
Setting up the computing environment

• I will be demonstrating on MAC.
• Linux environment is very similar to MAC and should be easy to follow
• Windows might be hardest to set up

In the past we provided virtual machine, light linux ubuntu, with all software installed. Such virtual machine
can be run on any operating system. If there is sufficient interest for a virtual machine, we will create it.
Native installation is more efficient, and probably a good idea to try it out.

Essential Software:

•Python, and its packages : numpy, scipy, matplotlib & jupyter notebooks (easy installation with Anaconda
www.anaconda.com)

•C++ compiler, such as gcc, but other C++ compilers should be fine too.

• Text editor for coding (anaconda includes Spyder, which I am learning, Emacs, Aquamacs, or similar)

•make to execute makefiles

http://www.anaconda.com

•Fortran compiler, such as gfortran, or intel fortran (it is getting harder to install nowadays).

•blas&lapack libraries. They come preinstalled in most computers or one needs to install vendors libraries (intel
mkl for linux). On mac it is contained in Xcode

• openMP enabled C++ compiler (native gcc rather than apple clang, which is invoked by gcc,g++)
 (It is possible to turn native clang to support openMP, but it is hard. See: OpenMP on macOS with Xcode tools https://
mac.r-project.org/openmp/)

• gnuplot for fast plotting.

Recommended Software:

https://mac.r-project.org/openmp/
https://mac.r-project.org/openmp/

• Install Xcode package from App Store (Essential)

• We will need specific part of Xcode namely “Command Line Tools”, which might be already installed in your distribution.
To check if they are, type:
xcode-select --print-path

If you do not find them, install by
xcode-select —-install

Xcode contains C/C++ compiler (gcc/g++). It is just a link to apples native Clang.
Xcode also contains many libraries. For example, it should include BLAS and LAPACK libraries. To use these libraries, we will
use a linker option: -framework Accelerate.
For more information see (https://developer.apple.com/accelerate/)
Xcode also includes make.

Installation on MAC:

https://developer.apple.com/accelerate/

Installation on MAC:

Multicore openMP execution:
However, Xcode does not come anymore with gnu compilers (such as gnu-c==gcc and gnu-c++==g++). Instead gcc and
g++ point to apple’s own Clang compiler. Unfortunately Clang does not support openMP (multicore) instructions. Moreover,
Clang does not include fortran compiler, such as gnu compiler (gfortran). (see https://mac.r-project.org/openmp/)

To install openMP, fortran & gnuplot we will use homebrew.
The long instructions of how to install the homebrew are available at http://brew.sh
In summary, you need to paste the following into the terminal prompt:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
install.sh)"

and follow the instructions.

After installing homebrew, you can check for any issues with the install by typing
brew doctor

Recommended:

https://mac.r-project.org/openmp/
http://brew.sh

On some OSX versions you may run into file permission issues with OSX’s SIP process. If you see permission issues that
does not allow you to install homebrew, you might need to change ownership on the homebrew directory by typing:
sudo chown -R $(whoami):admin /usr/local

Installation on MAC:

Now that homebrew is installed, we can install gcc and gfrortran
First check that gcc package exists, you can type in the Terminal prompt
brew search gcc

brew install gcc
To actually install gcc and gfortran, please type:

brew reinstall gcc

If you arelady installed gcc before, but is not up-to-date, you can type:

Warning: the installation of gcc will take a lot of time.

Recommended:

gcc-12 --version
gfortran --version

Check installation after complete:

Installing gnuplot using homebrew:

Installation on MAC:

Recommended:

brew install gnuplot

Installing gsl (gnu scientific library, which contains many numerics algorithms & random number generators) using homebrew:

brew install gsl

If you get annoying warning “Populating font family aliases took 96 ms”, you
can add to ~/.gnuplot the following line:

set term qt font "Helvetica Neue"

Finally, we will install Python with its packages. Some basic version should already be installed by Xcode package.
Xcode comes with a stripped-down version of Python, however, this native version of python usually does not
contain scipy&jupyter support. To check the current python installation, you can type

Installation for any platform:

Essential:

python
import scipy
scipy.test()

If it survives a minute or or more, the installation is OK. If not, follow the instructions below.

https://www.anaconda.com

As of this writing, the Anaconda distribution is most user friendly and easy to install, available for all operating systems:

“Download”, “Graphical installer”

Once installed, open:
It already includes all packages we need: scipy, numpy, matplotlib, ipython,jupyter

https://www.anaconda.com

Installation for MAC:

conda install -c conda-forge pybind11

Recommended:

Installing pybin11 in anaconda:

This is one of the easier methods to speed-up python codes through C++

https://pybind11.readthedocs.io/en/latest/index.htmlMore information :

conda install numba

conda list|grep numba

Installing numba in anaconda:

Usually it is already installed. Check:

In nothing is listed, type:

Alternatively, one can use graphical interface and navigate to “Environments/Search Packages” type pybind11

https://pybind11.readthedocs.io/en/latest/index.html

Testing of our installation with a
concrete example

https://www.tiobe.com/tiobe-index/

Which language is most popular?

Python is climbing up fast

C/C++ are basis of
operating systems and
standard for back-end

C++ modernized a lot
recently and has overtaken

java for the first time
(Hall of Fame 2022).

https://www.tiobe.com/tiobe-index/

Comparison of languages by generating Mandelbrot set:

Wikipedia: The Mandelbrot set M is defined by a family of complex quadratic polynomials f(z) = z2 + z0

where z0 is a complex parameter. For each z0, one considers the behavior of the sequence (0, f (0), f (f
(0)), f (f (f (0))), · · ·) obtained by iterating f (z) starting at z = 0, which either escapes to infinity or stays
within a disk of some finite radius. The Mandelbrot set is defined as the set of all points z0 such that
the above sequence does not escape to infinity.

