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Abstract. Many problems in introductory Physics require the student
to enter a system of algebraic equations as the answer. Tutoring system-
s must be able to understand the student’s submission before they can
generate useful feedback. This paper presents an approach that accept-
s from the student a system of equations describing the physics of the
problem and checks to see if it is correct. When it is not, the student’s
equation set is analyzed vis-a-vis one or more correct sets of equations,
known physics concepts, and algebraic transformations. During this anal-
ysis credit-blame assignment is performed to identify one of several types
of errors including 1) algebraic errors, 2) one or more omitted physics
concepts, 3) incorrect instances of a required physics concept, and 4) use
of an inappropriate physics concept. Experimental data collected from
an introductory physics class is summarized and discussed vis-a-vis other
methods. Results indicate that the techniques applied are effective at lo-
calizing most errors but that more work is needed to distinguish between
algebraic and conceptual errors.

1 Introduction

One of the keys to being a good tutor is the ability to identify and localize the
error in a student’s answer and then generate useful focused feedback. Effective
feedback enables students to correct their mistakes or conceptual errors without
the tutor explicitly giving them the answer. An Intelligent Tutoring System
(ITS) must not only determine if an answer is correct or incorrect but when
incorrect it must localize and characterize the incorrect or missing part(s) of the
answer. The degree to which an ITS can (1) localize an error in the answer, (2)
identify the conceptual errors that contributed to the mistake and (3) analyze
the problem context to generate feedback, greatly impacts on the effectiveness
of the system.

Many problems in introductory Physics require the student to enter a set of
algebraic equations as the answer. Tutoring systems must be able to understand
the student’s submission before they can generate useful feedback. This paper
presents an approach that accepts from the student a system of equations de-
scribing the physics of the problem and checks to see if it is correct. When it is
not, the student’s equation set is analyzed vis-a-vis one or more correct sets of
equations, known physics concepts, and algebraic transformations. The ability



to apply algebraic transformations to the system of equations results in there
being many equivalent forms of the answer that a tutoring system must be able
to recognize and analyze. Most credit-blame assignment algorithms would map
the student’s equation to an equation in a solution set; however, it is computa-
tionally infeasible to either generate or store all the equivalent answers in this
context. We have developed an algorithm that uses algebraic transformations to
change the equations in the answer set into a form that is similar and suitable for
comparison to the student’s answer. The mapped equations are then compared
and the similarities and differences are used to identify the errors that have been
made.

2 Separating Physics from Algebra: an Example Problem

One of the many challenges to employing ITS techniques in a quantitative do-
main such as physics is the role played by algebra. It is required to solve such
problem but at the same time enables misused concepts to masquerade as alge-
braic mistake. The resulting ambiguity (i.e., is the mistake algebraic or is the
student confused about how to apply the physics concepts) presents a significant
challenge to tutoring systems. In a perfect world the student would provide an
untransformed set of equations that describe the physics of the problem and
then proceed to algebraically solve them. In the real world, inputs provided by
students are somewhere in between the desired untransformed equations and the
final solution. The difficulty in generating effective feedback is exarcebated when
algebra and physics are interwoven. To compound the problem, giving inappro-
priate feedback may often lead to a correct answer and even reinforce bad habits
a student may have acquired.

To date all approaches to this problem, and there are few of them, compare
the student’s set of equations to a correct set of equations. The assumption is
that the differences are sufficient to generate the appropriate feedback. As we
will show in this paper it is difficult to (1) ensure that the appropriate equations
are compared and (2) classify the error when the differences are identified. In
the context of this paper, we are ignoring the issues of dimensional correctness
of the equations. An earlier paper [1] describes our work in this area.

This section outlines the issues involved in ensuring that an equation in the
student’s set is appropriately and correctly mapped to an equation in the answer
set. The discussion is illustrated with an example problem based on pulleys.
A simple mechanism that is introduced early in the Physics curriculum is an
Atwoods machine, a massless pulley with two masses, m; and ms hanging at
either end as is shown in Figure 1. A common problem based on the Atwoods
machine is to ask the student for the equation(s) that would determine the
acceleration of the mass mq, assuming that m; and my are not equal.

