
KH Computational Physics- 2018 Optimal use of hardware & software

1 Compilation and Linking Instructions

• C/C++ and fortran code needs to be compiled before it can be run. The compilation

takes two steps: producing object (machine) code from the source code, and linking

objects into executable. The commands are

– compile: g++ [options] -c <source1>.cc

– compile: g++ [options] -c <source2>.cc

– link: g++ [options] -o <executable><source1>.o <source2>.o

– execute: ./<executable>

If compiling a single source file, we can achieve boths steps with one command

– compile&link: g++ [options] -o <executable><source>.cc

– execute: ./<executable>

Options can be omitted, but we will many times use options for optimization (-O, or -O3)

adding debugging information (-g), or additin profiling information (-p)

• For fotran, code we can use identical process, except ”g++” is replaced by fortran

compiler, i.e., either gnu-fortram ”gfortran” or intel’s ”ifort”.

Kristjan Haule, 2018 –1–

KH Computational Physics- 2018 Optimal use of hardware & software

• Python is interpreter. The code does not need explicit compilation. By invoking Python

interpreter, the code is compiled on the fly and executed at the same time

– compile&execute: python <script>.py

If we want to avoid invoking python interpreter explicitely, we need to do the following.

– change script permission: chmod +x <script>.py

– the first line needs to read:

#!/usr/bin/env python

– execute: ./<script>.py

Kristjan Haule, 2018 –2–

KH Computational Physics- 2018 Optimal use of hardware & software

Writing makefiles

It is a good practice to write a makefile for every project. Makefile typically contains

information about the default compilers, location of necessary include files and necessary

libraries to link to the executable.

There are many nice tutorials available on the Web including

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

or http://www.tutorialspoint.com/makefile/index.htm or

http://www.gnu.org/software/make/manual/

We will briefly describe the steps in writing simple makefiles.

• The name of the makefile can be ”Makefile” or ”makefile” and is typically located in the

same directory as other source files.

• User types ”make” in the source directory and makefile is executed producing the

executable file.

Kristjan Haule, 2018 –3–

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.tutorialspoint.com/makefile/index.htm
http://www.gnu.org/software/make/manual/

KH Computational Physics- 2018 Optimal use of hardware & software

Lets call our project manc. The C++ source file is manc.cc. The simplest makefile
contains the following two lines

manc : manc.cc

g++ -o manc manc.cc

Note: Each line in the commands list must begin with a TAB character!

• The dependency rule defines under what conditions a given file needs to be

recompiled, and how to compile it.

The above rule states that the executable manc has to be recompiled whenever

manc.cc is modified. The rule tells us that manc can be obtained by the command g++

-o manc manc.cc.

We can have multiple rules, which are executed recursively. By default, make always

executes the first rule. The other rules are executed, if they are called by some other rule

(starting from the first rule). If we give an argument to the make, make will start at the rule

with such name.

Kristjan Haule, 2018 –4–

KH Computational Physics- 2018 Optimal use of hardware & software

Here is such example with multiple rules

all : manc manf # if all does not exists, manc and manf are envoked

manc : manc.cc # target : dependencies // time1 > time2 -> execute

g++ -o manc manc.cc # commands

manf : manf.f90 # target : dependencies

gfortran -o manf manf.f90 # command

The first rule is all, and make will start evaluating it.

The first lines says that all depends on manc and manf. If the two files do not exist,

make will create them by finding and executing rules for manc and manf. Even if the two

files (manc & manf) exist, make will check if they are up to date, otherwise it will evaluate

the rules. Up to date means that dependencies (on the right) are older than targets (on the

left). For example, if manc.cc is newer than manc, the rule for manc will be evaluated

even though manc exists. We could say that if the file does not exists, it is equivalent to be

very old for the purpose of makefile rules evaluation.

Kristjan Haule, 2018 –5–

KH Computational Physics- 2018 Optimal use of hardware & software

Next we could define some constants for compiler names and compiler flags (optimization).
For example

C++ = g++ # define variable C++

FORT = gfortran # define variable F90

CFLAGS = -O3

FFLAGS = -O3

rules below

all : manc manf # target : dependencies

manc : manc.cc # target : dependencies // time1 > time2 -> execute

$(C++) $(CFLAGS) -o manc manc.cc # commands

manf : manf.f90 # target : dependencies

$(FORT) $(FFLAGS) -o manf manf.f90 # command

This is useful for porting makefiles to different computer, as only a few variables needs to

be changed on different system.