KH Computational Physics- 2019 Introduction

Comparison of languages by generating Mandelbrot set:

Wikipedia: The Mandelbrot set M is defined

by a family of complex quadratic polynomials f(z) = z2 + z0 where z0 is a complex

parameter. For each z0, one considers the behavior of the sequence

(0, f(0), f(f(0)), f(f(f(0))), · · ·) obtained by iterating f(z) starting at z = 0, which

either escapes to infinity or stays within a disk of some finite radius. The Mandelbrot set is

defined as the set of all points z0 such that the above sequence does not escape to infinity.

Kristjan Haule, 2019 –23–

Re z0

Im z0

black: sequence
stays finite

INTEGER Function Mandelb(z0, max_steps)
 IMPLICIT NONE ! Every variable needs to be declared. It is very prudent to use that.
 COMPLEX*16, intent(in) :: z0
 INTEGER, intent(in) :: max_steps
 ! locals
 COMPLEX*16 :: z
 INTEGER :: i
 z=0.
 do i=1,max_steps
 if (abs(z)>2.) then
 Mandelb = i-1
 return
 end if
 z = z*z + z0
 end do
 Mandelb = max_steps
 return
END Function Mandelb

Implementation in Fortran (mandf.f90)

Main function which defines how many steps are needed before the value f(f(….f(z0))) explodes.

program mand
 use omp_lib
 IMPLICIT NONE
 ! external function
 INTEGER :: Mandelb ! Need to declare the external function
 ! locals
 INTEGER :: i, j
 REAL*8 :: x, y
 COMPLEX*16 :: z0
 INTEGER, parameter :: Nx = 1000
 INTEGER, parameter :: Ny = 1000
 INTEGER, parameter :: max_steps = 1000
 REAL*8 :: ext(4) = (/-2., 1., -1., 1./) ! The limits of plotting
 REAL*8 :: mande(Nx,Ny)
 REAL :: start, finish, startw, finishw

 call cpu_time(start)
 startw = OMP_get_wtime()

 !$OMP PARALLEL DO PRIVATE(j,x,y,z0)
 do i=1,Nx
 do j=1,Ny
 x = ext(1) + (ext(2)-ext(1))*(i-1.)/(Nx-1.)
 y = ext(3) + (ext(4)-ext(3))*(j-1.)/(Ny-1.)
 z0 = dcmplx(x,y)
 mande(i,j) = Mandelb(z0, max_steps)
 enddo
 enddo
 !$OMP END PARALLEL DO

 finishw = OMP_get_wtime()
 call cpu_time(finish)
 WRITE(0, '("clock time : ",f6.3,"s wall time=",f6.3,"s")') finish-start, finishw-startw

 do i=1,Nx
 do j=1,Ny
 x = ext(1) + (ext(2)-ext(1))*(i-1.)/(Nx-1.)
 y = ext(3) + (ext(4)-ext(3))*(j-1.)/(Ny-1.)
 print *, x, y, 1./mande(i,j)
 enddo
 enddo
end program mand

This is how we use the above
function in the main part of the
program.

Note !$OMP directives for
multicore execution.

We print 2D array to the
standard output, which contains
1/#steps needed before value
explodes.

Testing example

gfortran -O3 -fopenmp -o mandf mandf.f90

Execute and check the time:

./mandf > mand.dat
clock time : 1.30075s with wall time=0.218432s

gnuplot gnu.sh Finally plot:

The codes produce three column output x, y, color and need a plotting program to display results. In gnuplot the
following command plots the output:

set view map
splot ’mand.dat’ with p ps 3 pt 5 palette

or call the script by

gnuplot gnu.sh

↑ A lot of scientific code written in fortran → we need to use it and be able to occasionally adapt it.
↑ It is very easily integrated with Python/numpy through f2py/f2py3, hence useful in combination with Python.

↓ For todays standards, it is obsolete, i.e, developed by IBM in the 1950s (John W. Backus 1953).
↓ Many releases (Fortran, Fortran II, Fortran III, Fortran 66, Fortran 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008).
↓ The language keeps changing substantially, but maintains backward compatibility, with several implementations, but no
standard compiler: Intel fortran, gnu, PGI fortran,...

Why do we still bother with Fortran?

#include <iostream>
#include <complex>
#include <ctime>
#include <vector>
#include <omp.h>
using namespace std;

int Mandelb(const complex<double>& z0, int max_steps)
{
 complex<double> z=0;
 for (int i=0; i<max_steps; i++){
 if (abs(z)>2.) return i;
 z = z*z + z0;
 }
 return max_steps;
}

Implementation in C++ (mandc.cc)

Bunch of includes from
header files, which contain
function/class definitions

need to state that complex
and basic printing is in std
namespace

for loop is almost the same
as do loop in fortran, except
that in C/C++ we always
start at 0 rather than 1. This
is because of array index
starts with a(0) and not a(1)
as in fortran.

int main()
{
 const int Nx = 1000;
 const int Ny = 1000;
 int max_steps = 1000;
 double ext[]={-2,1,-1,1};

 vector<int> mand(Nx*Ny);
 clock_t startTimec = clock();
 double start = omp_get_wtime();

 #pragma omp parallel for
 for (int i=0; i<Nx; i++){
 for (int j=0; j<Ny; j++){
 double x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.);
 double y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.);
 mand[i*Ny+j] = Mandelb(complex<double>(x,y), max_steps);
 }
 }

 clock_t endTimec = clock();
 double diffc = double(endTimec-startTimec)/CLOCKS_PER_SEC;
 double diff = omp_get_wtime()-start;

 clog<<"clock time : "<<diffc<<"s"<<" with wall time="<<diff<<"s "<<endl;

 for (int i=0; i<Nx; i++){
 for (int j=0; j<Ny; j++){
 double x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.);
 double y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.);
 cout<<x<<" "<<y<<" "<< 1./mand[i*Ny+j] << endl;
 }
 }
}

This is how we use the above
function in the main part of the
program.

We use native vector<int> data,
which is 1D array. C++ still
does not have native 2D arrays!
Blitz++ or puma can be used,
but is not included in standard
C++.

