp� + �1, �4.4�

where �0�Hp� is the finite-temperature equilibrium den-
sity matrix and �1 is the correction. KL assumed that �1
gives only the ordinary conductivity, whereas the AHE
arises solely from �0�Hp�. Evaluating the average veloc-
ity v̄a as v̄a=Tr��0va�, they found that

v̄a = − ieEb

n,k

�0��Enk
p �Ja

nn�k� , �4.5�

where �0� is the derivative with respect to the energy. As
it is clear here, this current is the dissipationless current
in thermal equilibrium under the influence of the exter-
nal electric field, i.e., HE

r . The AHE contribution arises
from the interband coherence induced by an electronic
field and not from the more complicated rearrangements
of states within the partially occupied bands.

A second assumption of KL is that, in 3d metals, the
SOI energy HSO!�F �the Fermi energy� and W �the
bandwidth�, so that it suffices to consider HSO to leading
order. Using Eq. �3.19�, the AHE response is then pro-
portional to �Ms�, consistent with empirical relationship
�2.1�. More explicitly, to first order in HSOI, KL obtained

v̄ = −
e

m�2

k,n

�0��nk��E · vnk�Fnk, �4.6�

where �nk is the energy of the Bloch state for H0, � is
the averaged value of interband energy separation, and
Fnk is the force i�nk��HSOI,p��nk	. This gives the anoma-
lous Hall coefficient

Rs �
2e2HSO

m�2 �� m

m*
��2, �4.7�

where �F���e /c�HSOv, m* is the effective mass, � is the
number of incompletely filled d orbitals, and � is the
resistivity.

Note that the �2 dependence implies that the off-
diagonal Hall conductivity �H is independent of the
transport lifetime �, i.e., it is well defined even in the
absence of disorder, in striking contrast with the diago-
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nal conductivity �. The implication that �H=�H�
2 varies

as the square of � was immediately subjected to exten-
sive experimental tests, as described in Sec. I.A.

An important finding in the KL theory is that inter-
band matrix elements of the current operator contribute
significantly to the transport currents. This contrasts
with conventional Boltzmann transport theory, where
the current arises solely from the group velocity vn,k
=��n,k /�k.

In the Bloch basis

�r�#nk	 = eik·r�r�unk	 , �4.8�

the N-orbital Hamiltonian �for a given k� may be de-
composed into the 2N�2N matrix h�k�, where spin has
been included, viz.,

h�k� = 

n,m

�nk�h�k��mk	an
†�k�am�k� . �4.9�

The corresponding current operator for a given k is

J��t,k� = 

n,m

�nk�
�h�k�
��k�

�mk	an
†�k�am�k� . �4.10�

According to the Hellman-Feynman theorem,

�nk�
�h�k�
�k�

�nk	 =
��n�k�

�k�

, �4.11�

the diagonal contribution to the current is �with n=m�

J�
intra�t� = − e


nk
vg�k�Nn�k� , �4.12�

where Nn�k�=an
†�k�an�k� is the occupation number in the

state �nk	. Equation �4.12� corresponds to the expression
in Boltzmann transport theory mentioned before. The
interband matrix element �nk��h�k� /�k��mk	 with n
�m corresponds to interband transitions. As shown by
KL, the interband matrix elements have profound con-
sequences for the Hall current, as has become apparent
from the Berry-phase approach.

B. Extrinsic mechanisms

1. Skew scattering

In a series of reports, Smit �1955, 1958� mounted a
serious challenge to the basic findings of KL. In the
linear-response transport regime, the steady-state cur-
rent balances the acceleration of electrons by E against
momentum relaxation by scattering from impurities
and/or phonons. Smit pointed out that this balancing
was entirely absent from the KL theory and purported
to show that the KL term vanishes exactly. His reasoning
was that the anomalous velocity central to KL’s theory is

proportional to the acceleration k̇ which must vanish on
average at steady state because the force from E cancels
that from the impurity potential.

More significantly, Smit proposed the skew-scattering
mechanism �Fig. 3� as the source of the AHE �Smit,

1955, 1958�. As discussed in Sec. I.B.2, in the presence of
SOI, the matrix element of the impurity scattering po-
tential reads

�k�s��V�k,s	 = Ṽk,k���s,s� +
i�2

4m2c2 ��s����s	 � k�� · k� .

�4.13�

Microscopic detailed balance would require that the
transition probability Wn→m between states n and m is
identical to that proceeding in the opposite direction
�Wm→n�. It holds, for example, in Fermi’s golden-rule
approximation,

Wn→m =
2�

�
��n�V�m	�2��En − Em� , �4.14�

where V is the perturbation inducing the transition.
However, microscopic detailed balance is not generic. In
calculations of the Hall conductivity, which involve the
second Born approximation �third order in V�, detailed
balance already fails. In a simple N=1 model, skew scat-
tering can be represented by an asymmetric part of the
transition probability

Wkk�
A = − �A

−1k � k� · Ms. �4.15�

When the asymmetric scattering processes is included
�called skew scattering�, the scattering probability W�k
→k�� is distinct from W�k�→k�.

Physically, scattering of a carrier from an impurity in-
troduces a momentum perpendicular to both the inci-
dent momentum k and the magnetization M. This leads
to a transverse current proportional to the longitudinal
current driven by E. Consequently, the Hall conductivity
�H and the conductivity � are both proportional to the
transport lifetime �. Equivalently, �H=�H�

2 is propor-
tional to the resistivity �.

As mentioned in Secs. I and II, this prediction—
qualitatively distinct from that in the KL theory—is con-
sistent with experiments, especially on dilute Kondo sys-
tems. These are systems which are realized by dissolving
magnetic impurities �Fe, Mn, or Cr� in the nonmagnetic
hosts Au or Cu. �At higher concentrations, these sys-
tems become spin glasses.� Although these systems do
not exhibit magnetic ordering even at T as low as 0.1 K,
their Hall profiles �H vs H display an anomalous compo-
nent derived from polarization of the magnetic local mo-
ments �Fig. 38�a��.

Empirically, the Hall coefficient RH has the form

RH = R0 + A/T , �4.16�

where R0 is the nominally T-independent OHE coeffi-
cient and A is a constant �see Fig. 38�b��. Identifying the
second term with the paramagnetic magnetization M
=�H, where ��T�1/T is the Curie susceptibility of the
local moments, we see that Eq. �4.16� is of the Pugh
form Eq. �2.1�.

Many groups have explored the case in which � and
�H can be tuned over a large range by changing the
magnetic-impurity concentration ci. Hall experiments on
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these systems in the period 1970–1985 confirmed the
skew-scattering prediction �H�. This led to the conclu-
sion that the KL theory had been “experimentally dis-
proved.” As mentioned in Sec. I, this invalid conclusion
ignores the singular role of TRI breaking in ferromag-
nets. While Eq. �4.16� indeed describes skew scattering,
the dilute Kondo system respects TRI in zero H. This
essential qualitative difference between ferromagnets
and systems with easily aligned local moments implies
essential differences in the physics of their Hall effects.

2. Kondo theory

Kondo proposed a finite-temperature skew-scattering
model in which spin waves of local moments at finite T
lead to asymmetric scattering �Kondo, 1962�. In the KL
theory, the moments of the ferromagnetic state are itin-
erant: the electrons carrying the transport current also
produce the magnetization. Kondo has considered the
opposite limit in which nonmagnetic s electrons scatter
from spin-wave excitations of the ordered d-band local
moments �with the interaction term JSn ·s�. Retaining
terms linear in the spin-orbit coupling � and cubic in J,
Kondo derived an AHE current that arises from transi-
tion probabilities containing the skew-scattering term
�k�k�. The T dependence of �H matches well �espe-
cially near TC� the �H vs T profiles measured in Ni �Jan,
1952; Jan and Gijsman, 1952; Lavine, 1961� and Fe �Jan,
1952� �Fig. 39�.

Kondo has noted that a problem with his model is that
it predicts that �H should vanish when the d orbital an-
gular momentum is quenched as in Gd �whereas �H is
observed to be large�. A second problem is that the
overall scale for �H �fixed by the exchange energies F0,
F1, and F2� is too small by a factor of 100 compared with
experiment. Kondo’s model with the s-d spin-spin inter-
action replaced by a d �spin�-s �orbital� interaction has
also been applied to antiferromagnets �Maranzana,
1967�.

3. Resonant skew scattering

Resonant skew scattering arises from scattering of car-
riers from virtual bound states in magnetic ions dis-
solved in a metallic host. Examples are XM, where X
=Cu, Ag, and Au and M=Mn, Cr, and Fe. The proto-
typical model is a 3d magnetic ion embedded in a broad
s band, as described by the Anderson model �Hewson,
1993�. As shown in Fig. 40, a spin-up s electron tran-
siently occupies the spin-up bound state which lies
slightly below �F. However, a second �spin-down� s elec-
tron cannot be captured because the on-site repulsion
energy U raises its energy above �F. As seen in Fig. 40,
the SOI causes the energies Ed�

m of the d orbitals �la-
belled by m� to be individually resolved. Here �=± is
the spin of the bound electron. The applied H merely
serves to align spin �=+ at each impurity.

The scattering of an incident wave eik·r is expressed by
the phase shifts �d�

m �E� in the partial-wave expansion of
the scattered wave. The phase shift is given by

FIG. 38. The dependences of the Hall resistivity in AuFe on
�a� magnetic field and �b� temperature. From Hurd, 1972.

FIG. 39. Comparison of the curve of �H vs T measured in Fe
by Jan with Kondo’s calculation. From Kondo, 1962.

FIG. 40. Sketch of the broadened virtual bound states of a 3d
magnetic impurity dissolved in a nonmagnetic metallic host.
The SOI lifts the degeneracy of the d levels indexed by m, the
magnetic quantum number. From Fert and Jaoul, 1972.
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cot �d�
m �E� =

�Ed�
m − E�
�

, �4.17�

where � is the half-width of each orbital.
In the absence of SOI, �d�

m �E� is independent of m and
there is no Hall current. The splitting caused by SOI
results in a larger density of states at �F for the orbital m
compared with −m in the case where the spin-up elec-
tron is more than half filled as shown in Fig. 40. Because
the phase shift is sensitive to occupancy of the impurity
state �Friedel sum rule�, we have �d�

m ��d�
−m. This leads to

a right-left asymmetry in the scattering, and a large Hall
current ensues. Physically, a conduction electron inci-
dent with positive z component of angular momentum
m hybridizes more strongly with the virtual bound state
than one with −m. This results in more electrons being
scattered to the left than the right. When the spin-up
density of states is filled less than half, i.e., Ed+

0 	0, the
direction becomes the opposite, leading to a sign change
of the AHE.

Explicitly, the splitting of Ed�
m is given by

Ed±
m = Ed±

0 ± 1
2m�±, �4.18�

where �� is the SOI energy for spin �. Using Eq. �4.18�
in Eq. �4.17�, we have, to order ��� /��2,

�2�
m = �2�

0 �
��m

2�
sin2 �2�

0 +
��

2m2

4�2 sin3 �2�
0 cos �2�

0 .

�4.19�

Inserting the phase shifts into the Boltzmann transport
equation, we find that the Hall angle $���xy

� /�xx
� for

spin � is, to leading order in �� /�,

$� = �
3
5
��

�
sin�2�2�

0 − �1�sin �1, �4.20�

where �1 is the phase shift of the p-wave channel which
is assumed to be independent of m and s �Fert and
Jaoul, 1972; Fert et al., 1981�. After thermal averaging

over �, we can obtain an estimate of the observed Hall
angle $. Its sign is given by the position of the energy
level relative to �F. With the rough estimate �� /��0.1
and sin �1�0.1, we have �$��10−2. Without the resonant
scattering enhancement, the typical value of $ is �10−3.