Most makefiles have a rule named clean. This will remove all object files and all
executables, so that a fresh compilation can be started after clean is invoked. We would
add a rule like that

clean :

rm -f manc manf

Notice that the dependency list is empty, hence the rule is always executed when invoked.

Kristjan Haule, 2018 –6–

KH Computational Physics- 2018 Optimal use of hardware & software

To invoke the clean rule, we need to call make with the argument: make clean

make also defined many special variables, such as $@, $<, $*. The variable $@

stands for the target on the left hand side, and $< is the first item in the dependency list.

We could rewrite the manc and manf rules in the following way:

manc : manc.cc # target : dependencies // time1 > time2 -> execute

$(C++) $(CFLAGS) -o $@ $<

manf : manf.f90 # target : dependencies

$(FORT) $(FFLAGS) -o $@ $<

Finally, often we have many C++ and fortran files, which need to be compiled in a very
similar way. It is useful to write generic rules to obtain a file named xxx.o from a
corresponding xxx.f90 file. We can achieve that by so called pattern rules, which can
be added at the end of the makefile.

#...................

Pattern rules

#...................

%.o : %.f90

$(FORT) $(FFLAGS) -c $< -o $@

%.o : %.cc

$(CC) $(CFLAGS) -c $< -o $@

Now we do not need to write a rule for obtaining xxx.o from xxx.f90 or xxx.cc.

Kristjan Haule, 2018 –7–

KH Computational Physics- 2018 Optimal use of hardware & software

open mp to speed up C++ and

Python code

• OpenMP is designed for multi-processor/core to run a program on several cores (using

several ”threads”)

• OpenMP programs accomplish parallelism exclusively through the use of threads.

Typically, the number of threads match the number of machine processors/cores.

Kristjan Haule, 2018 –8–

KH Computational Physics- 2018 Optimal use of hardware & software

However, the actual use of threads is up to the application.

• OpenMP is a shared memory programming model, most variables in OpenMP code are

visible to all threads by default.

• But sometimes private variables are necessary to avoid race conditions. and there is a

need to pass values between the sequential part and the parallel region.

• OpenMP is an explicit (not automatic) programming model, offering the programmer full

control over parallelization.

• Parallelization can be as simple as taking a serial program and inserting compiler

directives.... Or as complex as inserting subroutines to set multiple levels of parallelism,

locks and even nested locks.

The simplest case of parallel mandelbrot calculation:

#pragma omp parallel for

for (int i=0; i<Nx; i++){

for (int j=0; j<Ny; j++){

double x = -2 + 3.*i/(Nx-1.);

double y = -1 + 2.*j/(Ny-1.);

mand[i*Ny+j] = Mandelb(complex<double>(x,y), max_iterations);

}

}

Kristjan Haule, 2018 –9–

KH Computational Physics- 2018 Optimal use of hardware & software

The loop over i is parallelized. Each core is calculating different i term.

Note that mand is shared across all cores, because each core is changing its own slice of

the array.

Note that x and y must be different on each core. As they are declared inside the loop,

compiler makes them private to each core.

In more general case, the omp parallel statement is

#pragma omp parallel shared(x,y) private(beta,pi)

By default all variables are shared, hence shared statement is not really needed.

The same loop in fortran would look like

!$OMP PARALLEL DO PRIVATE(j,x,y,z0)

do i=1,Nx

do j=1,Ny

x = -2.+3.*(i-1.)/(Nx-1.)

y = -1.+2.*(j-1.)/(Ny-1.)

z0 = dcmplx(x,y)

mand(i,j) = Mandelb(z0, max_steps)

enddo

enddo

!$OMP END PARALLEL DO

Kristjan Haule, 2018 –10–

KH Computational Physics- 2018 Optimal use of hardware & software

Note that in fortran all variables are declared at the top of the program, hence x, y, z0, j

need to be declared private. Also i is private, but the first loop counter does not need to be

added to the private list, as compiler will add it.

The code is compiled by adding a flag -fopenmp:

g++ -fopenmp -O3 -o mandc mandc.cc

and

gfortran -fopenmp -O3 -o mandf mandf.f90

Also the environment variable OMP NUM THREADS should be set to the number of cores

(threads) we want to use. We can issue a command

export OMP_NUM_THREAS=4

Kristjan Haule, 2018 –11–

KH Computational Physics- 2018 Optimal use of hardware & software

Example of time for mandelbrot set on multiple cores for Intel Core i7 processor:

1 2 3 4 5 6 7 8
#cores

2

3

4

5

6

7

8

9

ti
m
e

If you want to learn more about open mp, you should read examples at

http://openmp.org/mp-documents/OpenMP4.0.0.Examples.pdf

GPU acceleration should be supported in open mp.4.0, but current examples do not yet

contain it. Most of compilers have limited support for GPU acceleration at this point, but this

could change very shortly.