Note #pragma omp directives
for multicore execution.

We print 1D/2D array to the
standard output, which contains
1/#steps needed before value
explodes.

continuation C++:

Testing example

Compile: g++-12 -fopenmp -O3 -o mandc mandc.cc

Execute and check the time:

mandf > mand.dat
clock time : 1.30075s with wall time=0.218432s

time mandc > mand.dat
clock time : 1.256s wall time= 0.219s

gnuplot gnu.sh

• C++ and fortran timings very similar

Finally plot:

CC = g++-12
F90 = gfortran

all : mandc mandf

mandc : mandc.cc
$(CC) -O3 -fopenmp -o mandc mandc.cc

mandf : mandf.f90
$(F90) -O3 -fopenmp -o mandf mandf.f90

clean :
rm mandc mandf

Both C++ and fortran code can be simultaneously compiled with a help of makefile (compilation allows optimization):

Alternative compilation with makefile

my C++ executable is g++-10
my fortran compiler
all instructions that need to
be processed

both instructions defined
above but specified here

useful to know how to clean
compilation

#!/usr/bin/perl
use Math::Complex;

$Nx=100;
$Ny=100;
$max_steps=50;

for ($i=0; $i<$Nx; $i++){
 for ($j=0; $j<$Ny; $j++){

$x = -2. + 3.*$i/($Nx-1.);
$y = -1. + 2.*$j/($Ny-1.);
$z0 = $x + $y*i;
$z=0;
for ($itr=0; $itr<$max_steps; $itr++){
 if (abs($z)>2.){last;}
 $z = $z*$z + $z0;
}
print "$x $y $itr \n";

 }
}

Perl code does not need to be compiled. It is interpreter.
The call to subroutine is skipped due to optimization.
The execution very very slow.

Implementation in Perl (mandp.pl)

from scipy import *
from pylab import *
import time

def Mand(z0, max_steps):
 z = 0j
 for itr in range(max_steps):
 if abs(z)>2.:
 return itr
 z = z*z + z0
 return max_steps

if __name__ == '__main__':

 Nx = 1000
 Ny = 1000
 max_steps = 1000 #50

 ext = [-2,1,-1,1]
 t0 = time.time()

 data = zeros((Nx,Ny))

 for i in range(Nx):
 for j in range(Ny):
 x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.)
 y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.)
 data[i,j] = Mand(x + y*1j, max_steps)
 print ('clock time: '+str(time.time()-t0))
 imshow(transpose(1./data), extent=ext)
 show()

Implementation in Python (manp.py)

Python is interpreter as well.

Here we are plotting directly
No openMP hence clock and wall time equal

2D array initialized

2D array filled

Testing examples

Execute and check the time: ./mandf > mand.dat
clock time : 1.30075s with wall time=0.218432s

./mandc > mand.dat
clock time : 1.256s wall time= 0.219s

perl mandp.pl > mand.dat
clock time : 5361.4s

python manp.py
clock time : 24.6s

• Both interpreters are substantially slower than compilers.
• Python is substantially faster than perl.
• C++ and fortran timings very similar, and much faster than interpreters.

Homework:

Set up your environment: C++, Python, fortran, BLAS&LAPACK (or “Command Line Tools” on mac).

• If you are familiar with coding, write your own mandelbrot version of the code.
If not, download Mandelbrot code written in fortran, C++, perl and python. Execute them and check that they work properly.

• Test your gnuplot by plotting mandelbrot set from generated file mand.dat.

Python can be speed up. Here are the main strategies:

1) Find numpy/scipy routines which can replace slow python code and for loops
2) Try using numba : https://numba.pydata.org

1) helps when there are slow for loops
2) many repeated operations in an area
3) one needs to experiment with numba/Python code (sometimes slower Python leads to faster numba)

3) Recode the slow loop in fortran, and use f2py
4) Recode the slow part in C++, and use pybind11
5) [In Python2 there was weave “small inline C++ code”]

Improving Python

For mandelbrot we do not have scipy/numpy routine.
We will first try numba : https://numba.pydata.org

https://numba.pydata.org
https://numba.pydata.org

Improving Python: Numba
 https://numba.pydata.org

from numba import jit

@jit(nopython=True)

Just need to add two lines: import + single line before function

But first we will rewrite Python code into a single function with two loops, which will make Numba faster
and can also be used with C++/fortran to substantially speed up the code.

Limitations of Numba
• Numba only accelerates code that uses scalars or (N-dimensional) arrays. You can’t use built-in types like
list or dict or your own custom classes.

• You can’t allocate new arrays in accelerated code.
• You can’t use recursion.

Most of those limitations are removed if using Cython.

Numba has been getting a lot better, even just over the past few months (e.g., they recently added support for
generating random numbers).

https://numba.pydata.org
https://github.com/numba/numba/pull/719
https://github.com/numba/numba/pull/719
https://github.com/numba/numba/pull/981

from scipy import *
from numpy import *
from pylab import *
import time

def MandPyth(ext, max_steps, Nx, Ny):
 data = ones((Nx,Ny))*max_steps
 for i in range(Nx):
 for j in range(Ny):
 x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.)
 y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.)
 z0 = x+y*1j
 z = 0j
 for itr in range(max_steps):
 if abs(z)>2.:
 data[j,i]=itr
 break
 z = z*z + z0
 return data
if __name__ == '__main__':
 Nx = 1000
 Ny = 1000
 max_steps = 1000 # 50

 ext = [-2,1,-1,1]

 t0 = time.time()
 data = MandPyth(array(ext), max_steps, Nx, Ny)
 t1 = time.time()
 print('Python: ', t1-t0)
 imshow(1./data, extent=ext)
 show()

We now have three nested for loops
All three can be optimized with any of
available tools

The code appears slower now (90s versus 25s).
This might vary between different computers.