A set of equations that would solve the problem is shown below. Equations
1, 2 and 3 deal with Force while Equation 4 is concerned with Acceleration.

Ti—mi*g=m*a (1)
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Fig. 1. Atwoods Machine

Ty — Mo * g = My * Gy (2)
T =T (3)
a; = —aq (4)
This set of equations leads to the following solution

a1 = (m1 — me) * g/(my +m2) (5)

An example of a set of equations that is different but also correct is:
T—mi%g=—mi*a (6)
T—ma%xg=ms*a (7

A student could enter any of the sets of equations (1 -4, 5 or 6-7 and they
should be considered correct. These equations highlight some of the issues that an
ITS has to deal with when it analyses a set of equations and attempts to identify
the equations. The issues arise from the many equivalent syntactic forms of the
equations. An I'TS must be able to recognize and identify these equivalent forms
of the equations. The recognition problems frequently cause an ITS to compare
two equations that are not comparable. This results in the system generating
feedback that is erroneous and therefore confusing to the student.

In comparing the student’s equations with the answer set, an ITS must de-
termine the mapping of the variables and subsequently equations from one set
to the other. This process is complicated by several issues:



. variable renaming: The student and the instructor may use different variable
names to represent the same quantities. There is no restriction on the names
of variables or choice of subscripts even though there are many standard
variable names but there are also many commonly used variations, e.g., F,
Frnet, F1 usually represent a Force.

. simple aliasing of one wariable: Frequently, variables that have the same
magnitude, coefficients and dimensions are aliased for one another. For ex-
ample, the variables 77 and T5 in equations 1, 2 and 3 are equivalent to one
another. In equations 6 and 7, there is only a single variable T7 that is used
to represent both, i.e., 77 is an alias for T5. When variables are aliased, then
the number of equations in the set is also reduced.

. mapping of coefficients for a pair of variables: Aliasing of variables also
occurs when the coefficients are not the same. An example equation is:

a; = —aq

In this case, the variables are not directly equivalent because they have
different coefficients (sign and possibly magnitude).

. elimination of a class of “equivalent” variables: There are many ways to spec-
ify the algebraic solution to a problem. These may involve using a greater
or lesser number of variables and thereby a greater or lesser number of e-
quations. Sometimes variables that are in an equivalent set are completely
eliminated and in the process the corresponding equations that specify the e-
quivalences are removed. For example, one very different but correct solution
to the example problem is:

mixg—mi*a=me*xg—+me*xa

In this case, there is no variable representing the tension of the rope (com-
mounly T, T7,Ts). Instead that variable has been eliminated from the set and
a corresponding equation has been eliminated.

. choice of coordinate azes: For every vector, e.g., Force or Acceleration, there
is a choice of coordinate axes. In the example problem, everything is aligned
vertically but there is still the choice of whether the acceleration is positive
in the up or down direction.

Ti—mixg=—mi*am (8)
Ty —maxg = —ma xas 9)
a; = —asg (10)

The first set of equations (Equations 8-10) is consistent with a choice of
a1 being positive in the same direction downwards and opposed to 7;. The
second set of equations below (Equations 11-13 is consistent with a; being
positive in the upwards direction. An ITS should be able to detect and rec-
ognize the choice of axes, and thus the correctness of both sets of equations.



Tl—ml*g:ml*al (11)
Tl—mg*g:mg*aQ (12)
a; = —asg (13)

All the above issues must be dealt with if a system is to make sense of the
student’s submitted answer, even with the help of a set of correct answers. The
above issues arise from the use of algebraic shortcuts by the student, a use that
cannot be and should not be discouraged. Unfortunately, their use obfuscates
errors and makes it much harder for an ITS to identify errors and differentiate
between conceptual and algebraic errors.

