from numpy import * # because arrays are defined in numpy
from numba import njit # This is the new line with numba
from numba import prange
@njit # this is an alias for @jit(nopython=True)
def Mand(z0, max_steps):
z = 0j # no need to specify type.
# To initialize to complex number, just assign 0j==i*0
for itr in range(max_steps):
if abs(z)>2:
return itr
z = z*z + z0
return max_steps
@njit(parallel=True)
def Mandelbrot3(data, ext, max_steps):
"""
ext[4] -- array of 4 values [min_x,max_x,min_y,max_y]
Nxy -- int number of points in x and y direction
max_steps -- how many steps we will try at most before we conclude the point is in the set
"""
Nx,Ny = shape(data) # 2D array should be already allocated we get its size
for i in range(Nx):
for j in prange(Ny): # note that we used prange instead of range.
# this switches off parallelization of this loop, so that
# only the outside loop over i is parallelized.
x = ext[0] + (ext[1]-ext[0])*i/(Nx-1.)
y = ext[2] + (ext[3]-ext[2])*j/(Ny-1.)
# creating complex number of the fly
data[i,j] = Mand(x + y*1j, max_steps)
# data now contains integers.
# MandelbrotSet has value 1000, and points not in the set have value <1000.
%matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
#from pylab import * # plotting library
# don't use "%matplotlib inline"
def ax_update(ax): # actual plotting routine
ax.set_autoscale_on(False) # Otherwise, infinite loop
# Get the range for the new area
xstart, ystart, xdelta, ydelta = ax.viewLim.bounds
xend = xstart + xdelta
yend = ystart + ydelta
ext=array([xstart,xend,ystart,yend])
Mandelbrot3(data, ext, 1000) # actually producing new fractal
# Update the image object with our new data and extent
im = ax.images[-1] # take the latest object
im.set_data(-log(data.T)) # update it with new data
im.set_extent(ext) # change the extent
ax.figure.canvas.draw_idle() # finally redraw
data = zeros((1000,1000))
ext=[-2,1,-1,1]
Mandelbrot3(data, array(ext), 1000)
fig,ax = plt.subplots(1,1)
ax.imshow(-log(data.T), extent=ext, aspect='equal',origin='lower',cmap=cm.hot)
ax.callbacks.connect('xlim_changed', ax_update)
ax.callbacks.connect('ylim_changed', ax_update)
plt.show()
Using matplotlib backend: MacOSX