Improving Python

from scipy import *
from numpy import *
from pylab import *
import time
from numba import jit # This is the new line with numba

@jit(nopython=True) # This is the second new line with numba
def MandNumba(ext, max_steps, Nx, Ny):
 data = ones((Nx,Ny))*max_steps
 for i in range(Nx):
 for j in range(Ny):
 x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.)
 y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.)
 z0 = x+y*1j
 z = 0j
 for itr in range(max_steps):
 if abs(z)>2.:
 data[j,i]=itr
 break
 z = z*z + z0
 return data
if __name__ == '__main__':
 Nx = 1000
 Ny = 1000
 max_steps = 1000 # 50

 ext = [-2,1,-1,1]

 t0 = time.time()
 data = MandNumba(array(ext), max_steps, Nx, Ny)
 t1 = time.time()
 print('Python: ', t1-t0)
 imshow(1./data, extent=ext)
 show()

Improving Python:
Numba

The two lines added here

Speed goes from 90s to 1.5s, i.e., 60-times.
Also, compared to previous code (25s) 16-times.

Impressive performance for the effort
(but it does not not always perform so great)

Dynamic update of selected region: self-similarity

We want to create a figure, which can be dynamically zoomed-in and enlarged, to follow self-similarity of fractal plot.

Example:

Dynamic update of selected region: self-similarity

We want to create a figure, which can be dynamically zoomed-in and enlarged, to follow self-similarity of fractal plot.

We will connect a function ax_update(ax) with the event of changing xlim or ylim using callbacks.connect
function, which is defined for axis class in matplotlib library.

Below are the lines we will add/change in the existing Python/Numba implementation:

……
def ax_update(ax): # actual plotting routine
 ax.set_autoscale_on(False) # Otherwise, infinite loop

if __name__ == '__main__':
 ……
 #imshow(1./data, extent=ext)
 fig,ax=subplots(1,1)
 ax.imshow(data, extent=ext,aspect=‘equal',origin='lower')

 ax.callbacks.connect('xlim_changed', ax_update)
 ax.callbacks.connect('ylim_changed', ax_update)
 show()

Current code does not work yet, because we did not replot the fractal once the function ax_update is called.
Now we need to find the size of the region we zoom-in, and replot the fractal for the new region.

dimensions of the window

……
def ax_update(ax): # actual plotting routine
 ax.set_autoscale_on(False) # Otherwise, infinite loop
 # Get the range for the new area
 xstart, ystart, xdelta, ydelta = ax.viewLim.bounds
 xend = xstart + xdelta
 yend = ystart + ydelta
 ext=array([xstart,xend,ystart,yend])
 data = MandNumba(ext, max_steps, Nx, Ny) # actually producing new fractal

 # Update the image object with our new data and extent
 im = ax.images[-1] # take the latest object
 im.set_data(data) # update it with new data
 im.set_extent(ext) # change the extent
 ax.figure.canvas.draw_idle() # finally redraw

if __name__ == '__main__':
 ………
 #imshow(1./data, extent=ext)
 fig,ax=subplots(1,1)
 ax.imshow(data, extent=ext,aspect='equal',origin='lower')

 ax.callbacks.connect('xlim_changed', ax_update)
 ax.callbacks.connect('ylim_changed', ax_update)
 show()

creating our new limits
actual recalculation of fractal

set the data to the right place

connecting the mouse event
with the above function

Dynamic update of selected region: self-similarity

Homework:

Implement the dynamic version of the mandelbrot cell

Improving Python
The idea: Write most of the code in Python. Allocate all arrays in Python, to avoid annoying bookeeping of
allocation/deallocation of memory. Speed-up the innermost loop by fortran/C++.

Python is used as ”glue” for C++ and fotran code. Can combined modules obtained by either of the two or other tools.

Several available tools:
•f2py for fortran
•pybind11 :https://github.com/pybind/pybind11 very powerful for C++ to Python-library conversion. Needs newer C++-11

compiler. It requires only a few header files, and no libraires or compilation. Efficient, and not too hard to use.
•weave : was removed in Python3. It used to be part of scipy, later removed from scipy, but included in stand alone Python

packages. In python3 abandoned. Very simple to use and very efficient results. But code is a string, which is very clumsy for
writting more than 10 lines of code.

•Swig : very general. It can glue almost everything with everything. It is demanding to master.
•PyCXX : smaller, intented only for C/C++ < − > Python conversion. Looks quite simple, but very limited numpy support.
•Cython : http://cython.org/ (very popular with similar performance as numba, but much easier to port. However, a bit harder to

use —almost like a new compiler for python). We do not write real C++ code, but code similar to C++, which is being compiled.

https://github.com/pybind/pybind11
http://cython.org/

Improving Python with fortran (f2py)

!---
! Produces Mandelbrot plot in the range [-ext[0]:ext[1]]x[ext[2]:ext[3]]
! It uses formula z = z*z + z0 iteratively until
! asb(z) gets bigger than 2
! (deciding that z0 is not in mandelbrot)
! The value returned is 1/(#-iterations to escape)
!---
SUBROUTINE Mandelb(data, ext, Nx, Ny, max_steps)
 IMPLICIT NONE ! Don't use any implicit names of variables!
 ! Function arguments
 REAL*8, intent(out) :: data(Nx,Ny)
 REAL*8, intent(in) :: ext(4) ! [xa,xb,ya,yb]
 INTEGER, intent(in) :: max_steps
 INTEGER, intent(in) :: Nx, Ny
 !f2py integer optional, intent(in) :: max_steps=1000
 ! !f2py integer intent(hide), depend(data) :: Nx=shape(data,0) ! it will be hidden automatically
 ! !f2py integer intent(hide), depend(data) :: Ny=shape(data,1) ! it will be hidden automatically
 ! Local variables
 INTEGER :: i, j, itt
 COMPLEX*16 :: z0, z
 REAL*8 :: x, y
 data(:,:) = max_steps
 !$OMP PARALLEL DO PRIVATE(j,x,y,z0,z,itt)
 DO i=1,Nx
 DO j=1,Ny
 x = ext(1) + (ext(2)-ext(1))*(i-1.)/(Nx-1.)
 y = ext(3) + (ext(4)-ext(3))*(j-1.)/(Ny-1.)
 z0 = dcmplx(x,y)
 z=0
 DO itt=1,max_steps
 IF (abs(z)>2.) THEN
 data(i,j) = itt-1 !1./itt ! result is number of iterations
 EXIT
 ENDIF
 z = z**2 + z0 ! f(z) = z**2+z0 -> z
 ENDDO
 ENDDO
 ENDDO
 !$OMP END PARALLEL DO
 RETURN
END SUBROUTINE Mandelb

Normal fortran subroutine, which can be
called by fortran main code.