3 Related Work

Most Physics tutoring systems do not support the use of equations for in-
put. Most of the systems either ask for numeric input or use multiple choice
questions[2—4]. In an earlier version of the system[5], we described a technique
for performing credit-blame assignment on single equations. This technique is
unable to deal with the issues and complexities that arise when the answer is a
set of equations instead of a single equation.

It is fairly easy to determine if an equation is correct if all the variables have
been defined. One simple way is to substitute various values for the variables and
evaluate the equation. This is the approach taken in many existing systems. It
is much harder to determine what is wrong about an equation once it has been
labeled incorrect. One simple approach (used in an early version of the ANDES
system [6]) is to generate all possible correct equations and find the closest match
to the student’s submission. This turns out to be computationally infeasible as
the space of possible equations is very large. The current ANDES system [7]
instead generates a much smaller set of equations. This set represents the most
common choices of coordinate axes (issue 5). The system uses an algebraic solver
to determine the correctness of a student’s equation. If the equation is incorrect,
the system uses a set of mal-rules [8] to perturb its set of equations to find
a closest match to the student’s equation and thus generate feedback based
on the mal-rule selected. This obviously can lead to cases where completely
erroneous and confusing feedback is generated. Note that the system still has to
deal with issues such as variable aliasing(Issue 2), mapping of coefficients (Issue
3), variable elimination (Issue 4) and choice of coordinate axes (Issue 5), when
trying to map a student’s answer to one that it has generated. This approach
also requires a great deal of effort to create a knowledge base that has sufficient
Physics knowledge to generate the required solutions and the choices. ANDES
also takes the approach of verifying each equation as it is entered by the student.
This gives the student immediate feedback as information is entered. The system
can take this approach because all the variables have been defined a priori. The
main concern for ANDES is to map the student’s equation to a member of the
set that is presently in the system.



4 Approach

The first step towards “understanding” a student’s submission is to classify each
equation as either (1) correct, (2) almost correct and (3) incorrect. The approach
described in this paper compares the student’s submission to a single solution
set to classify each equation. Correctness preserving algebraic transformations
are used to change one set of equations (e.g., the system’s) into a form that is
equivalent to the other (e.g., the student’s), so that individual equations may be
compared. Only a single set of equations is used unlike the multiple sets that are
used in the ANDES system. The technique can determine the differences between
an incorrect and a correct equation but has some difficulties in differentiating
between algebraic and conceptual errors.

There are two types of algebraic transformations used in our system. The
first is used to transform equations into a canonical sum of products form. The
second type is used to transform the set by reducing the number of variables
and hence the number of equations. These two types of transformations are
used to transform the student’s set of equations so that each equation can be
heuristically mapped to an equation from the answer. Errors are identified by
comparing each equation in the student’s set with the corresponding equation
from the solution set. Variables are not defined a priori but their dimensions
are inferred by the system based on their name (e.g., a, typically stands for
Acceleration). Currently the student is required to enter all the equations before
the system starts the analysis.

4.1 Algebraic Transformations

The two types of correctness preserving transformations are used to:

1. transform equations to canonical form: These transformations are rules for
rewriting equations and transforming these equations into a canonical sum
of products form. An example of these rules is one that multiplies each
term by the divisor of a term. The primary effect of this rule is to remove
all denominators. The canonical form is then used to validate dimensions.
The dimensions of each variable and constant in the equations is inferred,
thereby determining the dimensions of the equation. This can be done using
a constraint based algorithm that is described in detail in [1].

2. rewrite set equations to eliminate variables:

This type of transformation eliminates variables and thereby equations from
the set. In a prior step, the dimensions of each variable is determined. The
variables used in the student’s set are then heuristically mapped to variables
in the answer set. Any variables that are unmapped are then eliminated from
the set using the transformations. The transformations are used for:

— the elimination of equivalent variables: Equations in the form vy = kxvg
are removed by substituting k % vy everywhere the variable v; occurs.