Kristjan Haule, 2018 –12–

http://openmp.org/mp-documents/OpenMP4.0.0.Examples.pdf

KH Computational Physics- 2018 Optimal use of hardware & software

Python tricks to speedup the code

With numpy and scipy package, Python is one of the best languages for numerics.

But, it is slow!

Not, if combined with C++/Fortran!

The idea: Write most of the code in Python. Allocate all arrays in Python, to avoid annoying

bookeeping of allocation/deallocation of memory. Speed-up the innermost loop by

fortran/C++.

Great tools to ”glue” fotran code with Python: f2py.

Many tools to ”glue” C++ with Python. The simplest to use comes with scipy: weave. We

will also discuss pybind11, which is very powerful, but somewhat harder to use.

Kristjan Haule, 2018 –13–

KH Computational Physics- 2018 Optimal use of hardware & software

Others:

• weave : used to be part of scipy, and is still among standard Python packages. Very

simple to use. But code is a string, which is very clumsy for writting more than 10 lines

of code.

• Pybind11 :https://github.com/pybind/pybind11

very powerful for C++ to Python-library conversion. Needs newer C++-11 compiler. It

requires only a few header files, and no libraires or compilation. Efficient, and not too

hard to use.

• Swig : very general. It can glue almost everything with everything. It is demanding to

master.

• python-cxx : smaller, intented only for C/C++ < − > Python conversion. Looks quite

simple, but very limited numpy support.

• Cython : http://cython.org/

like a new compiler for python. We do not write real C++ code, but code similar to C++,

which is being compiled. However, it needs separate installation. Some (but limited)

support for numpy/scipy. (This might have improved recently.)

Kristjan Haule, 2018 –14–

https://github.com/pybind/pybind11
http://cython.org/

KH Computational Physics- 2018 Optimal use of hardware & software

2 f2py

• Step 1: Create fortran subroutine, and compile it with fortran compiler.

• Step 2: Add special f2py directives to fortran code for more user-friendly modules.

• Step 3: Create Python module by f2py:

f2py -c <source-name> -m <module-name> <libraries>

• Step 4: Include module in Python, and use it as python function.

Kristjan Haule, 2018 –15–

KH Computational Physics- 2018 Optimal use of hardware & software

2.1 Mandelbrot

Note !f2py directives. They can be used to specify optional parameters, sizes of arrays,...

To check if the code is free from grammatical errors, do

Kristjan Haule, 2018 –16–

KH Computational Physics- 2018 Optimal use of hardware & software

ifort -c mandel.f90

If successful, use f2py to get pythom module, mandel.so:

f2py -c mandel.f90 -m mandel

If your f2py does not find the right fortran compiler, you might need to add option

--fcompiler=intel or --fcompiler=intelem

Open python interpreter ipython and check the module:

import mandel

print mandel.__doc__

This should give you help on how the fortran subroutine was converted. Should be

something like:

This module ’mandel’ is auto-generated with f2py (version:2_4422).

Functions:

data = mandelb(ext,nx,ny,max_iterations=1000)

Now we have python function, which can be used to plot mandelbrot set:

Kristjan Haule, 2018 –17–

KH Computational Physics- 2018 Optimal use of hardware & software

3 weave

The idea of weave is to write C/C++ code directly inside python script (much like we used to

insert assembler code inside C code).

Kristjan Haule, 2018 –18–

KH Computational Physics- 2018 Optimal use of hardware & software

Kristjan Haule, 2018 –19–

KH Computational Physics- 2018 Optimal use of hardware & software

This is faster then Python, but the double loop is still expensive in Python. We can further

optimized by coding the double loop in C++:

Kristjan Haule, 2018 –20–

KH Computational Physics- 2018 Optimal use of hardware & software

4 pybind11

Pybind11 is just a collection of header files (*.h files to be included in your C++ code). You

can downloaded them from https://github.com/pybind/pybind11. You

might want to read the manual :

https://media.readthedocs.org/pdf/pybind11/master/pybind11.pdf

One can produce stand-alone C++ code, in which the “main” function is replaced by the

pybind11 wrapper code (a few lines of code), and then one can compile the code into

Python module.