We can add some comments that make
nicer python modules
!f2py optional
!f2py intent(hide)

!$OMP directive allows openMP parallelization

Improving Python with fortran (f2py)

f2py -c mandel.f90 —f90flags='-fopenmp' -m mandel

We can compile fortran mandel.f90 with:

which should produce mandel.so
Note: -fopenmp switches on openMP parallelization
To use openMP we need to set OMP_NUM_THREADS, for example

export OMP_NUM_THREADS=4

Finally, we write short python script
and import the module like it was
Python module

#!/usr/bin/env python
from scipy import * # for arrays
from pylab import * # for plotting
import mandel # importing module created by f2py
import time

The range of the mandelbrot plot [x0,x1,y0,y1]
ext=[-2,1,-1,1]

tc = time.process_time() # cpu time
tw = time.time() # wall time
data = mandel.mandelb(ext,1000,1000).transpose()

print('# wall time : ', time.time()-tw, 's clock time : ', time.process_time() - tc, 's')

Using python's pylab, we display pixels to the screen!
imshow(data, interpolation='bilinear', origin='lower', extent=ext, aspect=1.)
show()

Wall time essentially the same as for fortran native code: wall time : 0.273 s clock time : 3.901 s

Improving Python with C++ (pybind11)

#include "pybind11/pybind11.h"
#include "pybind11/numpy.h"
#include "pybind11/stl.h"
#include <cstdint>

namespace py = pybind11;
using namespace std;

void mand(py::array_t<double>& data, int Nx, int Ny, int max_steps, const vector<int>& ext)
{
 auto dat = data.mutable_unchecked<2>();
 #pragma omp parallel for
 for (int i=0; i<Nx; i++){
 for (int j=0; j<Ny; j++){
 dat(j,i) = max_steps;
 double x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.);
 double y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.);
 complex<double> z0(x,y);
 complex<double> z=0;
 for (int itr=0; itr<max_steps; itr++){

 if (norm(z)>4.){
 dat(j,i) = itr;
 break;
 }
 z = z*z + z0;

 }
 }
 }
}
PYBIND11_MODULE(imanc,m){
 m.doc() = "pybind11 wrap for mandelbrot";
 m.def("mand", &mand);
}

Normal C++ code, but needs some
extra header files “pybind11/“

This is how to access numpy arrays in
C++ through pybind11
dat = data.mutable_unckecked<dim>();

This code is instead of main()
It is specific to pybind11 and needs
some learning from pybind11 manual.

g++-10 `python3 -m pybind11 --includes` -undefined dynamic_lookup -O3
-fopenmp -shared -std=c++11 -fPIC imanc.cc -o imanc.so

Improving Python with C++ (pybind11)

To create python module from C++ code, we type:

g++-10 must be replaced by your C++ compiler.
Notice that “python3 -m pybind11 —includes” should give correct include files of your python installation,
provided pybind11 was properly installed. Otherwise one needs to find python include files manually.

Notice also that “-undefined dynamic_lookup” is needed only in mac (not linux). -fopenmp is for openMP parallelization

pybind11: walltime: 0.153 cputime: 0.852
numba: walltime: 1.241 cputime: 1.212

from scipy import *
from pylab import *
import time
from numba import jit
import imanc

@jit(nopython=True)
def MandNumba(ext, max_steps, Nx, Ny):
 data = ones((Nx,Ny))*max_steps
 for i in range(Nx):
 for j in range(Ny):
 x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.)
 y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.)
 z0 = complex(x,y) #z0 = x+y*1j
 z = 0j
 for itr in range(max_steps):
 if z.real*z.real + z.imag*z.imag > 4.:
 data[j,i]=itr
 break
 z = z*z + z0
 return data

def MandPybind11(ext, max_steps, Nx, Ny):
 data = ones((Ny,Nx));
 imanc.mand(data, Nx, Ny, max_steps, ext)
 return data

if __name__ == '__main__':
 Nx = 1000
 Ny = 1000
 max_steps = 1000 # 50
 ext = [-2,1,-1,1]
 t0 = time.time()
 t0_ = time.process_time() # cpu time
 data = MandPybind11(ext, max_steps, Nx, Ny)
 t1 = time.time()
 t1_ = time.process_time() # cpu time
 print('pybind11: walltime: ', t1-t0, 'cputime: ', t1_-t0_)
 imshow(data, extent=ext)
 show()

 t0 = time.time()
 t0_ = time.process_time() # cpu time
 data = MandNumba(array(ext), max_steps, Nx, Ny)
 t1 = time.time()
 t1_ = time.process_time() # cpu time
 print('numba: walltime: ', t1-t0, 'cputime: ', t1_-t0_)
 imshow(data, extent=ext)
 show()

Improving Python with C++ (pybind11)

Here we import C++ module imanc.so

This is old Numba code

This executes C++ module

Call to C++ module

Call to Numba

Comparing pybind11 and Numba:

C++ with pybind11 is 8-times faster,
mostly because we use multiple cores

pybind11: walltime: 0.776 cputime: 0.776
numba: walltime: 1.252 cputime: 1.220

On a single core:

C++ with pybind11 is still 60% faster, sometimes more.