— the elimination of a class of variables: The previous transformation elim-
inated variables that could be substituted for with an equivalent variable.
There are times when a class of variables is not present in one or other
set of equations. Usually, this happens when one set uses intermediate
variables and the other does not. This transformation uses gaussian e-
limination to remove the variables from the set of equations.

4.2 Mapping Variables and Equations

Transformations are used to convert a set of equations so that it has the same
number and type of variables as the set that it is being compared to. The vari-
ables from one set must then be mapped to the variables of the other set. The
algorithm looks for a one-to-one match between the variables in the two sets
of equations and handles simple aliasing of names. The heuristic technique uses
knowledge of well-known variables (m usually represents Mass) and common use
of subscripts to find a mapping.

Once all variables have been mapped, the algorithm maps equations in the
student’s submission to equations in the answer set. The algorithm only maps
equations that have the same dimensions. The heuristic used determines how
good a match is based on the terms in the equation, i.e., whether a term is present
or absent in the equation that is being compared to. There is a pre-set limit on
the maximum number of differences allowed. If the number of differences exceeds
the limit, the equation is marked as unmapped, i.e., there was no corresponding
equation in the answer set of equations.

4.3 Identifying Errors and Generating Feedback

Each of the student’s equations is compared with the corresponding equation
from the answer set to determine the differences between the student’s equation
and the correct equation. Some of the detectable differences are listed below:

— switch in sign, e.g., use of a + instead of a —.

— missing or additional term: e.g., use of m * g + my * a instead of my * g.

— missing or additional trigonometric factor: e.g., use of m; % g % sinf instead
of my % g.

— incorrect coefficient: e.g., use of ag instead of —2 * as.

— incorrect factor, e.g., use of msg in place of my.

All of these differences do not change the dimensions of the encompassing
equation. Any mistakes that would change the dimensions of the equation would
result in the equation being mapped to another equation. Trigonometric factors
are dimensionless functions so their absence or presence does not change the
dimension of the term or equation.

The switch in signs is a special case in that every other error can be identified
and localized by examining only the equation in which it occurs. A switch in
signs could be an error but could also represent a choice of an alternative set of



coordinate axes. This can only be determined by verifying that the sign switch
is consistently applied to all equations.

The final step is to generate feedback based on the critique of the equations.
This is not the only place where feedback is generated. Feedback is generated
immediately if any of the equations are found to be dimensionally incorrect or
if the set of equations is incomplete, i.e., there are an insufficient number of
equations.

The feedback that can be generated is based on the differences that are de-
tected. This results in suggestions to consider (1) whether certain quantities are
acting in concert or in opposition (incorrect signs), (2) the impact of a body on
other bodies (missing or additional terms) and (3) that a body is acting (or not)
at an angle with respect to another body (missing or additional trigonometric
factors).

If there are unmapped equations in the student’s answer, then there is a corre-
sponding equation in the instructor’s answer. The system will generate feedback
suggesting that the unmapped equation does not lead to the solution and suggest
considering the interactions between certain bodies in terms of Physics concepts,
e.g., Force or Momentum. Earlier work in this area is described in [5]

4.4 Limitations

The errors that students make generally fall into one of the following categories:

— algebraic errors: This is detected as an incorrect equation.

— missing Physics concept error: This is detected as an missing equation.

— incorrect application of concept error: This is detected as an incorrect equa-
tion.