The code can have a form like:

Kristjan Haule, 2018 –21–

https://github.com/pybind/pybind11
https://media.readthedocs.org/pdf/pybind11/master/pybind11.pdf

KH Computational Physics- 2018 Optimal use of hardware & software

Kristjan Haule, 2018 –22–

KH Computational Physics- 2018 Optimal use of hardware & software

To compile the code, and produce python model “imanc.so” you can create makefile, which

will have the form

CC = g++-7

PYBIND = -I<Python_path>/include/python2.7

PYLIBS = -L<Python_path>/lib/python2.7/config -lpython2.7 \

-ldl -framework CoreFoundation

imanc.so : imanc.cc

$(CC) $(PYBIND) -O3 -fopenmp -shared -std=c++11 \

imanc.cc -o imanc.so $(PYLIBS)

Note that we were able to use numpy array for data, which was accessed in C++. It is also

quite straighforward to convert blitz arrays into numpy arrays with this tool.

You should be able to get the correct paths for your platform by typing:

python-config --includes

python-config --libs

These instructions might be slightly outdated, as pybind11 is evloving very rapidly. Consult

their manual, if these instructions do not work for you.

Kristjan Haule, 2018 –23–

KH Computational Physics- 2018 Optimal use of hardware & software

Hardware

• The central unit of a computer is CPU (Central processing unit). It consists of a few very

high speed memory units called registers. Nowadays CPU has many cores - even 16.

• Closest to the CPU is a small part of memory, called Cache. Nowadays, typical size of

the Cache is 1MB. The Cache is very important for performance (difference between

Pentium and Celeron).

• RAM is the cental memory unit which can be accessed randomly. It is fast, but orders of

magnitude slower than cache, which is orders of magnitude slower than registers.

• Hard disc is the slowest memory unit where the data can be (more or less) permanently

stored.

ADVICE: Use the fastest memory you can

Kristjan Haule, 2018 –24–

KH Computational Physics- 2018 Optimal use of hardware & software

5 GPU

Recently, a new type of high performance computing is emerging - computing by Graphical

Processing Unit (GPU). Nvidia developed the TESLA unit, and ATI and AMD developed

FireStream.

The GPU’s have outperformed CPU’s in terms of speed. The speed of each unit

(CPU/GPU) is not increasing so much with time. But the number of processing units is

increasing. GPU contains > 200 processors.

Kristjan Haule, 2018 –25–

KH Computational Physics- 2018 Optimal use of hardware & software

Kristjan Haule, 2018 –26–

KH Computational Physics- 2018 Optimal use of hardware & software

6 Intel’s Many Integrated Core (MIC) Architecture/Xeon

Phi

New/Old name : Xeon Phi/MIC

Comparison between MIC & GPU:

• MIC cores are general purpose cores just like CPUs, while GPU cores have limited

instruction set [use of openMP versus CUDA]

• MIC cores have more memory per core, i.e., Knights Ferry (version released in 2010)

has 32 KB of L1 cache, 256 KB of L2 cache, and 64MB of GDDR5 memory per core.

GPU’s typically have 1KB of registry and 6MB of additional memory per core.

• GPUs have more cores than MICs. Tesla typically includes 512 cores while Knights

Ferry contains 32 and Knights Corner 50 cores.

Kristjan Haule, 2018 –27–

KH Computational Physics- 2018 Optimal use of hardware & software

7 Optimization
• Do not use hard-disc for data manipulation. Keep data in RAM. If you need a lot of

RAM, estimate weather it fits into RAM. Rethink your algorithm before you start writing

data to hard-disc.

• Try avoiding random access of data in RAM to reduce cache misses.

• The data which you need in the innermost loop should be stored in a way that the

access is maximally continuous.

Typical example is a matrix manipulation.

In C or C++, one needs to access multidimensional arrays in the following order

for (int i=0; i<size; i++)

for (int j=0; j<size; j++)

A[i][j] =

since the data is stored in a row major order. In Fortran, the same loop should be written in
the following way

do i=1, size

do j=1, size

A(j,i) =

enddo

enddo

Kristjan Haule, 2018 –28–

KH Computational Physics- 2018 Optimal use of hardware & software

This is because Fortran uses column major storage. The figure explains it all.

Remember: The innermost index j runs:

in C++ A[]...[j]

in Fortran A(j,....)