Homework:

Speed up the implement mandelbrot with f2py or with pybind11.

Compilation and Linking Instructions + creating Makefiles
C/C++ and fortran code needs to be compiled before it can be run.
The compilation takes two steps: producing object (machine) code from the source code, and linking objects into executable.
The commands are:

• compile: g++ [options] -c <source1>.cc
compile: g++ [options] -c <source2>.cc

• link: g++ [options] -o <executable> <source1>.o <source2>.o

• execute: ./<executable>

If compiling a single source file, we can achieve both steps with one command

compile&link: g++ [options] -o <executable> <source>.cc
execute: ./<executable>

Options can be omitted, but we will many times use options for optimization (-O, or -O3)
adding debugging information (-g), or additig profiling information (-p or -pg)

For fotran, code we can use identical process, except g++ is replaced by fortran compiler, i.e., either gnu-fortram gfortran or
intel’s ifort.

Python is interpreter. The code does not need explicit compilation. By invoking Python interpreter, the code is compiled
on the fly and executed at the same time

compile&execute: python <script>.py

If we want to avoid invoking python interpreter explicitly, we need to do the following:

• change script permission: chmod +x <script>.py
• the first line needs to be: #!/usr/bin/env python
• execute: ./<script>.py

Compilation and Linking Instructions + creating Makefiles

Creating Makefiles

It is a good practice to write a makefile for every project. Makefile typically contains information about the
default compilers, location of necessary include files and necessary libraries to link to the executable.

There are many nice tutorials available on the Web including
https://cs.colby.edu/maxwell/courses/tutorials/maketutor/
https://www.tutorialspoint.com/makefile/index.htm

https://www.gnu.org/software/make/manual/

We will briefly describe the steps in writing simple makefiles.
But first remember:

• The name of the makefile can be ”Makefile” or ”makefile” and is typically located in the same directory as
other source files.

• User types ”make” in the source directory and makefile is executed producing the executable file.

https://cs.colby.edu/maxwell/courses/tutorials/maketutor/
https://www.tutorialspoint.com/makefile/index.htm
https://www.gnu.org/software/make/manual/

Lets call our project manc. The C++ source file is manc.cc. The simplest makefile contains the
following two lines

manc : manc.cc
g++ -o manc manc.cc

Note: Each line in the commands list must begin with a TAB character!

The dependency rule defines under what conditions a given file needs to be recompiled, and how to compile it.

dependency rule command or recipe line defines the rule

The above rule states that the executable manc (is a target) has to be recompiled whenever manc.cc (prerequisite) is modified.
The rule tells us that manc can be obtained by the command g++ -o manc manc.cc (the recipe).

We can have multiple rules, which are executed recursively.
By default, make always executes the first rule in the makefile. The other rules are executed, if they are called by some
other rule (starting from the first rule).
The exception is the case when we give an argument to the make command, make will start at the rule with such name.

target prerequisite

TAB

Creating Makefiles

Here is an example with multiple rules
all : manc manf # if all does not exists, manc and manf are envoked

manc : manc.cc # target : dependencies // time1 > time2 -> execute
g++ -o manc manc.cc # commands

manf : manf.f90 # target : dependencies
gfortran -o manf manf.f90 # command

The first rule is all, and make will start evaluating it.

The first lines says that all depends on manc and manf. If the two files do not exist, make will create them by finding
and executing rules for manc and manf. Even if the two files (manc & manf) exist, make will check if they are up to date,
otherwise it will evaluate the rules. Up to date means that prerequisites (on the right) are older than targets (on the left).
For example, if manc.cc is newer than manc, the rule for manc will be evaluated even though manc exists. We could say
that if the file does not exists, it is equivalent to be very old for the purpose of makefile rules evaluation.

Creating Makefiles

Next we could define some constants for compiler names and compiler flags (optimization).
For example

Creating Makefiles

C++ = g++ # define variable C++
FORT = gfortran # define variable FORT
CFLAGS = -O3
FFLAGS = -O3

rules below

all : manc manf # target : prerequisite

manc : manc.cc # target : prerequisite // time1 > time2 -> execute
$(C++) $(CFLAGS) -o manc manc.cc # commands

manf : manf.f90 # target : prerequisite
$(FORT) $(FFLAGS) -o manf manf.f90 # command

This is useful for porting makefiles to different computer/operating system, as only a few variables needs to be changed on
different system.

Most makefiles have a rule named clean. This will remove all object files and all executables, so that a fresh compilation can be
started after clean is invoked. We would add a rule like that

clean :
rm -f manc manf

Notice that the dependency list is empty, hence the rule is always executed when invoked.

To invoke the clean rule, we need to call make with the argument: make clean

Creating Makefiles

Make also defined many special variables, such as $@, $<, $*. The variable $@

stands for the target on the left hand side, and $< is the first item in the prerequisites list.

We could rewrite the manc and manf rules in the following way:

manc : manc.cc # target : prerequisite // time1 > time2 -> execute
$(C++) $(CFLAGS) -o $@ $< # commands

manf : manf.f90 # target : prerequisite
$(FORT) $(FFLAGS) -o $@ $< # command

Notice how the two commands become almost identical when using special variables.

We can exploit this similarity of commands by writing generic rules for any pair of target:prerequisite.

When we have many C++ and fortran files, which need to be compiled in a similar way, we can define generic rule.
For example, we can define a rule that produces xxx.o from a corresponding xxx.f90 file.
We can achieve that by so called pattern rules, which can be added at the end of the makefile.

Creating Makefiles

#..............
Patter rules
#..............
%.o : %.cc

$(C++) $(CFLAGS) -c $<
%.o : %.f90

$(FORT) $(CFLAGS) -c $<

Now we do not need to write a rule for obtaining xxx.o from xxx.f90 or xxx.cc. The pattern rule will find such files in the
current directory and execute the commands.