Heavy-electron systems are characterized by a very
large resistivity � above a coherence temperature Tcoh
caused by scattering of carriers from strong fluctuations
of the local moments formed by f electrons at each lat-
tice site. Below Tcoh, the local-moment fluctuations de-
crease rapidly with incipient band formation involving
the f electrons. At low T, the electrons form a Fermi
liquid with a greatly enhanced effective mass. As shown
in Fig. 41, the Hall coefficient RH increases to a broad
maximum at Tcoh before decreasing sharply to a small
value in the low-T coherent-band regime. Resonant
skew scattering has also been applied to account for the
strong T dependence of the Hall coefficient in CeCu2Si2,
UBe13, and UPt3 �Fert et al., 1981; Coleman et al., 1985;
Fert and Levy, 1987�. In addition, the theory of Kondo
was tested in the context of resonant skew scattering in a
series of Ag thin films doped with rare-earth impurities.
The interplay of the spin-orbit coupling of the d5 states
of the impurities and the pure spin s-f exchange was
found to be proportional to g−2 and therefore vanished
for the Gd impurity �s-state ion, g=2� but not for the
other impurities in the series �Fert and Friederich, 1976�.

4. Side jump

An extrinsic mechanism distinct from skew scattering
is side jump �Berger, 1970� �Fig. 3�. Berger considered
the scattering of a Gaussian wave packet from a spheri-
cal potential well of radius R given by

V�r� = � �2

2m
�k2 − k1

2� �r � R�

0 �r 	 R�
� �4.21�

in the presence of the SOI term HSO
= �1/2m2c2��r−1�V /�r�SzLz, where Sz �Lz� is the z com-

FIG. 41. The Hall coefficient RH in heavy electron systems. Left panel: The T dependence of RH in CeAl3 �open triangle�, UPt3
�solid square�, UAl2 �solid circle�, and a single crystal of CeRu2Si2 �circle dot symbol�. The field H is along the c axis. Right panel:
Interpretation of the RH-T curve based on skew scattering from local moments. After Hadzicleroux et al., 1986 and Lapierre et al.,
1987. From Fert and Levy, 1987.
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ponent of the spin �orbital� angular momentum. For a
wave-packet incident with wave vector k, Berger found
that the wave packet suffers a displacement �y trans-
verse to k given by

�y = 1
6k�c

2, �4.22�

with �c=� /mc as the Compton wavelength. For k�kF
�1010 m−1 �in typical metals�, �y�3�10−16 m is far too
small to be observed.

In solids, however, the effective SOI is enhanced by
band-structure effects by the factor �Fivaz, 1969�

2m2c2

m*�
�q � 3.4� 104, �4.23�

with �q= �m* /3�2�
m�n��%̄�2 /�Enm���m�q�p�n	�2. Here
�Enm�0.5 eV is the gap between adjacent d bands,
��0.3 is the overlap integral, ��2.5�10−10 m is

the nearest-neighbor distance, and %̄=−��2 /
2m2c2���r−1�V /�r�	�0.1 eV is the atomic SOI energy.
The factor in Eq. �4.23� is essentially the ratio of the
electron rest mass energy mc2 to the energy gap �Enm.
With this enhancement, the transverse displacement is
�y�0.8�10−11 m, which renders the contribution rel-
evant to the AHE.

Because the side-jump contribution to �H is indepen-
dent of �, it is experimentally difficult to distinguish from
the KL mechanism. We return to this issue in Sec. V.A.

C. Kohn-Luttinger theoretical formalism

1. Luttinger theory

Partly motivated by the objections raised by Smit,
Luttinger �1958� revisited the AHE problem using the
Kohn-Luttinger formalism of transport theory �Kohn
and Luttinger, 1957; Luttinger and Kohn, 1958�. Em-
ploying a systematic expansion in terms of the impurity
potential &̄, he solved the transport equation for the
density matrix and listed several contributions to the
AHE current, including the intrinsic KL term, the skew-
scattering term, and other contributions. He found that
to zeroth order in &̄, the average velocity is obtained as
the sum of the three terms v�

�11�, u�, and v�
�b� defined by

Luttinger �1958�,

v�
�11� = − ieE�� �J�

�

�k�

−
�J�

�

�k�
�

k=0
� �F

3ni&̄
� , �4.24�

u� = − ieE�� �J�
�

�k�

−
�J�

�

�k�
�

k=0
, �4.25�

and

v�
�b� = ieE��� �J�

�

�k�

−
�J�

�

�k�
�C − �FT��

�0�� , �4.26�

with ni as the impurity concentration. �For the definition
of T��

�0�, see Eq. �4.27� of Luttinger �1958�.� The first term
v�

�11� is the skew-scattering contribution, while the sec-

ond u� is the velocity obtained by KL �Karplus and Lut-
tinger, 1954�. The third term v�

�b� is another term of the
same order as u�.

The issues raised by comparing intrinsic versus extrin-
sic AHE mechanisms involve several fundamental issues
in the theory of transport and quantum systems away
from equilibrium. Following Smit �1955, 1958� and Lut-
tinger �1958�, we consider the wavefunction expanded in
terms of Bloch waves #�’s, viz.,

#�t� = 

�

a��t�#�, �4.27�

where �= �n ,k� represents the band index n and wave
vector k. The corresponding expectation value of the
position operator x̄� is given by

x̄� = i

�

�a�

�k�

a�
* + i


�,��

a��a�
*J�

�,��, �4.28�

where J�
�,�� was defined in Eq. �4.3�. Taking the quantum-

statistical average using the density matrix ��T���,�

= �a��a�
*	, the expectation value can be written as

�x̄�	 = i

�
� ���T��,�

�k�
�

k=k�
+ i


�,��

��T����J�
�,��. �4.29�

It may be seen that the second term in Eq. �4.29� does
not contribute to the current because it is a regular func-
tion of k, and the expectation value of its time derivative
is zero. Finally, one obtains

�v̄�	 = i

�
� ���̇T��,�

�k�
�

k=k�
�4.30�

by taking the time derivative of Eq. �4.29�.
Smit �1955, 1958� assumed a��t�= �a��e−i�nkt and ob-

tained the diagonal part as

i��̇T��,� =
��nk

�k�

��a��2	 , �4.31�

while the off-diagonal part averages to zero because of
the oscillatory factor e−i���−����t. Inserting Eq. �4.31� into
Eq. �4.30� and using ��T���= ��a��2	, one obtains the usual
expression for the velocity, i.e.,

�v̄�	 = 

�

��T��,�
��nk

�k�

, �4.32�

which involves the group velocity but not the anomalous
velocity. A subtlety in expression Eq. �4.30� is clarified
by writing �=�0+ fest, where est is the adiabatic factor
and �̇T=sfest. This leads to

�v̄�	 = is

�
� ��f�nk,nk�

�k�

�
k=k�

, �4.33�

which approaches a finite value in the limit s→0. This
means that���f�nk,nk� /�k��k=k��1/s, i.e., a singular func-
tion of s. This is in sharp contrast to f itself, which is a
regular function as s→0, which KL estimated. They con-
sidered the current or velocity operator instead of the
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position operator, the latter of which is unbounded and
even ill-defined for periodic boundary conditions.

Luttinger �1958� argued that the ratio v�
�11� /u� equals

�F /3ni&̄, which may become less than 1 for large impu-
rity concentration ni. However, if we assume &̄ is com-
parable to �F, the expansion parameter is �F� /�, i.e.,
v�

�11� /u�=�F� /�.
The “metallicity” parameter �F� /� plays a key role in

modern quantum-transport theory, especially in the
weak localization and interaction theory �Lee and Ra-
makrishnan, 1985�. Metallic conduction corresponds to
�F� /��1. More generally, if one assumes that the
anomalous Hall conductivity �H is first order in the spin-
orbit energy �, it can be written in a scaling form as

�H =
e2

ha

�

�F
f� �

�F�
� , �4.34�

where the scaling function can be expanded as

f�x� = 

n=−1

�

cnxn. �4.35�

Here cn’s are constants of the order of unity. The leading
order term c−1x−1 corresponds to the skew-scattering
contribution �, while the second constant term c0 is the
contribution found by KL. If this expansion is valid, the
intrinsic contribution by KL is always smaller than the
skew-scattering contribution in the metallic region with
� /�F�!1. One should note, however, that the right-hand
side of this inequality should really have a smaller value
to account for the weakness of the skew-scattering am-
plitude.

When both are comparable, i.e., � /�F��1, one needs
to worry about the localization effect and the system is
nearly insulating, with a conduction that is of the hop-
ping type. This issue is discussed in more detail in Secs.
II.A, II.E, and V.D.

2. Adams-Blount formalism

Adams and Blount �1959� expressed the KL theory in
a way that anticipates the modern Berry-phase treat-
ment by introducing the concept of “field-modified en-
ergy bands” and the “intracell” coordinate. They consid-
ered the diagonal part of the coordinate matrix in the
band n as

xc
� = i�

�

�p�

+ X�
nn�p� , �4.36�

which is analogous to Eq. �4.2� obtained by KL. The first
term is the Wannier coordinate identifying the lattice
site, while the second term �the intracell coordinate� lo-
cates the wave-packet centroid inside a unit cell. Signifi-
cantly, the intracell nature of X�

nn implies that it involves
virtual interband transitions. Although the motion of the
wave packet is confined to the conduction band, its po-
sition inside a unit cell involves virtual occupation of
higher bands whose effects appear as a geometric phase
�Ong and Lee, 2006�. They found that the curl �k�Xnn

acted like an effective magnetic field that exists in k
space.

Application of an electric field E leads to an anoma-
lous �Luttinger� velocity, which gives a Hall current that
is manifestly dissipationless. This is seen by evaluating
the commutation relationship of xc

� and xc
". We have

�xc
�,xc

"� = i�� �X"
nn

�p�

−
�X�

nn

�p"
� = i���"�Bn�p��, �4.37�

where we have defined the field Bn�p�=�p�Xnn�p�. This
is analogous to the commutation relationship among the
components of �=p+ �e /c�A in the presence of the vec-
tor potential, i.e., ��� ,�"�= i���"���r�A�r���= i�B��r�.
The anomalous velocity arises from the fictitious mag-
netic field Bn�p� �which exists in momentum space� and
noncommutation of the gauge-covariant coordinates
xc
�’s. This insight anticipated the modern idea of Berry-

phase curvature �see Secs. III.B and V.A for details�.
Taking the commutator between xc

� and the Hamil-
tonian Hnn=En�p�−F"xc

", we obtain

vnn = − i�xc,Hnn� =
�En�p�

�p
− F � Bn�p� . �4.38�

The second term on the right-hand side is called the
anomalous velocity. Adams and Blount reproduced the
results of Luttinger �1958� and demonstrated it for the
simple case of a uniform field Bn�p�=D. As recognized
by Smit �1955, 1958�, the currents associated with the
anomalous velocities driven by E and by the impurity
potential mutually cancel in the steady state. However,
D introduces corrections to the “driving term” and the
“scattering term” in the transport equation. As a conse-
quence, the current J is

J = ne2

k
�−

2
3

E
df�0�

dE
��F�

m
−

F � D

�

+ � �2k2

3m�A
��F � D�� . �4.39�

Note that the current arises entirely from the average of
the “normal current.” However, the second term in Eq.
�4.39� is similar to the anomalous velocity and is consis-
tent with the conclusions of KL �Karplus and Luttinger,
1954� and Luttinger �1958�. The consensus now is that
the KL contribution exists. However, in the clean limit
�→�, the leading contribution to the AHE conductivity
comes from the skew-scattering term. A more complete
discussion of the semiclassical treatment is given in Sec.
V.A.