Scientific programs are usually very tuned for performance. This usually goes in expense of

portability and readability.

ADVICE: Newer optimize those parts of the program which are not very crucial for speed.

In typical applications, only 20% of the code spends 80% of the time. Optimize only those

20% of the code. Make the rest of the code more readable.

Remember: 80/20 rule

Kristjan Haule, 2018 –29–

KH Computational Physics- 2018 Optimal use of hardware & software

Available numeric software

Numerous libraries are available on the Web. Sometimes it is hard to decide which one to

use.

The current situation: Most of the best numeric algorithms are still written in Fortran →

need to learn how to use them.

One of the most comprehensive archives is GAMS at http://gams.nist.gov/ :

GAMS info:

Public access repository NETLIB is located at Oak Ridge National Laboratory, Knoxville, TN and

AT&T Bell Laboratories, Murray Hill, NJ

It includes 111 packages and 8792 problem-solving modules (routines)

Kristjan Haule, 2018 –30–

http://gams.nist.gov/

KH Computational Physics- 2018 Optimal use of hardware & software

Some of the libraries are unfortunately commercial (line NAG). Check weather they are

Kristjan Haule, 2018 –31–

KH Computational Physics- 2018 Optimal use of hardware & software

installed on the system (at the moment we do not have NAG license). Do not install libraries

if they are already installed (like blas and lapack) because they are probably much more

optimized than your compiled code can be.

8 Mixing Fortran and C++

Let’s try to use fortran code inside C++ code.

Suppose we need to calculate erfc function of complex argument. GAMS finds many

available routines. Let’s pick the one from TOMS package. The header looks like this

Kristjan Haule, 2018 –32–

KH Computational Physics- 2018 Optimal use of hardware & software

Kristjan Haule, 2018 –33–

KH Computational Physics- 2018 Optimal use of hardware & software

First, we need to compile the Fortran code to produce object file:

ifort -c erfc.f

If it compiles, we can try to call it from C++. We need to write a prototype for Fortran routine.

It is essential, to convert Fortran types to C types correctly. Here are some conversion rules

(Source: http://www.astro.indiana.edu/˜jthorn/c2f.html)

• use pointers to arguments (in Fortran everything is pointer)

• Name Mangling

– names of routines should be lowercase

– in many platforms necessary to add underscore to function names

• Fortran subroutines is equivalent to C function returning void

• Conversion of types:

– INTEGER → int

– LOGICAL → int

– REAL → float

– DOUBLE PRECISION==REAL*8 → double

Kristjan Haule, 2018 –34–

http://www.astro.indiana.edu/~jthorn/c2f.html

KH Computational Physics- 2018 Optimal use of hardware & software

– Fortran subroutine or function → pointer to a function (Name Mangling applies)

– CHARACTER → usually char* (but be careful)

• Fortran starting index 1 goes to C/C++ starting index 0

• Due to column/row major convention in Fortran/C, the matrixes look transposed

Using the above rules on the fortran code

we prepare corresponding C++ prototype

A wrapper C++ function, hides the details of the call

Kristjan Haule, 2018 –35–

KH Computational Physics- 2018 Optimal use of hardware & software

Finally, we can compile C++ code and link together

g++ -o erfc cerfc.cc erfc.o

which is equivalent to

g++ -c cerfc.cc

g++ -o erfc cerfc.o erfc.o

See the available ifortran/erfc program for details.

LAPACK & BLAS

If you need to solve a standard linear algebra problem don’t even think of writing your own

routine and don’t take it from your friend’s program. It will be orders of magnitude slower.

There are very optimized and FREE libraries called blas and lapack.

Blas stands for ”Basic Linear Algebra”. The basic information is available at

http://www.netlib.org/lapack/lug/node145.html and also many

other locations. Those two libraries are already installed on most of computers (including

our cluster). If they are not, consider the following few distributions

• ATLAS: Automatically Tuned Linear Algebra Software

Kristjan Haule, 2018 –36–

http://www.netlib.org/lapack/lug/node145.html

KH Computational Physics- 2018 Optimal use of hardware & software

http://math-atlas.sourceforge.net/

• GotoBLAS: http://www.tacc.utexas.edu/resources/software/

There are ”Level 1”, ”Level 2” and ”Level 3” BLAS routines.