Note that if we have multiple files with the same name, for example xxx.f90 and also xxx.cc, makefile will get confused of
which file to use in order to generate xxx.o. It will just use one of the two source files. Therefore always avoid naming multiple
files with the same name.

http://xxx.cc
http://xxx.cc

Why parallelization?
Top 500 computers in the world: www.top500.org
Kilo 103

Meta 106

Giga 109

Tera 1012

Peta 1015

Exa 1018

Fast computers have several million cores, which
need to be used efficiently & simultaneously

my laptop: 8 cores, 2.4 GHz with 8 single-precision FLOPS’s per second
hence theoretical performance = 8*2.4GHz*8 = 38.4GFLOPS/s=0.0384TFLOPS/s
This is theoretical not actual speed, the list contains actual TFLOPS by running LINPACK benchmark

http://www.top500.org

Why parallelization?
Top 500 computers in the world: www.top500.org

Kilo 103

Mega 106

Giga 109

Tera 1012

Peta 1015

Exa 1018

co

re
s

rankThe number of cores is exploding in the list of top 500

http://www.top500.org

Why parallelization?
Processor’s speed increased linearly with small slope between 1980-1985 (1.25/year), and larger slope between 1985-2000 (1.52/year)
Processor’s speed plateaued in 2005 (people were predicting Moor’s law to break).
Instead of increasing the speed of single processor, number of processors and cores is now increasing exponentially

Moore’s law still works!

Quantum limit for single core,
it can not be too small, because
it stops behaving classically

Number of cores is exploding

Number of transistors is still
exploding, which defines
Moore’s law.

Why parallelization?
Also important is memory latency, which is improving slowly with 1.07/year.
Hence memory speed is substantially slower than processor speed, and it will
remain so for foreseeable future.

openMP and multicore execution

KH Computational Physics- 2018 Optimal use of hardware & software

open mp to speed up C++ and

Python code

• OpenMP is designed for multi-processor/core to run a program on several cores (using

several ”threads”)

• OpenMP programs accomplish parallelism exclusively through the use of threads.

Typically, the number of threads match the number of machine processors/cores.

Kristjan Haule, 2018 –8–

Usual serial execution

openMP multicore execution

• OpenMP is designed for multi-processor/core to run a program on several cores (using several ”threads”)
• OpenMP programs accomplish parallelism exclusively through the use of threads. Typically, the number of threads match

the number of machine processors/cores. However, the actual use of threads is up to the application.
• OpenMP is a shared memory programming model, most variables in OpenMP code are visible to all threads by default.
• But sometimes private variables are necessary to avoid race conditions
• OpenMP is an explicit (not automatic) programming model, offering the programmer full control over parallelization.
• Parallelization can be as simple as taking a serial program and inserting compiler directives.... Or as complex as inserting

subroutines to set multiple levels of parallelism, locks and even nested locks.

The simplest case of parallel mandelbrot calculation:

openMP and multicore execution

 #pragma omp parallel for
 for (int i=0; i<Nx; i++){
 for (int j=0; j<Ny; j++){
 double x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.);
 double y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.);
 mand[i*Ny+j] = Mandelb(complex<double>(x,y), max_steps);
 }
 }

The loop over i is parallelized. Each core is calculating different i term.
Note that mand array is shared across all cores, because all cores have access to the entire array, but each core is changing only
its own slice of the array.
Note that x and y must be different on each core. As they are declared inside the loop, compiler makes them private to each core.

In more general case, the omp parallel statement is
#pragma omp parallel shared(mand,ax,ay) private(beta,pi)

By default all variables are shared, hence shared statement is not really needed.

The same loop in fortran is:

openMP and multicore execution
 !$OMP PARALLEL DO PRIVATE(j,x,y,z0)
 do i=1,Nx
 do j=1,Ny
 x = ext(1) + (ext(2)-ext(1))*(i-1.)/(Nx-1.)
 y = ext(3) + (ext(4)-ext(3))*(j-1.)/(Ny-1.)
 z0 = dcmplx(x,y)
 mande(i,j) = Mandelb(z0, max_steps)
 enddo
 enddo
 !$OMP END PARALLEL DO

Note that in fortran all variables are declared at the top of the program, hence x, y, z0, j need to be declared
private. Also i is private, but the first loop counter does not need to be added to the private list, as compiler will
add it automatically.

The code is compiled by adding a flag -fopenmp:

g++ -fopenmp -O3 -o mandc mandc.cc

gfortran -fopenmp -O3 -o mandf mandf.f90

or

Also the environment variable OMP_NUM_THREADS should be set to the number of cores (threads) we want to use. We
can issue a command

export OMP_NUM_THREAS=4

Example of time for mandelbrot set on multiple cores for Intel Core i9 processor:

speed improves, but not close to theoretical (1/core) estimate. Why?

openMP and multicore execution

speed improves even beyond 8 threads, even though we have 8 cores. Why?

One more openMP example

1

⇡ =

Z 1

0

4

1 + x2
dx (1)

#include <iostream>
#include <ctime>
#include <cmath>
#include <omp.h>
using namespace std;

double f(double x){
 return 4.0/(1.0+x*x);
}
double calcPi(int n)
{
 const double dx = 1.0/n;
 double fSum = 0.0;
 #pragma omp parallel for reduction(+:fSum)
 for (int i=0; i<n; ++i){
 double x = (i+0.5)*dx;
 fSum += f(x);
 }
 return fSum*dx;
}

1/n is spacing for trapezoid rule

reduction: We not only make the loop parallel, but
we need to tell the compiler that fSum is neither
private not shared, but variable to be reduced.

reduction operators are:
+, -, *, min, max, &, |, ^, &&, ||

#include <iostream>
#include <ctime>
#include <cmath>
#include <omp.h>
using namespace std;

double f(double x){
 return 4.0/(1.0+x*x);
}

double calcPi_bad(int n)
{
 const double dx = 1.0/n;
 double fSum = 0.0;
 #pragma omp parallel for
 for (int i=0; i<n; ++i){
 double x = (i+0.5)*dx;
 double df = f(x);
 #pragma omp critical
 fSum += df;
 }
 return fSum*dx;
}

The alternative, but worse implementation:
We do not specify that fSum is obtained by
reduction, but we specify that a particular
line “fSum+=df” should be done without
parallelization.