3. Nozieres-Lewiner theory

Adopting the premises of Luttinger’s theory �Lut-
tinger, 1958�, Nozieres and Lewiner �1973� investigated a
simplified model comprised of one conduction and one
valence band to derive all possible contributions to the
AHE. The Fermi level �F was assumed to lie near the
bottom of the conduction band. Integrating over the va-
lence band states, Nozieres and Lewiner derived an ef-

1575Nagaosa et al.: Anomalous Hall effect

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



fective Hamiltonian for a state k in the conduction band.
The derived position operator is reff=r+�, where the
new term � which involves the SOI parameter � is given
by

� = − �k � S . �4.40�

This polarization or effective shift modifies the transport
equation to produce several contributions to �H. In their
simple model, the anomalous Hall current JAHE �besides
that from the skew scattering� is

JAHE = 2Ne2�E � S̄ , �4.41�

where N is the carrier concentration and S̄ is the aver-
aged spin polarization. The sign is opposite to that of the

intrinsic term Jintrinsic=−2Ne2�E� S̄ obtained from the
SOI in an ideal lattice. They identified all the terms as
arising from the spin-orbit correction to the scattering
potential; i.e., in their theory there is no contribution
from the intrinsic mechanism. However, one should be
cautious about this statement because these cancella-
tions occur among the various contributions and such
cancellations can be traced back to the fact that the
Berry curvature is independent of k. In particular, it is
often the case that the intrinsic contribution survives
even when � lies inside an energy gap, i.e., N=0 �the
side-jump contribution is zero in this case�. This issue
lies at the heart of the discussion of the topological as-
pect of the AHE. For a recent consideration on the side-
jump mechanism, see Rashba �2008�.

An experimental test of the theoretical expectations
in nonmagnetic semiconductors, induced by magnetic
field and using spin-dependent optical excitation of the
carriers, was done by Chazalviel �1975� with reasonable
agreement with theory.

V. LINEAR TRANSPORT THEORIES OF THE AHE

In this section, we describe the three linear response
theories now used to describe the AHE. All three theo-
ries are formally equivalent in the �F��� limit. The
three theories make nearly identical predictions; the
small differences between the revised semiclassical
theory and the two formalism of the quantum theory are
thoroughly understood at least for several different toy
model systems. The three different approaches have
relative advantages and disadvantages. Considering all
three provides a more nuanced picture of AHE physics.
Their relative correspondence has been shown analyti-
cally in several simple models �Sinitsyn et al., 2007; Sin-
itsyn, 2008�. The generalized semiclassical Boltzmann
transport theory which takes the Berry phase into ac-
count is reviewed in Sec. V.A; this theory has the advan-
tage of greater physical transparency, but it lacks the
systematic character of the microscopic quantum-
mechanical theories whose machinery deals automati-
cally with the problems of interband coherence. An-
other limitation of the semiclassical Boltzmann
approach is that the “quantum correction” to the con-
ductivities, i.e., the higher order terms in � /�F�, which

lead to the Anderson localization and other interesting
phenomena �Lee and Ramakrishnan, 1985�, cannot be
treated systematically.

The microscopic quantum-mechanical linear response
theories based on the Kubo formalism and the Keldysh
�nonequilibrium Green’s function� formalism are re-
viewed in Secs. V.B.1 and V.C, respectively. These for-
mulations of transport theory are organized differently
but are essentially equivalent in the linear regime. In the
Kubo formalism, which is formulated in terms of the
equilibrium Green’s functions, the intrinsic contribution
is more readily calculated, especially when combined
with first-principles electronic structure theory in appli-
cations to complex materials. The Keldysh formalism
can more easily account for finite lifetime quantum scat-
tering effects and take account of the broadened quasi-
particle spectral features due to the self-energy while at
the same time maintaining a structure more similar to
that of semiclassical transport theory �Onoda et al.,
2006a�. We contrast these techniques by comparing their
applications to a common model, the ferromagnetic
Rashba model in two dimensions, which has been stud-
ied intensively in recent years �Sec. V.D�.

A. Semiclassical Boltzmann approach

As should be clear from the complex phenomenology
of the AHE in various material classes discussed in Sec.
II, it is not easy to establish a one-size-fits-all theory for
this phenomenon. From a microscopic point of view the
AHE is a formidable beast. In subsequent sections we
outline systematic theories of the AHE in metallic sys-
tems which employ the Keldysh and Kubo linear re-
sponse theoretical formalisms and are organized around
an expansion in disorder strength, characterized by the
dimensionless quantity � /�F�. A small value for this pa-
rameter may be taken as a definition of the good metal.
We start with semiclassical theory, however, because of
its greater physical transparency. In this section, we out-
line the modern version �Sinitsyn et al., 2007; Sinitsyn,
2008� of the semiclassical transport theory of the AHE.
This theoretical augments standard semiclassical trans-
port theory by accounting for coherent band mixing by
the external electric field �which leads to the anomalous
velocity contribution� and by a random disorder poten-
tial �which leads to side jump�. For simple models in
which a comparison is possible, the two theories �i.e., �i�
the Boltzmann theory with all side-jump effects �formu-
lated now in a proper gauge-invariant way� and the
anomalous velocity contribution included and �ii� the
metallic limit of the more systematic Keldysh and Kubo
formalism treatments� give identical results for the
AHE. This section provides a more compact version of
the material presented by Sinitsyn �2008�, to which we
refer readers interested in further detail. Below we take
�=1 to simplify notation.

In semiclassical transport theory one retreats from a
microscopic description in terms of delocalized Bloch
states to a formulation of transport in terms of the dy-
namics of wave packets of Bloch states with a well-
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defined band momentum and position �n ,kc ,rc� and
scattering between Bloch states due to disorder. The dy-
namics of the wave packets between collisions can be
treated by an effective Lagrangian formalism. The wave-
packet distribution function is assumed to obey a classi-
cal Boltzmann equation which in a spatially uniform sys-
tem takes the form �Sundaram and Niu, 1999�

�fl

�t
+ �k̇c ·

�fl

�kc
= − 


l�

��l�,lfl − �l,l�fl�� . �5.1�

Here the label l is a composition of band and momenta
�n ,kc� labels and �l�,l, the disorder averaged scattering
rate between wave packets defined by states l and l�, is
to be evaluated fully quantum mechanically. The disor-
der potential and fields should vary slowly ��10 nm� for
the semiclassical approximation to be valid. The semi-
classical description is useful in clarifying the physical
meaning and origin of the different mechanisms contrib-
uting to the AHE. However, as explained in this review
contributions to the AHE which are important in a rela-
tive sense often arise from interband coherence effects
which are neglected in conventional transport theory.
The traditional Boltzmann equation therefore requires
elaboration in order to achieve a successful description
of the AHE.

There is a substantial literature �Smit, 1955; Berger,
1970; Jungwirth, Niu, and MacDonald, 2002� on the ap-
plication of Boltzmann equation concepts to AHE
theory �see Sec. IV�. However, stress was often placed
only on one of the several possible mechanisms, creating
much confusion. A cohesive picture has been lacking
until recently �Sinitsyn et al., 2005, 2006; Sinitsyn, 2008�.
In particular, a key problem with some prior theory was
that it incorrectly ascribed physical meaning to gauge
dependent quantities. In order to build the correct
gauge-invariant semiclassical theory of AHE we must
take the following steps �Sinitsyn, 2008�: �i� obtain the
equations of motion for a wave packet constructed from
spin-orbit coupled Bloch electrons; �ii� derive the effect
of scattering of a wave packet from a smooth impurity,
yielding the correct gauge-invariant expression for the
corresponding side jump; �iii� use the equations of mo-
tion and the scattering rates in Eq. �5.1� and solve for the
nonequilibrium distribution function, carefully account-
ing for the points at which modifications are required to
account for side jump; and �iv� utilize the nonequilib-
rium distribution function to calculate the dc anomalous
Hall currents, again accounting for the contribution of
side jump to the macroscopic current.

The validity of this approach is partially established in
the following sections by direct comparison with fully
microscopic calculations for simple model systems in
which we are able to identify each semiclassically de-
fined mechanisms with a specific part of the microscopic
calculations.

1. Equation of motion of Bloch state wave packets

We begin by defining a wave packet in band n cen-
tered at position rc with average momentum kc,

'n,kc,rc
�r,t� =

1
�V



k

wkc,rc
�k�eik·�r−rc�unk�r� . �5.2�

A key aspect of this wave packet is that the complex
function, sharply peaked around kc, must have a specific
phase factor in order to have the wave packet centered
around rc. This can be shown to be �Sundaram and Niu,
1999; Marder, 2000�

wkc,rc
�k� = �wkc,rc

�k��exp�i�k − kc� · an� , �5.3�

where an��unk � i�kunk	 is the Berry connection of the
Bloch state �see Sec. I.B�. We can generate dynamics for
the wave packet parameters kc and rc by constructing a
semiclassical Lagrangian from the quantum wave func-
tions

L = �'n,kc,rc
�i

�

�t
− H0 + eV�'n,kc,rc

	

= �kc · ṙc + �k̇c · an�kc� − E�kc� + eV�rc� . �5.4�

All the terms in the above Lagrangian are common to
conventional semiclassical theory except for the second
term, which is a geometric term in phase space depend-
ing only on the path of the trajectory in this space. This
term is the origin of the momentum-space Berry-phase
�Berry, 1984� effects in anomalous transport in the semi-
classical formalism. The corresponding Euler-Lagrange
equations of motion are

�k̇c = − eE , �5.5�

ṙc =
�En�kc�

�kc
− �k̇c � bn�kc� , �5.6�

where bn�kc�=��an is the Berry curvature of the Bloch
state. Compared to the usual dynamic equations for
wave packets formed by free electrons, a new term
emerges due to the nonzero Berry curvature of the
Bloch states. This term, which is already linear in elec-
tric field E, is of the Hall type and as such will give rise
in the linear transport regime to a Hall current contri-
bution from the entire Fermi sea, i.e., jHall

int =−e2E
�V−1
kf0�Enk�bn�k�.

2. Scattering and the side jump

From the theory of elastic scattering we know that the
transition rate �l,l� in Eq. �5.1� is given by the T-matrix
element of the disorder potential

�l�l � 2��Tl�l�2���l� − �l� . �5.7�

The scattering T matrix is defined by Tl�l= �l��V̂�#l	,
where V̂ is the impurity potential operator and �#l	 is the

eigenstate of the full Hamiltonian Ĥ=Ĥ0+ V̂ that satis-

fies the Lippman-Schwinger equation �#l	= �l	+ ��l−Ĥ0

+ i(�−1V̂�#l	�#l	 is the state which evolves adiabatically
from �l	 when the disorder potential is turned on slowly.
For weak disorder one can approximate the scattering
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state �#l	 by a truncated series in powers of Vll�
= �l�V̂�l�	,

�#l	 � �l	 + 

l�

Vl�l

�l − �l� + i(
�l�	 + ¯ . �5.8�

Using this expression in the above definition of the T
matrix and substituting it into Eq. �5.7�, one can expand
the scattering rate in powers of the disorder strength

�ll� = �ll�
�2� + �ll�

�3� + �ll�
�4� + ¯ , �5.9�

where �ll�
�2�=2���Vll��

2	dis���l−�l��,

�ll�
�3� = 2��


l�

�Vll�Vl�l�Vl�l	dis

�l − �l� − i(
+ c.c.����l − �l�� , �5.10�

and so on.
We can always decompose the scattering rate into

components that are symmetric and antisymmetric in
the state indices: �l�l

�s/a����ll�±�l�l� /2. In conventional
Boltzmann theory the AHE is due solely to the antisym-
metric contribution to the scattering rate �Smit, 1955�.