• Level 1 implements vector-vector operations

• Level 2 implements matrix-vector operations

• Level 3 implements matrix-matrix operations

The computation time increases as N for ”Level 1”, as N2 for ”Level 2” and as N3 for

”Level 3”. It is crucial to use ”Level 3” routines because they are truly faster than an naive

implementation can be. On the other hand, ”Level 1” routines do not give considerable

speed improvement and are therefore not mandatory to use. Typical routine from ”Level 3”

BLAS is dgemm, which implements matrix multiplication for real matrix (zgemm for complex

matrix).

is built on top of blas and implements more sophisticated linear algebra

operations including solving

• system of linear equations

Kristjan Haule, 2018 –37–

http://math-atlas.sourceforge.net/
 http://www.tacc.utexas.edu/resources/software/

KH Computational Physics- 2018 Optimal use of hardware & software

• linear least square problem

• eigenvalue problem

• singular value problem

For more information, check out

http://www.netlib.org/lapack/lapackqref.ps and for more detailed

explanation take a look at

http://www.cs.colorado.edu/\simjessup/lapack/documentation.h

When using LAPACK or BLAS routine for the first time, it is crucial to checks the answer

against Mathematica or using a simple example where you know the answer. There are

100 places where something might go wrong when calling BLAS or LAPACK routine from C

or C++.

A good idea is to implement wrapper routines (or member routines of your class) which call

LAPACK.

Example:

In sections ”Hartree-Fock” and ”Density Functional Theory”, we will need a routine to solve

a generalized eigenvalue problem for a real symmetric matrix Ax = EOx

Kristjan Haule, 2018 –38–

http://www.netlib.org/lapack/lapackqref.ps
http://www.cs.colorado.edu/$\sim $jessup/lapack/documentation.html

KH Computational Physics- 2018 Optimal use of hardware & software

Typing

man dsygvd

gives the following documentation

NAME

DSYGVD - compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite

eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

SYNOPSIS

SUBROUTINE DSYGVD(ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER JOBZ, UPLO

INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N

INTEGER IWORK(*)

DOUBLE PRECISION A(LDA, *), B(LDB, *), W(*), WORK(*)

A prototype for subroutine DSYGVD can be expressed by

extern "C"

void dsygvd_(const int* ITYPE, const char* JOBZ, const char* UPLO, const int* N,

double* A, const int* LDA, double* B, const int* LDB, double* W, double* WORK, const int* LWORK,

int* IWORK, const int* LIWORK, int* INFO);

and a typical call to the subroutine from a C program is

dsygvd_(&itype, "V", "U", &N, A, &lda, B, &ldb, eigenval, work, &lwork, iwork, &liwork, &info);

Complete implementation can be found in the section on the Hartree-Fock method.

Kristjan Haule, 2018 –39–

KH Computational Physics- 2018 Optimal use of hardware & software

Tools for detecting errors in the

code

Debugger

Usually we have many debugers available on a computer. Unfortunately not every

debugger is compatible with every compiler.

• For gnu compiler gcc or g77 the best choice is gdb (also part of gnu project and

therefore fully compatible).

• For intel compiler ifort the appropriate debugger is idb

• On other non-linux system you will most probabbly find different kind of native compiler

and corresponding debuger which is compatible with it.

To debug your program, you need to recompile the code with -g option added (For example:

”g++ -g -c mycode.cc”).

Kristjan Haule, 2018 –40–

KH Computational Physics- 2018 Optimal use of hardware & software

It is convenient to use debuger in a tex editor like emacs. Emacs can displays the source in

a separate buffer and displays a pointer to shows you which line of source code will be

executed next

• To start gdb within emacs, say M-x gdb <Enter>, edit the gdb execution line and say

<Enter> again.

• Set a breakpoint (for example ”b main” meaning break in program main), and type ”r”

and <Enter> to run the program. If your program needs input arguments, add them to

”r” command (”r myparam=something”).

• When the program stops, a second emacs buffer window will be created containing the

source code with a pointer “=>” indicating the next line of code to be executed. This is

your first breakpoint.

• To learn more about available commands, you can type ”help” in debugger buffer.

• Most often used commands are

– ”n[ext]” (Single-step without descending into functions)

– ”s[tep]” (Single-step descending into functions)

– ”p[rint] <variable>” (Prints the content of the variable)

Kristjan Haule, 2018 –41–

KH Computational Physics- 2018 Optimal use of hardware & software

– ”b[reak]” <line number> (Set a breakpoint at line number)

– ”b[reak]” <function name> (Set a breakpoint at function)

– ”b[reak]” <class::name> (Set a breakpoint at class member function)

– ”b[reak]” <class::tab> (Lists members in class)

– ”i[nfo] b[reak]” (Lists breakpoints currently set)

– ”d[elete] 1” (Delete breakpoint number 1)

– ”dis[able] 1” (Disable breakpoint number 1)

– ”en[able] 1” (Enable breakpoint number 1)

– ”c[ontinue]” (Continues to next breakpoint or end)

– ”fin[ish]” (Finish current function, loop, etc.)