One more openMP example

omp critical can be used for any line that can
not be parallelized.

Memory access is slow. When several cores need to manipulate few MB of
data, several cores compete for the bandwidth/access to RAM and L3 cache.

openMP and multicore execution

CPU: ~3GHz ~ 0.3ns per tick ~ 0.04ns for floating point operation (8FP per tick)
L1 cache: latency~ 1ns, size ~16KB
L2 cache: latency~ 3ns, size ~256KB
L3 cache: latency~ 6ns, size ~2MB
RAM : latency~20ns, size ~GB, bandwidth~0.3GHz, corresponding to 3.3ns

Latency: Delay incurred when a processor accesses data
inside the memory (even when reading just one number)

Bandwidth: Rate at which data can be read from or stored
into memory by a processor

~32KB L1 cache per core
~256KB L2 cache per core
~2MB L3 cache per core, but shared by all cores
several GB RAM

More realistic multicore architecture

Since we write data into common variable, speed is limited by
memory access and not computation, hence we do not get
theoretical performance.

Why do we get speedup when using more threads than cores?

Design of modern CPU

Access to memory is arranged to be staggered:
some threads are doing computation and some
are writing, so we can squeeze out a bit of
performance by floading CPU with threads.
Notice that this is not necessary the case.
Sometimes the execution is slowed down when
number of threads exceeeds number of cores.

If you want to learn more about openMP, consult these resources
https://www.openmp.org
https://www.openmp.org/resources/tutorials-articles/
https://www.youtube.com/channel/UCtdrEoe46tD2IvJJRs_JH1A/videos

https://www.openmp.org
https://www.openmp.org/resources/tutorials-articles/
https://www.youtube.com/channel/UCtdrEoe46tD2IvJJRs_JH1A/videos

How to improve memory management?

To squeeze out best performance can be a very hard software engineering problem, which is handled by compiler, and user
does not have complete overview how memory access is handled.

However, there are some general ideas tips of how to access memory to allow compiler well optimize the code.

• Do not use hard-disc for data manipulation if possible. Keep data in RAM. If you need a lot of RAM, estimate
whether it fits into RAM. Rethink your algorithm before you start writing data to hard-disc.

• Try avoiding random access of data in RAM to reduce cache misses.
• The data which you need in the innermost loop should be stored in a way that the access is maximally continuous.

Why should we access memory continuously?
Because CPU does not load a single number, but a page, which is 64 byte (8 double’s).
We can use data already present.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

Accessing an element already loaded in cache is very
fast and does not cost extra cycles.

CPU

Cache

RAM

For reading or writing one element in the memory, a
complete page of memory has to be loaded into cache

How does memory work?
Core

Now the processor can read and write the elements

If the next element is outside the loaded cache pages,
another page needs to be loaded.

If the cache is full and a new cache page should be
loaded, an old one must be dropped, which costs
several hundred cycles, and is called cache miss.

Accessing an element already loaded in cache is very
fast and does not cost extra cycles.

KH Computational Physics- 2018 Optimal use of hardware & software

This is because Fortran uses column major storage. The figure explains it all.

Remember: The innermost index j runs:

in C++ A[]...[j]

in Fortran A(j,....)

Scientific programs are usually very tuned for performance. This usually goes in expense of

portability and readability.

ADVICE: Newer optimize those parts of the program which are not very crucial for speed.

In typical applications, only 20% of the code spends 80% of the time. Optimize only those

20% of the code. Make the rest of the code more readable.

Remember: 80/20 rule

Kristjan Haule, 2018 –29–

This is because Fortran (C) uses column (row)
major storage. The figure explains it all.

Typical example is a matrix manipulation.
In C or C++, one needs to access multidimensional arrays in the following order for (int i=0; i<size; i++)

 for (int j=0; j<size; j++)
 A[i][j] = since the data is stored in a row major order.

In Fortran, the same loop should be written in the following way do i=1, size
 do j=1, size
 A(j,i) =
 enddo
enddo

How to improve memory management?

Multi-node parallelization : MPI

When parallel execution uses several nodes (not just several cores on a single node), we need to use MPI parallelization.
MPI requires one to call specialized MPI routines to communicate and exchange data. This is more technically involved programing.

Inter-node (2nd level interconnect) speed:
• InfiniBand: latency ~5𝜇s, bandwidth ~1Gb/s
• GigaBit Ethernet: latency 60𝜇s, bandwidth ~0.1Gb/s

Latency: Time required to send a message of size zero (time
to set up communication)

Bandwidth: Rate at which large messages (>=2Mb) are
transfered

Virtual box from past years (which should work if other installations fail):

If you do not want/succeed to install the necessary software, you should download the file :
http://hauleweb.rutgers.edu/downloads/509/509.ova
(warning: 4.8GB file, it might take a while)

Then you should install VirtualBox to run the provided virtual machine:
https://www.virtualbox.org

Finally, start the VirtualBox and navigate to File/Import Appliance, and choose the downloaded 509.ova file.

Then click Start and wait for the linux to start. Once linux is running, you can start a terminal Konsole
and start emacs in the terminal. You can navigate to

cd ~/ComputationalPhysics/mandelbroat

and examine the files we will discuss in the first lecture. If you need username, use student, and passwd student123.

http://hauleweb.rutgers.edu/downloads/509/509.ova
https://www.virtualbox.org

https://github.com/jrjohansson/scientific-python-lectures

Next learning python from the following lectures:

Learning Python

https://www.youtube.com/watch?v=xCKfR80E8ZA

If you prefer video, this might be very good one:

https://github.com/jrjohansson/scientific-python-lectures
https://www.youtube.com/watch?v=xCKfR80E8ZA