The physics of this contribution to the AHE is quite
similar to that of the longitudinal conductivity. In par-
ticular, the Hall conductivity it leads to is proportional to
the Bloch state lifetime �. Since �l�l

�2� is symmetric, the
leading contribution to �l�l

�a� appears at order V3. Partly
for this reason the skew-scattering AHE conductivity
contributions is always much smaller than the longitudi-
nal conductivity. �It is this property which motivates the
identification below of additional transport mechanism
which contributes to the AHE and can be analyzed in
semiclassical terms.� The symmetric part of �ll�

�3� is not
essential since it only renormalizes the second-order re-
sult for �l�l

�2� and the antisymmetric part is given by

�ll�
�3a� = − �2��2


l�

���l − �l��

�Im�Vll�Vl�l�Vl�l	dis���l − �l�� . �5.11�

This term is proportional to the density of scatterers, ni.
Skew scattering has usually been associated directly with
��3a�, neglecting in particular the higher order term �ll�

�4a�

which is proportional to ni
2 and should not be disre-

garded because it gives a contribution to the AHE which
is of the same order as the side-jump contribution con-
sidered below. This is a common mistake in the semiclas-
sical analyses of the anomalous Hall effect �Sinitsyn,
2008�.

Now we come to the interesting side-jump story.
Because the skew-scattering conductivity is small, we
have to include effects which are absent in conventional
Boltzmann transport theory. Remarkably it is possible to
provide a successful analysis of one of the main addi-
tional effects, the side-jump correction, by means of a
careful semiclassical analysis. As mentioned previously
side jump refers to the microscopic displacement �rl,l�
experienced by a wave packets formed from a spin-orbit
coupled Bloch states when scattering from state l to

state l� under the influence of a disorder potential. In the
presence of an external electric field side jump leads to
an energy shift �Ul,l�=−eE ·�rl,l�. Since we are assuming
only elastic scattering, an upward shift in potential en-
ergy requires a downward shift in band energy and vice
versa. We therefore need to adjust Eq. �5.1� by adding

l��l,l�

s ��f0��l� /��l�eE ·�rl,l� to the rhs.
But what about the side-jump itself? An expression

for the side-jump �rl,l� associated with a particular tran-
sition can be derived by integrating ṙc through a transi-
tion �Sinitsyn, 2008�. We can write

ṙn,c =
d

dt
�'n,kc,rc

�r,t��r�'n,kc,rc
�r,t�	

=
d

dt
�� dr

V
� dk� dk�w�k�w*�k��e−ik�·r�reik·r�

�u
nk�
* �r�unk�r�ei�E�k��−E�k��t/��

=
dEn�kc�

dkc
+

d

dt��cell
dr� dkw*�k�unk�r�

��i
�

�k
w�k�unk�r��� . �5.12�

This expression is equivalent to the equations of motion
derived within the Lagrangian formalism; this form has
the advantage of making it apparent that in scattering
from state l to a state l� a shift in the center of mass
coordinate will accompany the velocity deflection. From
Eq. �5.12� it appears that the scattering shift will go as

�rl�,l ��ul��i
�

�k�
ul�� − �ul�i

�

�k
ul� . �5.13�

This quantity has usually been associated with the side
jump, although it is gauge dependent and therefore ar-
bitrary in value. The correct expression for the side
jump is similar to this one, at least for the smooth impu-
rity potentials situation, but was derived only recently by
Sinitsyn et al. �2005, 2006�,

�rl�l = �ul��i
�

�k�
ul�� − �ul�i

�

�k
ul�

− D̂k�,k arg��ul��ul	� , �5.14�

where arg�a� is the phase of the complex number a and

D̂k�,k=� /�k�+� /�k. The last term is essential and makes
the expression for the resulting side-jump gauge invari-
ant. Note that the side jump is independent of the details
of the impurity potential or of the scattering process. As
this discussion shows, the side-jump contribution to mo-
tion during a scattering event is analogous to the anoma-
lous velocity contribution to wave-packet evolution be-
tween collisions, with the role of the disorder potential
in the former case taken over in the latter case by the
external electric field.
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3. Kinetic equation for the semiclasscial Boltzmann
distribution

Equations �5.7� and �5.14� contain the quantum-
mechanical information necessary to write down a semi-
classcial Boltzmann equation that takes into account
both the change of momentum and the coordinate shift
during scattering in the presence of a driving electric
field E. Keeping only terms up to linear order in the
electric field the Boltzmann equation reads �Sinitsyn et
al., 2006�

�fl

�t
+ eE · v0l

�f0��l�
��l

= − 

l�

�ll��fl − fl� −
�f0��l�

��l
eE · �rl�l� , �5.15�

where v0l is the usual group velocity v0l=��l /�k. Note
that for elastic scattering we do not need to take account
of the Pauli blocking which yields factors like fl�1− fl��
on the rhs of Eq. �5.15� and that the collision terms are
linear in fl as a consequence. �For further discussion of
this point see Appendix B of Luttinger and Kohn
�1955�.� This Boltzmann equation has the standard form
except for the coordinate shift contribution to the
collision integral explained above. Because of the
side-jump effect, the collision term does not vanish
when the occupation probabilities fl are replaced by
their thermal equilibrium values when an external elec-
tric field is present: f0��l�− f0��l−eE ·�rll���−��f0��l� /
��l�eE ·�rl�l�0. Note that the term containing �l,l�fl

should be written as �l,l�
�s� fl−�l,l�

�a�fl. In making this simpli-
fication we are imagining a typical simple model in
which the scattering rate depends only on the angle be-
tween k and k�. In that case, 
l��l,l�

�a� =0 and we can ig-
nore a complication which is primarily notational.

The next step in the Boltzmann theory is to solve for
the nonequilibrium distribution function fl to leading or-
der in the external electric field. We linearize by writing
fl as the sum of the equilibrium distribution f0��l� and
nonequilibrium corrections,

fl = f0��l� + gl + gl
adist, �5.16�

where we split the nonequilibrium contribution into two
terms, gl and gadist, in order to capture the skew-
scattering effect. gl and gadist solve independent self-
consistent time-independent equations �Sinitsyn et al.,
2006�,

eE · v0l
�f0��l�

��l
= − 


l�

�ll��gl − gl�� �5.17�

and



l�

�ll��gl
adist − gl�

adist −
�f0��l�

��l
eE · �rl�l� = 0. �5.18�

In Eq. �5.14� we have noted that �rl�l=�rll�. To solve Eq.
�5.17� we further decompose gl=gl

s+gl
a1+gl

a2 so that



l�

�ll�
�3a��gl

s − gl�
s � + 


l�

�ll�
�2��gl

a1 − gl�
a1� = 0, �5.19�



l�

�ll�
�4a��gl

s − gl�
s � + 


l�

�ll�
�2��gl

a2 − gl�
a2� = 0. �5.20�

Here gl
s is the usual diagonal nonequilibrium distribu-

tion function which can be shown to be proportional to
ni

−1. From Eq. �5.11� and �ll�
�3a��ni, it follows that gl

3a

�ni
−1. Finally, from �ll�

�4a��ni
2 and Eq. �5.20�, it follows

that gl
4a�ni

0 illustrating the dangers of ignoring the �ll�
�4a�

contribution to �l,l�. One can also show from Eq. �5.18�
that gl

adist�ni
0.

4. Anomalous velocities, anomalous Hall currents, and
anomalous Hall mechanisms

We are now at the final stage where we use the non-
equilibrium distribution function derived from Eqs.
�5.17�–�5.20� to compute the anomalous Hall current. To
do so we need first to account for all contributions to the
velocity of semiclassical particles that are consistent with
this generalized semiclassical Boltzmann analysis.

In addition to the band state group velocity v0l
=��l /�k, we must also take into account the velocity
contribution due to the accumulations of coordinate
shifts after many scattering events, another way in which
the side-jump effect enters the theory, and the velocity
contribution from coherent band mixing by the electric
field �the anomalous velocity effect� �Nozieres and
Lewiner, 1973; Sinitsyn et al., 2006; Sinitsyn, 2008�,

vl =
��l

�k
+ bl � eE + 


l�

�l�l�rl�l. �5.21�

Combining Eqs. �5.16� and �5.21� we obtain the total cur-
rent

j = e

l

flvl = e

l

�f0��l� + gl
s + gl

a1 + gl
a2 + gl

adist�

� � ��l

�k
+ 
� l � eE + 


l�

�l�l�rl�l� . �5.22�

This gives five nonzero contributions to the AHE up to
linear order in E,

�xy
tot = �xy

int + �xy
adist + �xy

sj + �xy
sk1 + �xy

sk2-sj. �5.23�

The first term is the intrinsic contribution,

�xy
int = − e2


l
f0��l�bz,l. �5.24�

Next are the effects due to coordinate shifts during scat-
tering events �for E along the y axis�:

�xy
adist = e


l
�gl

adist/Ey��v0l�x �5.25�

follows from the distribution function correction due to
side jumps, while
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�xy
sj = e


l
�gl/Ey�


l�

�l�l��rl�l�x �5.26�

is the current due to the side-jump velocity, i.e., due to
the accumulation of coordinate shifts after many scatter-
ing events. Since coordinate shifts are responsible both
for �xy

adist and for �xy
sj , there is, unsurprisingly, an intimate

relationship between those two contributions. In most of
the literature, �xy

adist is usually considered to be part of
the side-jump contribution, i.e., �xy

adist+�xy
sj →�xy

sj . We dis-
tinguish between the two because they are physically
distinct and appear as separate contributions in the mi-
croscopic formulation of the AHE theory.

Finally, �xy
sk1 and �xy

sk2-sj are contributions arising from
the asymmetric part of the collision integral �Sinitsyn,
2008�,

�yx
sk1 = − e


l
�gl

a1/Ex��v0l�y � ni
−1, �5.27�

�yx
sk2-sj = − e


l
�gl

a2/Ex��v0l�y � ni
0. �5.28�

According to the old definition of skew scattering
both could be viewed as skew-scattering contributions
because they originate from the asymmetric part of the
collision term �Smit, 1955�. However, if instead we define
skew scattering as the contribution proportional to ni

−1,
i.e., linear in �, as in Sec. I.B, it is only the first contri-
bution �Eq. �5.27�� which is the skew scattering �Lut-
tinger, 1958; Leroux-Hugon and Ghazali, 1972�. The sec-
ond contribution �Eq. �5.28�� was generally discarded in
prior semiclassical theories, although it is parametrically
of the same size as the side-jump conductivity. Explicit
quantitative estimates of �yx

sk2-sj so far exist only for the
massive 2D Dirac band �Sinitsyn et al., 2007�. In parsing
this AHE contribution we incorporate it within the fam-
ily of side-jump effects due to the fact that it is propor-
tional to ni

0, i.e., independent of �xx. However, it is im-
portant to note that this side-jump contribution has no
physical link to the side step experienced by a semiclass-
cial quasiparticle upon scattering. An alternative termi-
nology for this contribution is intrinsic skew scattering to
distinguish its physical origin from side-jump deflections
�Sinitsyn, 2008�, but, to avoid further confusion, we sim-
ply include it as a contribution to the Hall conductivity
which is of the order of �xx

0 and originates from scatter-
ing.