– ”x/10f <pointer to memory>” (interprets data following pointer adress as 10 floating

point numbers and prints them)

– ”q[uit]” (Leaving debugger)

For more information, google gdb! There are hundreds of nice tutorials. (for example:

http://www-ccrma.stanford.edu/˜jos/pasp/Executing_gdb_Emacs.html

If you want to use Intel debugger ”idb” inside emacs, add the followng lines to your ”.emacs”

Kristjan Haule, 2018 –42–

http://www-ccrma.stanford.edu/~jos/pasp/Executing_gdb_Emacs.html

KH Computational Physics- 2018 Optimal use of hardware & software

file

(load-file "/opt/intel_idb_73/bin/idb.el")

You need to replace the path to file ”idb.el” with your path. Then say M-x idb <Enter> and

continue debugging.

Profiler

Debuggers can help you locate your mistakes. But if your program is working properly but is

very slow, you need to speed it up!

Profilers show you how much time is spend in each subprogram or subroutine and (if

necessary) even in each line of your code.

If you still remember 80/20 rule you can understand now why profilers are so important.

A good strategy is to write a scientific program which is very readable (highly intuitive and understandable) and not necessary fast

or optimized for speed. It usualy takes you much less time to write simple non-optimized code. Then it comes profiling and

optimization of those few lines of code that spend most of time. You are going to be surprised many times that the actual time

spent in many parts of the code, you believed are crucial for speed, is completely negligable (less than 1% of all time).

”gprof” is very simple profiler (part of gnu package fully compatible with gdb) and most of

the time sufficient for our needs.

Kristjan Haule, 2018 –43–

KH Computational Physics- 2018 Optimal use of hardware & software

• Recompile your code with -p option added. If you wish more precise information, add

also -g option. The reason is that optimization usually inlines many function calls and then they are not ”seen” by gprof

as separate units. The problem, however, is that program compiled with ”-O3” or ”-g” in general does not spend proportional

time in each part of the program (some parts can be more optimized than others). Consequently, ”-g” will not always show

precise time spent in each subprogram in case of ”-O3” execution. A good strategy is to first profile with -g and then check

your results with -O3 option as well.

• execute your program as usual. With profiling turned on, the execution is going to be considerable slower. If

your program is already very slow, consider profiling a simplified version.

• type ”gprof <name of your executable>” and you will get profiled information listed on

standard output.

• Go into your code and optimize subprogram which spends most of the time. Then

compile for profiling again and check weather you won!

• Continue until most of the time is spent in some very optimized library like blas or you

have no idea anymore how to speed up the code.

Kristjan Haule, 2018 –44–

KH Computational Physics- 2018 Optimal use of hardware & software

Memory leak detector

You probably need to use memory leak detector if

• your program coredumps and debugging the program does not help

• it corredumps from no obvious reason

• every time you debug corredumps at different place

• when debugging, certain variable is being changed when you really do not expect it to

be changed.

The above cases usually occur becuase you are reading from or writting to a memory

location outside of the scope of your program or outside the memory location reserved for

your variable.

In addition, memory leak detectors will also detect other missusings of dynamic memory

allocation and deallocation. For example: if you forget to clean up some memory reserved

by new (Each ”new” should be paired by a corresponding ”delete” statement).

One of free available detectors is called ”valgrind” (http://valgrind.org/).

You will most probabbly need to install valgrind on your computer on your own. For many

common linux distributions, rpm packages are already available. Check them out first.

Kristjan Haule, 2018 –45–

http://valgrind.org/

KH Computational Physics- 2018 Optimal use of hardware & software

There are many other Memory Leak Detectors available. Some are for free but most of

them are commercial. The website

http://www.linuxjournal.com/article/6556 lists and describes many

of them.

Kristjan Haule, 2018 –46–

http://www.linuxjournal.com/article/6556

KH Computational Physics- 2018 Optimal use of hardware & software

More Advanced and very Useful Trick

Example is from minimization of a function but can be equally well used in numerous other

applications.