Problems arise when the system is unable to determine the type of error from
the difference between the correct answer and the student’s submission. This is
caused by the use of algebraic transformations that are correctness preserving
but have no corresponding Physics concept. For example, if a student chooses
to (1) not use the intermediate variable T' to represent tension in the rope and
(2) to use a to represent acceleration, she would end up with the equation:

a = (m1 —ms) * g/(m1 + ma) (14)

The use of algebraic transformations to reduce the set of equations, in this
case to one equation, poses many problems to the ITS when a mistake is made.
For example, if the student switches the — sign for a; = —as, the equation above,
Equation 14, is reduced to:

a=g (15)

With the original set of equations (Equations 1-4), there are five places where
such an algebraic error could have been made. On the other hand, the student
could have made a conceptual error and not realized that the two blocks are



moving in opposite directions and therefore generated the equation a; = ag. If
the student uses algebraic transformations and enters a reduced set of equations,
the technique is unable to differentiate between these sources of errors. This is
an example of where the student’s use of algebraic transformations makes it hard
for an ITS to generate useful feedback. The technique can localize and identify
the difference between the student’s answer and the correct answer but that is
insufficient. The system needs to be able to identify the source of the difference,
i.e., the error that was made.

The degree to which the student uses algebraic simplifications greatly impacts
the ability of the algorithm to identify the source of an error. If the student made
the above error and submitted either two or three equations, the algorithm would
only have to disambiguate between an algebraic error and a conceptual error. In
that case, the algorithm would assume that a conceptual error had been made
and generate the appropriate feedback.

A more advanced mechanism would (1) enumerate the causes of the algebraic
error, (2) identify the ones that are more likely to occur, (3) identify ways to
disambiguate between the likely errors and then (3) prompt the user for infor-
mation to disambiguate. For the above example, the system might prompt the
user with “What is the relationship (equation) between the acceleration of the
block of mass my (a1) and the acceleration of the block of mass ma (a2)?”. We
are currently exploring this avenue of research.

5 Experimental Evaluation and Discussion

In the spring of 2001, we collected roughly 175 answers to two Physics problems
from 88 different students. The two problems were (1) the Atwoods problem
described in this paper and (2) a problem involving a moving pulley. The students
were enrolled in an introductory Physics course for engineers and science majors.

Analysis showed that dimension errors occurred in roughly fifteen percent of
the answers. These errors were detected by the algorithm and described in [1].
With the rest of the equations, the algorithm correctly maps variables in ninety
percent of the equations. However, it only correctly maps seventy percent of the
equations. Much of the difficulty lies in disambiguating between an equation is
slightly incorrect and should be mapped from an equation that is fundamentally
wrong and should not be mapped.

The ability to provide good and useful feedback is very dependent upon
how well the algorithm maps the equations. There are three main categories of
answers that the algorithm failed on. The first is where the student’s choice of
coordinate axes is not the same as the one in the answer. This is an area where the
ANDES algorithm currently performs better. The second category is composed
of answers where the algorithm incorrectly mapped the equations. If an equation
has been correctly mapped, the algorithm performs well in determining what
is incorrect about an equation. The algorithm can then correctly identify the
errors and generate the appropriate feedback. Finally, there are answers where
the equations were correctly mapped and the differences were identified but the
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algorithm could not determine the cause of the error. This was a small set because
the students had been explicitly instructed to write down all the applicable
equations and not to perform algebraic simplification. Even so, approximately
twenty percent of the students used some algebraic simplifications and submitted
reduced sets of equations.

6 Conclusion

Reasoning about sets of algebraic Physics equations is a difficult task that is fur-
ther complicated when students use algebraic transformations to simplify their
answer. This paper has described an approach for performing credit-blame as-
signment on a set of algebraic Physics equations submitted by a student. The
technique is based on analysis and comparison of the student’s answer (a set
of equations) with a correct answer (another set of equations). The technique
uses algebraic transformations to identify and map variables and equations from
the student’s set to the answer set. Mapped equations are compared and the
differences are used to identify errors and generate feedback. The algorithm can
detect and identify several types of errors including algebraic errors, omitted
Physics concepts and incorrect applications of concepts. The technique has been
evaluated on answers collected from students in an introductory Physics course
at a small college. The results show that the algorithm successfully analyzes
most of the submitted answers and generates the appropriate feedback.
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