As we will see below, when connecting the micro-
scopic formalism to the semiclasscial one, �xy

int can be
directly identified with the single bubble �Kubo formal-
ism� contribution to the conductivity, �xy

adist+�xy
sj +�xy

sk2

constitute the usually termed ladder-diagram vertex cor-
rections to the conductivity due to scattering and there-
fore it is natural to group them together although their
physical origins are distinct. �xy

sk1 is identified directly
with the three-scattering diagram used in the literature.
This comparison has been made specifically for two
simple models, the massive 2D Dirac band �Sinitsyn et

al., 2007� and the 2D Rashba with exchange model �Bo-
runda et al., 2007�.

B. Kubo formalism

1. Kubo technique for the AHE

The Kubo formalism relates the conductivity to the
equilibrium current-current correlation function �Kubo,
1957�. It provides a fully quantum mechanical formally
exact expression for the conductivity in linear response
theory �Mahan, 1990�. We do not review the formal ma-
chinery for this approach here since it can be found in
many textbooks. Instead, we emphasize the key issues in
studying the AHE within this formalism and how it re-
lates to the semiclassical formalism described in Sec.
V.A.4.

For the purpose of studying the AHE it is best to
reformulate the current-current Kubo formula for the
conductivity in the form of the Bastin formula �see Ap-
pendix A of Crépieux and Bruno �2001�� which can be
manipulated into the more familiar form for the conduc-
tivity of the Kubo-Streda formula for the T=0 Hall con-
ductivity �xy=�xy

I�a�+�xy
I�b�+�xy

II , where

�xy
I�a� =

e2

2�V
Tr�v̂xGR��F�v̂yGA��F�	c, �5.29�

�xy
I�b� = −

e2

4�V
Tr�v̂xGR��F�v̂yGR��F�

+ v̂xGA��F�v̂yGA��F�	c, �5.30�

�xy
II =

e2

4�V
�

−�

+�

d�f���Tr�vxGR���vy
GR���

d�

− vx
GR���

d�
vyGR��� + c.c.��GR��F� − GA��F�� .

�5.31�

Here the subscript c indicates a disorder configuration
average. The last contribution �xy

II was first derived by
Streda in the context of studying the quantum Hall ef-
fect �Streda, 1982�. In these equations GR/A��F�= ��F
−H± i��−1 are the retarded and advanced Green’s func-
tions evaluated at the Fermi energy of the total Hamil-
tonian.

Looking more closely at �xy
II we notice that every term

depends on products of the retarded Green’s functions
only or products of the advanced Green’s functions only.
It can be shown that only the disorder free part of �xy

II is
important in the weak disorder limit, i.e., this contribu-
tion is zeroth order in the parameter 1/kFlsc. The only
effect of disorder on this contribution �for metals� is to
broaden the Green’s functions �see below� through the
introduction of a finite lifetime �Sinitsyn et al., 2007�. It
can therefore be shown by a similar argument that in
general �xy

I�b� is of order 1/kFlsc and can be neglected in
the weak scattering limit �Mahan, 1990�. Thus, impor-
tant disorder effects beyond simple quasiparticle life-
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time broadening are contained only in �xy
I�a�. For these

reasons, it is standard within the Kubo formalism to ne-
glect �xy

I�b� and evaluate the �xy
II contribution with a

simple lifetime broadening approximation to the
Green’s function.

Within this formalism the effect of disorder on the
disorder-configuration averaged Green’s function is cap-
tured by the use of the T matrix defined by the integral
equation T=W+WG0T, where W=
iV0��r−ri� is a
delta-scatterer potential and G0 are the Green’s function
of the pure lattice. From this one obtains

Ḡ = G0 + G0TG0 = G0 + G0)Ḡ . �5.32�

Upon disorder averaging we obtain

) = �W	c + �WG0W	c + �WG0WG0W	c + ¯ . �5.33�

To linear order in the impurity concentration, ni, this
translates to

)�z,k� = niVk,k +
ni

V

k

Vk,k�G0�k�,z�Vk�,k + ¯ ,

�5.34�

with Vk,k�=V�k−k�� being the Fourier transform of the
single impurity potential, which in the case of delta scat-
terers is simply V0 �see Fig. 44 for a graphical represen-

tation�. Note that Ḡ and G0 are diagonal in momentum
but, due to the presence of spin-orbit coupling, nondi-
agonal in spin index in the Pauli spin basis. Hence, the

lines depicted in Fig. 42 represent Ḡ and are in general
matrices in band levels.

One effect of disorder on the anomalous Hall conduc-
tivity is taken into account by inserting the disorder av-

eraged Green’s function ḠR/A directly into the expres-
sions for �xy

I�a� and �xy
II �Eqs. �5.29� and �5.31��. This step

captures the intrinsic contribution to the AHE and the

effect of disorder on it, which is generally weak in me-
tallic systems. This contribution is separately identified
in Fig. 42�a�.

The so-called ladder diagram vertex corrections, also
separately identified in Fig. 42, contribute to the AHE at
the same order in 1/kFl as the intrinsic contribution. It is
useful to define a ladder-diagram corrected velocity ver-
tex ṽ���F��v�+�ṽ���F�, where

�ṽ���F� =
niV0

2

V 

k

ḠR��F��v� + �ṽ���F��ḠA��F� ,

�5.35�

as depicted in Fig. 42�b�. Note again that ṽ���F� and v�
=�H0 /��k� are matrices in the spin-orbit coupled band
basis. The skew-scattering contributions are obtained by
evaluating, without doing an infinite partial sum as in
the case of the ladder diagrams, third-order processes in
the disorder scattering shown in Fig. 42.

As may seem obvious from the above machinery, cal-
culating the intrinsic contribution is not very difficult,
while calculating the full effects of the disorder in a sys-
tematic way �beyond calculating a few diagrams� is chal-
lenging for any disorder model beyond the simple delta-
scattering model.

Next we illustrate the full use of this formalism for the
simplest nontrivial model, massive 2D Dirac fermions,
with the goals of illustrating the complexities present in
each contribution to the AHE and the equivalence of
quantum and semiclassical approaches. This model is of
course not directly linked to any real material reviewed
in Sec. II and its main merit is the possibility of obtain-
ing full simple analytical expressions for each of the con-
tributions. A more realistic model of 2D fermions with
Rashba spin-orbit coupling will be discussed in Sec. V.C.
The ferromagnetic Rashba model has been used to pro-
pose a minimal model of AHE for materials in which
band crossing near the Fermi surface dominates the
AHE physics �Onoda et al., 2008�.

The massive 2D Dirac fermion model is specified by

Ĥ0 = v�kx�x + ky�y� + ��z + Vdis, �5.36�

where Vdis=
iV0��r−Ri�, �x and �y are Pauli matrices,
and the impurity free spectrum is �k

±= ±��2+ �vk�2, with
k= �k� and the labels * distinguish bands with positive
and negative energies. We ignore in this simple model
spin-orbit coupled disordered contributions which can
be directly incorporated through similar calculations as
in Crépieux and Bruno �2001�. Within this model the
disorder averaged Green’s function is

ḠR =
1

1/G0
R − )R

=
�F + i� + v�kx�x + ky�y� + �� − i�1��z

��F − �+ + i�+���F − �− + i�−�
, �5.37�

where �=�niV0
2 /4v2, �1=� cos���, $±=�0±�1 cos���,

and cos �=� /��vk�2+�2. Note that within this disorder
model �1/ni. Using the result in Eq. �5.37� one can

�� II
xyxy �� x x x ����

(a)
xyxy

intrinsic “side-jump”

� x x�

j p

��

“skew scattering”

(b)

��yv� � ����x xx x x

FIG. 42. �Color online� Graphical representation of the Kubo
formalism application to the AHE. The solid lines are the dis-
order averaged Green’s function Ḡ, the circles are the bare
velocity vertex v�=�H0 /��k�, and the dashed lines with
crosses represent disorder scattering �niV0

2 for the delta-scatter
model�. �b� �vy is the velocity vertex renormalized by vertex
corrections.
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calculate the ladder diagram correction to the bare ve-
locity vertex given by Eq. �5.35�,

ṽy = 8v� cos �
�1 + cos2 ��

��1 + 3 cos2 ��2�x

+ �v + v
sin2 �

1 + 3 cos2 �
��y, �5.38�

where � is evaluated at the Fermi energy. The details of
the calculation of this vertex correction are described in
Appendix A of Sinitsyn et al. �2007�. Incorporating this
result into �xy

1�a� we obtain the intrinsic and side-jump
contributions to the conductivity for �F	�,

�xy
int =

e2

2��V

k

Tr�v�xGv�yG� = −
e2 cos �

4��
, �5.39�

�xy
sj =

e2

2��V

k

Tr�v�xG�ṽyG�

= −
e2 cos �

4��
� 3 sin2 �

1 + 3 cos2 �
+

4 sin2 �

�1 + 3 cos2 ��2� .

�5.40�

The direct calculation of the skew-scattering diagrams
of Fig. 42 is �xy

sk =−�e2 /2��nV0��vkF�4� / �4�2+ �vkF�2�2�
and the final total result is given by

�xy = −
e2�

4����vkF�2 + �2�1 +
4�vkF�2

4�2 + �vkF�2

+
3�vkF�4

�4�2 + �vkF�2�2� −
e2

2��nV0

�vkF�4�

�4�2 + �vkF�2�2 .

�5.41�

2. Relation between the Kubo and the semiclassical formalisms

When comparing the semiclassical formalism to the
Kubo formalism one has to keep in mind that in the
semiclassical formalism the natural basis is the one that
diagonalizes the spin-orbit coupled Hamiltonian. In the
case of the 2D massive Dirac model this is sometimes
called chiral basis in the literature. On the other hand, in
the application of the Kubo formalism it is simplest to
compute the different Green’s functions and vertex cor-
rections in the Pauli basis and take the trace at the end
of the calculation. In the case of the above model one
can apply the formalism of Sec. V.A and obtain the fol-
lowing results for the five distinct contributions: �xy

int,
�xy

adist, �xy
sj , �xy

sk2-sj, and �xy
sk1. Below we quote the results

for the complicated semiclassical calculation of each
term �see Sec. IV of Sinitsyn et al. �2007� for details�,

�xy
int = −

e2�

4����2 + �vkF�2
, �5.42�

�xy
sj = �xy

adist = −
e2�kF

2

2���kF
2 + �2�kF

2 + 4�2�
, �5.43�

�xy
sk-sj = −

e23��vkF�4

4����vkF�2 + �2�4�2 + �vkF�2�2
, �5.44�

�xy
sk = −

e2

2��niV0

�vkF�4�

�4�2 + �vkF�2�2 . �5.45�

The correspondence with the Kubo formalism results
can be seen after a few algebra steps. The contributions
�xy

int and �xy
sk1 are equal in both cases �Eqs. �5.39� and

�5.41��. As expected, the intrinsic contribution �xy
int is in-

dependent of disorder in the weak scattering limit and
the skew-scattering contribution is inversely propor-
tional to the density of scatterers. However, recall that in
Sec. I.B we have defined the side-jump contribution as
the disorder contributions of zeroth order in ni, i.e., �0,
as opposed to being directly linked to a side step in the
scattering process in the semiclassical theory. Hence, it is
the sum of the three physically distinct processes �xy

adist

+�xy
sj +�xy

sk2-sj which can be shown to be identical to Eq.
�5.40� after some algebraic manipulation and shown
graphically in Fig. 43. Therefore, the old notion of asso-
ciating the skew scattering directly with the asymmetric
part of the collision integral and the side jump with the
side-step scattering alone leads to contradictions with
their usual association with respect to the dependence
on � �or equivalently 1/ni�. We also note that unlike
what happens in simple models where the Berry curva-
ture is a constant in momentum space, e.g., the standard
model for electrons in a 3D semiconductor conduction
band �Nozieres and Lewiner, 1973�, the dependences of
the intrinsic and side-jump contributions are quite differ-
ent with respect to parameters such as Fermi energy,
exchange splitting, etc.