Suppose a function F (x0, x1, y0, y1, ...) needs to be minimized with respect to variables

x0 and x1 while variables yi are kept fixed during minimization.

A typical Fortran program would define global variables yi which are changed before the

minimization routine is called. User-defined function F uses those global variables at each

call.

This leads to an extremely unreadable code and always neeeds to be awoided. DO NOT

USE GLOBAL VARIABLES! In large scale projects, it is practicaly imposible to keep track of

all the statements which could change a global variable and therefore user can not easily

figure out when a global variable is changed.

In C++, we have a workaround to this problem. All necessary variables yi can be hidden in

a user-defined class type and remain completely local. The code thus becomes intuitively

very clear for an end user. The code that does the trick, is however slightly complicated and

needs some thinking.

Let us take a very simple example of a function

Kristjan Haule, 2018 –47–

KH Computational Physics- 2018 Optimal use of hardware & software

F (x0, x1, y0, y1) = (x0 − y0)
2 + (x1 − y1)

2. The C++ statement that minimizes

function F is very clear and simple

Parabola parab(y0,y1);

F = Minimize(2, X, Parabola::FCN);

Notice that class parab (which is an instance of class type Parabola) is a local variable and

will not be used after minimization (will most probabbly be destroyed).

A naive implementation would be

class Parabola{

float u0, u1;

public:

Parabola(float u0_, float u1_) : u0(u0_), u1(u1_){};

double Value(double x0, double x1)

{ return sqr(x0-u0)+sqr(x1-u1);}

};

and member function Value(x0,x1) would be given to the Fortran subroutine. This will not

work because Value is not a static function (not a unique function but different for every

instance of a Parabola class).

We need a static function within the class which can be given to Fortran minimization

subroutine. However, static function can not use non-static variables and therefore can not

access members of a class. The reason is that static function is a common (unique)

Kristjan Haule, 2018 –48–

KH Computational Physics- 2018 Optimal use of hardware & software

function for all instances of a class type while class members are different for different

instances. Therefore we need a static copy of the data. The simplest way to do that is to

define a static pointer which will point to the instance which was last created.

The class type Parabola needs to be redefined to

class Parabola{

float u0, u1;

static Parabola* pt;

public:

Parabola(float u0_, float u1_) : u0(u0_), u1(u1_)

double Value(double x0, double x1)

{ return sqr(x0-u0)+sqr(x1-u1);}

static void FCN(const int* N, const float* X, float* F);

};

Notice the static pointer and static function FCN. The constructor needs to point the static
pointer to itself. The static member FCN can that access all data of a class through the
static pointer.

Parabola::Parabola(float u0_, float u1_) : u0(u0_), u1(u1_)

{Parabola::pt = this;}

void Parabola::FCN(const int* N, const float* X, float* F)

{

if (*N!=2) std::cerr<<"Not right number of variables!"<<std::endl;

*F = pt->Value(X[0],X[1]);

std::cout<<*F<<" "<<X[0]<<" "<<X[1]<<std::endl;

Kristjan Haule, 2018 –49–

KH Computational Physics- 2018 Optimal use of hardware & software

}

Finally, the function Minimize is a wrapper function to the fortran subroutine and takes the
form

template <class functor>

float Minimize(int N, float x[], functor& Fun)

{

float* x0 = new float[N];

int lw = N*(N+10);

float* w = new float[lw];

for (int i=0; i<N; i++) x0[i]=x[i];

float f; int info;

uncmin_(&N,x0,Fun,x,&f,&info,w,&lw);

delete[] w;

delete[] x0;

return f;

}

Kristjan Haule, 2018 –50–

KH Computational Physics- 2018 Optimal use of hardware & software

where the prototype for Fortran subroutine is

extern "C"

void uncmin_(const int* N, float* X0, void (*FCN)(const int* N, const float* X, float*

float* X, float* F, int* INFO, float* W, int* LW);

Fortran subroutine UNCMIN was downloaded from GAMS web page at

http://gams.nist.gov/serve.cgi/ModuleComponent/5672/Fullsource

For details, check the available program static function/minimize .

Kristjan Haule, 2018 –51–

http://gams.nist.gov/serve.cgi/ModuleComponent/5672/Fullsource/ITL/uncmin.f

	Compilation and Linking Instructions
	f2py
	Mandelbrot

	weave
	pybind11
	GPU
	Intel's Many Integrated Core (MIC) Architecture/Xeon Phi
	Optimization
	Mixing Fortran and C++