C. Keldysh formalism

Keldysh developed a Green’s function formalism ap-
plicable even to the nonequilibrium quantum states, for
which the diagram techniques based on Wick’s theorem
can be used �Baym and Kadanoff, 1961; Kadanoff and
Baym, 1962; Keldysh, 1964; Rammer and Smith, 1986;
Mahan, 1990�. Unlike with the thermal �Matsubara�
Green’s functions, the Keldysh Green’s functions are de-
fined for any quantum state. The price for this flexibility
is that one needs to introduce the path-ordered product
for the contour from t=−�→ t=� and back again from
t=�→−�. Correspondingly, four kinds of the Green’s
functions, GR, GA, G�, and G	, need to be considered,
although only three are independent �Baym and
Kadanoff, 1961; Kadanoff and Baym, 1962; Keldysh,
1964; Rammer and Smith, 1986; Mahan, 1990�. There-
fore, the diagram technique and the Dyson equation for
the Green’s function have a matrix form.

In linear response theory, one can use the usual ther-
mal Green’s function and Kubo formalism. Since ap-
proximations are normally required in treating disor-
dered systems, it is important to make them in a way
which at least satisfies gauge invariance. In both formal-
isms this is an important theoretical requirement which
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requires some care. Roughly speaking, in the Keldysh
formalism, GR and GA describe the single particle states,
while G� represents the nonequilibrium particle occupa-
tion distribution and contains vertex corrections. There-
fore, the self-energy and vertex corrections can be
treated in a unified way by solving the matrix Dyson
equation. This facilitates the analysis of some models
especially when multiple bands are involved.

Another and more essential advantage of Keldysh for-
malism over the semiclassical formalism is that one can
go beyond a finite order perturbative treatment of im-
purity scattering strength by solving a self-consistent
equation, as will be discussed in Sec. V.D. In essence, we
are assigning a finite spectral width to the semiclassical
wave packet to account for an important consequence of
quantum scattering effects. In the Keldysh formalism,
the semiclassical limit corresponds to ignoring the his-
tory of scattering particles by keeping the two time la-
bels in the Green’s functions identical.

We restrict ourselves below to the steady and uniform
solution. For more generic cases of electromagnetic
fields, see Sugimoto et al. �2007�. Let x= �t ,x� be the
time-space coordinate. The Green’s functions depend on
two space-time points x1 and x2, and the matrix Dyson
equation for the translationally invariant system reads
�Rammer and Smith, 1986�

�� − Ĥ�p� − )̂� ��,p�� � Ĝ� ��,p� = 1,
�5.46�

Ĝ� ��,p� � �� − Ĥ�p� − )̂� ��,p�� = 1,

where we have changed the set of variables �x1 ;x2� to
the center of mass and the relative coordinates and then
proceeded to the Wigner representation �X ;p� by means
of the Fourier transformation of the relative coordinate,

�X,x� � �x1 + x2

2
,x1 − x2� →� dt� dxei��t−p·x�/�

¯ ,

�5.47�

with p= �� ,p�. In this Dyson equation, the product � is
reserved for matrix products in band indices like those
that also appear in the Kubo formalism.

In the presence of the external electromagnetic field
A�, we must introduce the mechanical or kinetic-energy-
momentum variable,

���X ;p� = p� + eA��X� , �5.48�

replacing p as the argument of the Green’s function, as
shown by Onoda et al. �2006b�. In this representation,

Ĝ��X ;�� /2�i is the quantum mechanical generalization
of the semiclassical distribution function. When an ex-
ternal electric field E is present, the equation of motion
or, equivalently the Dyson equation retains the same
form as Eq. �5.46� when the product � is replaced by the
so-called Moyal product �Moyal, 1949; Onoda et al.,
2006b� given by

� = exp� i��− e�
2

E · ������ p − �� p����� . �5.49�

Henceforth, �� and �� denote the derivatives operating on
the right- and left-hand sides, respectively, and the sym-
bol p= �� ,p� is used to represent the mechanical energy-
momentum �. In this formalism, only gauge-invariant
quantities appear. For example, the electric field E ap-
pears instead of the vector potential A.

Expanding Eq. �5.49� in E and inserting the result into
Eq. �5.46�, one obtains the Dyson equation to linear or-
der in E, corresponding to linear response theory. The

linear order terms ĜE
� and )̂E

� in E are decomposed into
two parts as

ĜE
� = ĜE,I

� ��f��� + �ĜE
A − ĜE

R�f��� , �5.50�

FIG. 43. �Color online� Graphical representation of the AHE conductivity in the chiral �band eigenstate� basis. The two bands of
the two-dimensional Dirac model are labeled *. The subsets of diagrams that correspond to specific terms in the semiclassical
Boltzmann formalism are indicated. From Sinitsyn et al., 2007.
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)̂E
� = )̂E,I

� ��f��� + �)̂E
A − )̂E

R�f��� . �5.51�

Here f��� represents the Fermi distribution function. In
these decompositions, the first term on the rhs corre-
sponds to the nonequilibrium deviation of the distribu-
tion function due to the electric field E. The second
term, on the other hand, represents the change in quan-
tum mechanical wavefunctions due to E and arises due
to the multiband effect �Haug and Jauho, 1996� through
the noncommutative nature of the matrices.

The corresponding separation of conductivity contri-
butions is �ij=�ij

I +�ij
II with

�ij
I = e2�2� dd+1p

�2���d+1i
Tr�v̂i�p�ĜEj,I

� �p����f��� , �5.52�

�ij
II = e2�2� dd+1p

�2���d+1i
Trv̂i�p��ĜEj

A �p� − ĜEj

R �p���f��� .

�5.53�

This is in the same spirit as the Streda version �Streda,
1982� of the Kubo-Bastin formula �Kubo, 1957; Bastin et
al., 1971�. The advantage here is that we can use the
diagrammatic technique to connect the self-energy and
the Green’s function. For dilute impurities, one can take
the series of diagrams shown in Fig. 44 corresponding to
the T-matrix approximation. In this approximation, the
self-consistent integral equation for the self-energy and
Green’s function can be solved and the solution can be
used to evaluate the first and second terms in Eqs. �5.50�
and �5.51�.

In general, Eqs. �5.52� and �5.53�, together with the
self-consistent equations for GR, GA, and G� �Onoda et
al., 2008�, define a systematic diagrammatic method for
calculating �ij in the Streda decomposition �Streda,
1982� of the Kubo-Bastin formula �Kubo, 1957; Bastin et
al., 1971�.

D. Two-dimensional ferromagnetic Rashba model—A minimal
model

A useful model to study fundamental aspects of the
AHE is the ferromagnetic two-dimensional �2D� Rashba
model �Bychkov and Rashba, 1984�,

Ĥ�p�tot =
p2

2m
− �p � m� �̂ · ez − �0�̂

z + V̂�x� . �5.54�

Here m is the electron mass, � is the Rashba spin-orbit
interaction strength, �0 is the mean-field exchange split-

ting, �̂= ��̂x , �̂y , �̂z� and �̂0 are the Pauli and identity ma-

trices, ez is the unit vector in the z direction, and V̂�x�
=V0
i��r−ri� is a �-scatterer impurity potential with im-
purity density ni. Quantum transport properties of this
simple but nontrivial model have been intensively stud-
ied in order to understand fundamental properties of the
AHE in itinerant metallic ferromagnets. The metallic
Rashba model is simple, but its AHE has both intrinsic
and extrinsic contributions and has both minority and
majority spin Fermi surfaces. It therefore captures most
of the features that are important in real materials with
a minimum of complicating detail. The model has there-
fore received a lot of attention �Dugaev et al., 2005; In-
oue et al., 2006; Onoda et al., 2006b, 2008; Borunda et al.,
2007; Kato et al., 2007; Nunner et al., 2007; Kovalev et
al., 2008, 2009; Onoda, 2009�.

The bare Hamiltonian has the band dispersion,

���p� =
p2

2m
− ��p, �p = ��2p2 + �0

2, �5.55�

illustrated in Fig. 45�a�, and Berry-phase curvature,

b�
z�p� = �2��p � �i�p,��bm�p�p,�	��z =

�2�2�0�

2�p
3 ,

�5.56�

where �=± labels the two eigenstates �p ,�	 at momen-
tum p.

FIG. 44. �Color online� Diagrammatic representation of the
self-energy in the self-consistent T-matrix approximation in
the Keldysh space, which is composed of the infinite series of
multiple Born scattering amplitudes. From Onoda et al., 2008.

(b)

(a)

FIG. 45. �Color online� The intrinsic AHE conductivity in the
2D Rashba model. �a� Band dispersion of the ferromagnetic
2D Rashba model in the clean limit. �b� The intrinsic anoma-
lous Hall conductivity of the Hamiltonian in Eq. �5.54� as a
function of the Fermi level �F measured from the bottom of
the majority band and � /��mnimpV0

2 /�2, which is the Born
scattering amplitude for �=�0=0 without the vertex correction
)̂E. For the parameter set �0=0.1, 2m�=3.59, and 2mV0 /�2

=0.6, with energy unit has been taken as �0,−. From Onoda et
al., 2006b.
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We can then obtain the intrinsic contribution to the
AHE by integrating over occupied states at zero tem-
perature �Culcer et al., 2003; Dugaev et al., 2005�,

�xy
AH-int =

e2

2h

�

��1 −
�0

�p�
��„� − ���p��… , �5.57�

where p± denotes the Fermi momentum for the band
�=±.

An important feature of �xy
AH-int is its enhancement in

the interval �0,+����0,−, where it approaches a maxi-
mum value close to e2 /2h no matter how small �0 is
�provided that it is larger than � /��. Near p=0 the Berry
curvatures of the two bands are large and opposite in
sign. The large Berry curvatures translate into large in-
trinsic Hall conductivities only when the chemical
potential lies between the local maximum of one
band and the local minimum of the other. When �F
is far away from the resonance energy, the contributions
from the momentum near p=0 cancel each other
out or does not appear, leading to a suppression of
�xy

AH-int���e2 /h���0 /�F��, where the perturbation expan-
sion in �0 is justified. This enhancement of the intrinsic
AHE near avoided band crossings is illustrated in Fig.
45�b�, where it is seen to survive moderate disorder
broadening of several times �0. This peaked feature
arises from the topological nature of �xy

AH-int. As a conse-
quence it is important to note that the result is nonper-
turbative in SOI; only a perturbative expansion on � /�F�
is justified.

Culcer et al. �2003� were the first to study this model,
obtaining Eq. �5.57�. They were followed by Dugaev et
al. �2005� where the intrinsic contribution was calculated
within the Kubo formalism. Although these studies
found a nonzero �xy

AH-int, they did not calculate all con-
tributions arising from disorder �some aspects of the dis-
order treatment by Dugaev et al. �2005� were corrected
by Sinitsyn et al. �2007��. The intrinsic AHE �xy

AH-int

comes form both �xy
I and �xy

II . The first part �xy
I contains

the intraband contribution �xy
I�a� which is sensitive to the

impurity scattering vertex correction.
The calculation of �xy

I�a� incorporating the effects of
disorder using the Kubo formalism, i.e., incorporating
the ladder vertex corrections �side jump� and the leading
O�V0

3� skew-scattering contributions �Sec. V.B.1�, yields
a vanishing �xy

AH for the case where �F is above the gap at
p=0 �i.e., both subbands are occupied� irrespective of
the strength of the spin-independent scattering ampli-
tude �Inoue et al., 2006; Borunda et al., 2007; Nunner et
al., 2008�. On the other hand, when only the majority
band �=+ is occupied, �xy

I�a� is given by the skew-
scattering contribution �Borunda et al., 2007�,

�xy
I�a� � −

e2

h

1

nimpuimp

�2p+
4D+����0�p+

�3�0
2 + �p+

2 �2 , �5.58�

in the leading order in 1/nimp.
Some of the above leading order results from the fer-

romagnetic Rashba model appear unphysical in the limit

�→�: �xy vanishes discontinuously as the chemical po-
tential � crosses the edge �0,− of the minority band
which leads to a diverging anomalous Nernst effect at
�=�0,−, irrespective of the scattering strength, if one as-
sumes the Mott relation �Smrcka and Streda, 1977� to be
valid for anomalous transport �Onoda et al., 2008�. How-
ever, this unphysical property does not really hold
�Onoda et al., 2008�, in fact, �xy does not vanish even
when both subbands are occupied, as shown by includ-
ing all higher order Born scattering amplitudes as it is
done automatically in the Keldysh approach �Onoda et
al., 2006a, 2008�. In particular, the skew-scattering con-
tribution arises from the odd-order Born scattering �i.e.,
even order in the impurity potential� beyond the con-
ventional level of approximation, O�V0

3�, which gives rise
to the normal skew-scattering contributions �Kovalev et
al., 2008�. This yields the unconventional behavior
�xy

AH-skew1/nimp independent of V0 �Kovalev et al.,
2008�. The possible appearance of the AHE in the case
where both subbands are occupied was also suggested in
the numerical diagonalization calculation of the Kubo
formula �Kato et al., 2007�. The influence of spin-
dependent impurities has also been analyzed �Nunner et
al., 2008�.

A numerical calculation of �xy
AH based on the Keldysh

formalism using the self-consistent T-matrix approxima-
tion, shown in Fig. 46, suggests three distinct regimes for
the AHE as a function of �xx at low temperatures
�Onoda et al., 2006a, 2008�. In particular, it shows a
crossover from the predominant skew-scattering region
in the clean limit ��xy�xx� to an intrinsic-dominated
metallic region ��xy�const�. In this simple model no
well-defined plateau is observed. These results also sug-
gest another crossover to a regime, referred to as the
incoherent regime by Onoda et al. �2008�, where �xy de-
cays with the disorder following the scaling relation
�xy�xx

n with n�1.6. This scaling arises in the calcula-

FIG. 46. �Color online� Total anomalous Hall conductivity vs
�xx for the Hamiltonian in Eq. �5.54� obtained in the self-
consistent T-matrix approximation to the Keldysh approach
�Onoda et al., 2006b, 2008; Kovalev et al., 2009�. Curves are for
a variety of disorder strengths. The same parameter values
have been taken as in Fig. 45 with the chemical potential being
located at the center of the two subbands. The dashed curves
represent the corresponding semiclassical results. From Kova-
lev et al., 2009.
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tion due to the influence of finite-lifetime disorder
broadening on �xy

AH-int, while the skew-scattering contri-
bution is quickly diminished by disorder as expected.
Kovalev et al. �2009� revisited the Keldysh calculations
for this model, studying them numerically and analyti-
cally. In particular, their study extended the calculations
to include the dependence of the skew-scattering contri-
bution on the chemical potential � both for ���0,− and
for �	�0,− �as shown in Fig. 46�. They demonstrated
that changing the sign of the impurity potential changes
the sign of the skew-scattering contribution. The data
collapse illustrated in Fig. 46 then fails, especially near
the intrinsic-extrinsic crossover. Data collapse in �xy vs
�xx plots is therefore not a general property of 2D
Rashba models. There is, however, a sufficient tendency
in this direction to motivate analyzing experiments by
plotting data in this way. It is also noted that in the elas-
tic scattering regime, a plateau expected in the intrinsic
regime is not clearly observed in the above results ob-
tained with the self-consistent T-matrix approximation
�Onoda et al., 2006a, 2008; Kovalev et al., 2009�, which
overestimates the impurity scattering amplitude and
thus the extrinsic skew-scattering contribution. This is
significantly modified by adopting a better approxima-
tion, the coherent potential approximation �Yonezawa
and Morigaki, 1973�, to the same model �Onoda, 2009�.
This can cover a wider range of impurity concentrations
and reveals a clear plateau ranging over two orders of
magnitude in �xx while �xy decays only by a factor of 2
�Onoda, 2009�.

1. Minimal model

The above results have the following implications for
the generic nature of the AHE �Onoda et al., 2006b,
2008�. The 2D ferromagnetic Rashba model can be
viewed as a minimal model that takes into account both
the “parity anomaly” �Jackiw, 1984� associated with an
avoided crossing of dispersing bands, as well as impurity
scattering in a system with two Fermi-surface sheets.
Consider then a general 3D ferromagnet. When the SOI
is neglected, majority and minority spin Fermi surfaces
will intersect along lines in three dimensions. For a par-
ticular projection kx of Bloch momentum along the mag-
netization direction, the Fermi surfaces will touch at
points. SOI will generically lift the band degeneracy at
these points. At the k point where the energy gap is a
minimum the contribution to �xy

AH-int will be a maximum
and therefore the region around this point should ac-
count for most of �xy

AH, as the first-principles calculations
seem to indicate �Fang et al., 2003; Yao et al., 2004, 2007;
Wang et al., 2006, 2007�. We emphasize that the Berry-
phase contributions from the two bands are nearly op-
posite, so that a large contribution from this region of k
space accrues only if the Fermi level lies between the
split bands. Expanding the Hamiltonian at this particu-
lar k point, one can then hope to obtain an effective
Hamiltonian of the form of the ferromagnetic Rashba
model. Note that the gap �0 in this effective model
Hamiltonian �Eq. �5.54�� comes physically from the SOI

splitting at this particular k point, while the “Rashba
SOI” � is proportional to the Fermi velocity near this
crossing point. In three dimensions, the anomalous Hall
conductivity is then given by the 2D contribution inte-
grated over pz near this minimum gap region and re-
mains of order of e2 /ha �a is the lattice constant� if no
accidental cancellation occurs.

We point out that a key assumption made in the above
reasoning is that the effective Hamiltonian obtained in
this expansion is sufficiently similar to the ferromagnetic
Rashba model. We note that in the Rashba model it is
�0 and not the SOI which opens the gap, so this is al-
ready one key difference. The SO interactions in any
effective Hamiltonian of this type should in general con-
tain at least Rashba-like and Dresselhaus-like contribu-
tions. Further studies examining the crossing points
more closely near these minimum gap regions will shed
further light on the relationship between the AHE in
real materials and the AHE in simple models for which
detailed perturbative studies are feasible.

The minimal model outlined above suggests the pres-
ence of three regimes: �i� the superclean regime domi-
nated by the skew-scattering contribution over the in-
trinsic one, �ii� the intrinsic metallic regime where �xy
becomes more or less insensitive to the scattering
strength and �xx, and �iii� the dirty regime with kF�
=2�F� /�+1 exhibiting a sublinear dependence of �xy

�xx
2−n or equivalently �xy�xx

n with n�1.6. It is impor-
tant to note that this minimal model is based on elastic
scattering and cannot explain the scaling observed in the
localized hopping conduction regime as �xx is tuned by
changing T. Nevertheless, if we multiply the 2D anoma-
lous Hall conductivity by a−1 with the lattice constant a
�5 Å for comparison to the experimental results on
three-dimensional bulk samples, then an enhanced �xy

AH

of the order of the quantized value e2 /h in the intrinsic
regime should be interpreted as �e2 /ha�103 
−1 cm−1.
This value compares well with the empirically observed
cross over seen in the experimental findings on Fe and
Co, as discussed in Sec. II.A.

VI. CONCLUSIONS: FUTURE PROBLEMS AND
PERSPECTIVES ON AHE

In this concluding section, we summarize what has
been achieved by the recent studies of the AHE and
what is not yet understood, pointing out possible direc-
tions for future research on this fascinating phenom-
enon. To keep this section brief, we exclude the histori-
cal summary presented in Secs. I.A and IV which outline
the early debate on the origin of the AHE. We avoid
repeating all the points highlighted already in Sec. I.A
and focus on the most salient ones.

A. Recent developments

The renewed interest in the AHE, which has lead to a
richer and more cohesive understanding of the problem,
began in 1998 and was fueled by other connected devel-
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opments in solid-state physics. These were �i� the devel-
opment of geometrical and topological concepts useful
in understanding electronic properties such as quantum
phase interference and the quantum Hall effect �Lee
and Ramakrishnan, 1985; Prange and Girvin, 1987�, �ii�
the demonstration of the close relation between the Hall
conductance and the topological Chern number re-
vealed by the TKNN formula �Thouless et al., 1982�, �iii�
the development of accurate first-principles band-
structure calculation which accounts realistically for
SOI, and �iv� the association of the Berry-phase concept
�Berry, 1984� with the noncoplanar spin configuration
proposed in the context of the RVB theory of cuprate
high-temperature superconductors �Lee et al., 2006�.

1. Intrinsic AHE

The concept of an intrinsic AHE, debated for a long
time, was brought back to the forefront of the AHE
problem because of studies which successfully connected
the topological properties of the quantum states of mat-
ter and the transport Hall response of a system. In Sec.
I.B.1 we have defined �xy

AH-int both experimentally and
theoretically. From the latter, it is rather straightforward
to write �xy

AH-int in terms of the Berry curvature in the k
space, from which the topological nature of the intrinsic
AHE can be easily recognized immediately. The topo-
logical nonperturbative quality of �xy

AH-int is highlighted
by the finding that, for simple models with spontaneous
magnetization and SOI, bands can have nonzero Chern
numbers even without an external magnetic field
present. This means that expansion with respect to SOI
strength is sometimes dangerous since it lifts the degen-
eracy between the spin-up and -down bands, leading to
avoided band crossings which can invalidate such expan-
sion.

Even though the interpretations of the AHE in real
systems are still subtle and complicated, the view that
�xy

AH-int can be the dominant contribution to �xy
AH in cer-

tain regimes has been strengthened by recent compari-
sons of experiment and theory. The intrinsic AHE can
be calculated from first-principles calculations or, in the
case of semiconductors, using k ·p theory. These calcula-
tions have been compared to recent experimental mea-
surements for several materials such as Sr1−xCaxRuO3
�Sec. II.B�, Fe �Sec. II.A�, CuCr2Se4−xBrx �Sec. II.D�,
and dilute magnetic semiconductors �Sec. II.C�. The cal-
culations and experiments show semi-quantitative agree-
ment. More importantly, however, violations of the em-
pirical relation �HM have been established both
theoretically and experimentally. This suggests that the
intrinsic contribution has some relevance to the ob-
served AHE. On the other hand, these studies do not
always provide a compelling explanation for dominance
of the intrinsic mechanism

2. Fully consistent metallic linear response theories of the
AHE

Important progress has been achieved in AHE theory.
The semiclassical theory, appropriately modified to ac-

count for interband coherence effects, has been shown
to be consistent with fully microscopic theories based on
the Kubo and Keldysh formalisms. All three theories
have been shown to be equivalent in the �F��� limit,
with each having their advantages and disadvantages
�Sec. V�. Much of the debate and confusion in early
AHE literature originated from discrepancies and far-
raginous results from earlier inconsistent application of
these linear response theories.

A semiclassical treatment based on the Boltzmann
transport equation, but taking into account the Berry
curvature and interband coherence effects, has been for-
mulated �Sec. V.A�. The physical picture for each pro-
cess of AHE is now understood reasonably well in the
case of elastic impurity scattering.

More rigorous treatments taking into account the
multiband nature of the Green’s functions in terms of
the Kubo and Keldysh formalism have been fully devel-
oped �Sec. V.C�. These have been applied to a particular
model, i.e., the ferromagnetic Rashba model, with a
static impurity potential which produces elastic scatter-
ing. The ferromagnetic Rashba model has an avoided
crossing which has been identified as a key player in the
AHE of any material. These calculations have shown a
region of disorder strength over which the anomalous
Hall conductivity stays more or less constant as a func-
tion of �xx, corresponding to the intrinsic-dominated re-
gime. The emergence of this regime has been linked to
the topological nature of the intrinsic contribution,
analogous to the topologically protected quantized Hall
effect.

3. Emergence of three empirical AHE regimes

Based on the large collections of experimental results
and indications from some theoretical calculations, it is
now becoming clear that there are at least three differ-
ent regimes for the behavior of AHE as a function of
�xx. �i� ��xx	106 �
 cm�−1� a high conductivity regime in
which �xy

AH��xx, skew scattering dominates �xy
AH, and the

anomalous Hall angle �H /�xx is constant. In this regime,
however, the normal Hall conductivity from the Lorentz
force, proportional to �xx

2 H, is large even for the small
magnetic field H used to align ferromagnetic domains
and separating �xy

AH and �xy
NH is therefore challenging. �ii�

�104 �
 cm�−1��xx�106 �
 cm�−1� An intrinsic or
scattering-independent regime in which �xy

AH is roughly
independent of �xx. In this intermediate metallic region,
where the comparison between the experiments and
band-structure calculations have been discussed, the in-
trinsic mechanism is assumed to be dominant as men-
tioned. The dominance of the intrinsic mechanism over
side jump is hinted in some model calculations, but there
is no firm understanding of the limits of this simplifying
assumption. �iii� ��xx�104 �
 cm�−1� A bad-metal re-
gime in which �xy

AH decreases with decreasing �xx at a
rate faster than linear. In this strong disorder region, a
scaling �H�xx

n with 1.6�n�1.7 has been reported ex-
perimentally for a variety of materials discussed in Sec.
II. This scaling is primarily observed in insulating mate-
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rials exhibiting variable range hopping transport and
where �xx is tuned by varying T. The origin of this scal-
ing is not yet understood and is a major challenge for
AHE theory in the future. For metallic ultrathin thin
films exhibiting this approximate scaling, it is natural
that �H is suppressed by the strong disorder �excluding
weak-localization corrections�. Simple consideration
from the Kubo formula where the energy denominator
includes a �� /��2 is that �H�

−2 when this broadening is
larger than the energy splitting between bands due to
the SOI. Since in this large broadening regime �xx is
usually no longer linear in �, an upper limit of �=2 for
the scaling relation �H�xx

� is expected. The numerical
Keldysh studies of the ferromagnetic 2D Rashba model
indicate that this power is ��1.6, close to what is ob-
served in the limited dirty-metallic range considered in
the experiments. It is a surprising feature that this scal-
ing seems to hold for both the metallic and insulating
samples.

B. Future challenges and perspectives

In the classical Boltzmann transport theory, the resis-
tivity or conductivity at the lowest temperature is simply
related to the strength of the disorder. However, quan-
tum interference of the scattered waves gives rise to a
quantum correction to the conductivity and eventually
leads to the Anderson localization depending on the di-
mensionality. At finite temperature, inelastic scattering
by electron-electron and/or electron-phonon interac-
tions give additional contributions to the resistivity while
suppressing localization effects through a reduction of
the phase coherence length. In addition one needs to
consider quantum correction due to the electron-
electron interaction in the presence of the disorder.
These issues, revealed in the 1980s, must be considered
to scrutinize the microscopic mechanism of �xx or �xx
before studying the AHE. This means that it seems un-
likely that only �xx�T� characterizes the AHE at each
temperature. We can define the Boltzmann transport �xx

B

only when the residual resistivity is well defined at low
temperature before the weak-localization effect sets in.
Therefore, we need to understand first the microscopic
origin of the resistivity. Separating the resistivity into
elastic and inelastic contributions via Mathhiessen’s rule
is the first step in this direction.

To advance understanding in this important issue, one
needs to develop the theoretical understanding for the
effect of inelastic scattering on AHE at finite tempera-
ture. This issue has been partly treated in the hopping
theory of the AHE described in Sec. II.B where phonon-
assisted hopping was assumed. However, the effects of
inelastic scattering on the intrinsic and extrinsic mecha-
nisms are not clear at the moment. Especially, spin fluc-
tuation at finite T remains the most essential and diffi-
cult problem in the theory of magnetism, and usually the
mean-field approximation breaks down there. The ap-
proximate treatment in terms of the temperature depen-
dent exchange splitting, e.g., for SrRuO3 �Sec. II.B�,

needs to be reexamined by more elaborated method
such as the dynamical mean-field theory, taking into ac-
count the quantum or thermal fluctuation of the ferro-
magnetic moments. These types of studies of the AHE
may shed some light on the nature of the spin fluctua-
tion in ferromagnets. Also the interplay between local-
ization and the AHE should be pursued further in the
intermediate and strong disorder regimes. These are all
vital issues for quantum transport phenomena in solids
in general, as well as for AHE specifically. In addition,
the finite-temperature effect tends to suppress the finite-
temperature skew scattering and make the scattering-
independent contributions dominate �Tian et al., 2009�.

Admitting that more work needs to be done, in Fig. 47
we propose a speculative and schematic crossover dia-
gram in the plane of diagonal conductivity �xx of the
Boltzmann transport theory �corresponding to the disor-
der strength� and the temperature T. Note that a real
system should move along the y axis as temperature is
changed, although the observed �xx changes with T. This
phase diagram reflects the empirical fact that inelastic
scattering removes the extrinsic skew-scattering contri-
bution more effectively, leaving the intrinsic and side-
jump contributions as dominant at finite temperature.
We want to stress that the aim of this figure is to pro-
mote further studies of the AHE and to identify the
location of each region or system of interest. Of course,
the generality of this diagram is not guaranteed and it is
possible that the crossover boundaries and even the to-
pology of the phase diagram might depend on the
strength of the spin-orbit interaction and other details of
the system.

There still remain many other issues to be studied in
the future. First-principles band-structure calculations
for AHE are still limited to a few number of materials
and should be extended to many other ferromagnets.
Especially, the heavy fermion systems are an important
class of materials to be studied in detail. Concerning this
point, a more economical numerical technique is now
available �Marzari and Vanderbilt, 1997�. This method
employs the maximally localized Wannier functions,
which can give the best tight-binding model parameters
in an energy window of several tens of eV near the

Ferromagnetic critical region

Incoherent region

T

Localized

T

Intrinsic metallic region

Mott-Anderson

Localized-
hopping
conduction
region

Skew
scattering

critical region
g

region

�� [�-1cm-1]
103 106

��xx [� 1cm 1]

FIG. 47. �Color online� A speculative and schematic phase
diagram for the anomalous Hall effect in the plane of the di-
agonal conductivity �xx and the temperature T.

1588 Nagaosa et al.: Anomalous Hall effect

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010



Fermi level. The algorithm for the calculation of �xy in
the Wannier interpolation scheme has also been devel-
oped �Wang et al., 2006�. Application of these newly de-
veloped methods to a large class of materials should be a
high priority in the future.

AHE in the dynamical regime is a related interesting
problem. The magneto-optical effects such as the Kerr
or Faraday rotation have been the standard experimen-
tal methods to detect the ferromagnetism. These tech-
niques usually focus, however, on the high energy region
such as the visible light. In this case, an atomic or local
picture is usually sufficient to interpret the data, and the
spectra are not directly connected to the dc AHE. Re-
cent studies have revealed that the small energy scales
comparable to the spin-orbit interaction are relevant to
AHE which are typically �10 meV for 3d transition
metal and �100 meV in DMSs �Sinova et al., 2003�. This
means that the dynamical response, i.e., �xy���, in the
THz and infrared region will provide important informa-
tion on the AHE.

A major challenge for experiments is to find examples
of a quantized anomalous Hall effect. There are two
candidates at present: �i� a ferromagnetic insulator with
a band gap �Liu et al., 2008� and �ii� a disorder induced
Anderson insulator with a quantized Hall conductance
�M. Onoda and Nagaosa, 2003�. Although theoretically
expected, it is an important issue to establish experimen-
tally that the quantized Hall effect can be realized even
without an external magnetic field. Such a finding would
be the ultimate achievement in identifying an intrinsic
AHE. The dissipationless nature of the anomalous Hall
current will manifest itself in this quantized AHE; engi-
neering systems using quantum wells or field effect tran-
sistors are a promising direction to realize this novel ef-
fect.

There are many promising directions for extensions of
ideas developed through studies of the AHE. For ex-
ample, one can consider several kinds of “current” in-
stead of the charge current. An example is the thermal
or heat current, which can also be induced in a similar
fashion by the anomalous velocity. The thermoelectric
effect has been discussed in Sec. II.C, where combining
all measured thermoelectric transport coefficients
helped settle the issue of the scaling relation �xy

AH��xx
2

in metallic DMSs �Pu et al., 2008�. Recent studies in Fe
alloys doped with Si and Co discussed in Sec. II.A fol-
lowed a similar strategy �Shiomi et al., 2009�. From the
temperature dependence of the Lorentz number, they
identified the crossover between the intrinsic and extrin-
sic mechanisms. Further studies of thermal transport will
shed some light on the essence of AHE from a different
side.

Spin current is also a quantity of recent great interest.
A direct generalization of AHE to the spin current is the
spin Hall effect �Murakami et al., 2003; Kato et al., 2004;
Sinova, Culcer, et al., 2004; Wunderlich et al., 2005�,
which can be regarded as the two copies of AHE for
spins up and down with the opposite sign of �xy. In this
effect, a spin current is produced perpendicular to the
charge current. A recent development in spin Hall effect

is that the quantum spin Hall effect and topological in-
sulators have been theoretically predicted and experi-
mentally confirmed. We did not include this new and still
developing topic in this review article. Interested read-
ers are referred to the original papers and references
therein �Kane and Mele, 2005; Bernevig et al., 2006;
Koenig et al., 2007�.
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