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Abstract

In science and engineering courses, students are often
presented a situation for which they are asked to identify
the relevant principles and to instantiate them as a set of
equations. For an ITS to determine the correctness and rel-
evance of the student’s answer and generate effective feed-
back, it must map the student variables and equations onto
the physical properties and concepts that are relevant to
the situation. The space of possible mappings of variables
and equations is extremely large. Domain independent tech-
niques by themselves are unable to overcome the complexity
hurdles.

This paper describes how an ITS can use constraint
propagation and algebraic techniques combined with do-
main and problem-specific knowledge to solve the mapping
problem with systems of algebraic equations. The tech-
niques described in this paper have been implemented in the
PHYSICS TUTOR tutoring system and evaluated on three
data sets that contain submissions from students in several
introductory Physics courses.

1 Introduction

An ITS designed to help students based on their submis-
sions to an assignment requires a correct interpretation of
the elements of their explication. In science and engineer-
ing courses, students are often asked to interpret a situa-
tion, identify the relevant scientific principles, and instanti-
ate them as a set of equations in variables representing the
relevant quantities. The ITS needs to determine the correct-
ness, relevance and sufficiency of these equations, which
requires mapping the student-chosen variable names and
her equations into the known variables and equations of a
known correct solution, or exemplar.

This paper describes our work on PHYSICS TUTOR,
a tutoring system designed to accept unconstrained student
submissions, in the form of equations, to problems in an

introductory physics course. We describe how constraint
propagation based on dimensional analysis and heuristic
knowledge of common naming conventions can be used to
determine the dimensionality of student variables. This in-
ferred knowledge is then used to find possible maps from
the student variables and equations into those of an exem-
plar. Since there are numerous correct solutions to each
problem the correct solution cannot be represented by a sin-
gle exemplar. Our system specifies a single complete and
correct set of equations, called the principal exemplar, from
which it can generate other sets of correct equations, exem-
plars, each a full description of the physical system. Do-
main and instance specific knowledge are used to guide the
generation of correct solutions that are similar to the stu-
dent’s submission. The inferred information is used to iden-
tify the map and exemplar which best represents the student
input. The remaining differences can then be used to point
to incorrect equations and to identify possible conceptual
errors that led to mistakes. The efficacy of the techniques
has been evaluated on three data sets that contain submis-
sions from students in several introductory Physics courses.

2 Tutoring for Science and Engineering

The domains of the physical sciences and engineering
use sets of algebraic equations to specify the interrelations
among physical quantities. One of the main differences be-
tween purely algebraic equations and algebraic equations
describing a relationship in the physical sciences is that
the variables and numeric quantities in the latter refer to
physical properties that have dimensions and other seman-
tics associated with them. For example, only quantities of
the same dimensionality can be added to each other, while
quantities such as masses cannot have negative values.

Thus an ITS for engineering and science should use a
basic understanding of the physical concepts to parse, inter-
pret, and determine the correctness of a student submission.
Student submissions in these fields have some characteris-
tics that set them apart from other problem domains. These



properties are:

• restricted input language: In most cases, students
provide the answers either numerically (the most com-
mon case) or in the form of a system of algebraic equa-
tions. Equations are easier to parse than natural lan-
guage, though there have been efforts to extend tutor-
ing systems to accept natural language input[3].

• disconnect between description and concept lan-
guages: Students are asked to describe the interac-
tions in a physical system through the specification and
manipulation of algebraic equations. Answers are re-
quested in one of several forms including the numeric
value of the quantity requested, an algebraic expres-
sion for that quantity, or a set of algebraic equations
that can be solved for that quantity. From the answer,
a tutor must determine if the student has grasped the
concepts underlying the system. If not, it will generate
feedback, preferably in terms of the concepts and not
the algebraic equations.

• large solution space: There are numerous correct
ways of specifying the answer.

Most professors would say that the principal measure of
student learning in an introductory course in science and
engineering is the ability to take a verbal description of a
physical situation and translate it into a set of variables rep-
resenting the relevant physical quantities, together with a
set of equations representing their knowledge of the princi-
ples that relate to the situation. Usually students are asked
to solve numerically for a particular unknown quantity in
terms of the given values of other physical quantities.

This is difficult for many students and is often simpli-
fied by providing variable names for the relevant quan-
tities in the problem statement and walking the student
through a succession of steps involving a single physics
principle at each step. Many homework assignments and
many computer-based homework systems [11, 8, 9] revolve
around such an approach. Not surprisingly, students learn to
effectively use this approach, but unfortunately this does not
help the student gain a fuller understanding of the domain
and the relevant physics principles. This approach, termed
plug-and-chug, is often carried out by students as follows:

• List the given variables and the one asked for (the
“sought”).

• Search for a formula that contains only, and probably
all, of these variables.

• Plug the given values in the equation (“plug”).

• Solve the equation for the sought variable (“chug”).

Plug-and-chug problems are easy on both the student and
any computer-based system that grades or tutors them, and
they do provide exercise and familiarity with the canonical
formulae. But they do not encourage, and may discourage, a
better approach to understanding the domain, that requires a
deeper conceptual analysis of a possibly complex situation,
with multiple principles (and equations) required.

Why are plug-and-chug problems so common if they are
not good at encouraging the attitude and learning that we
would like to instill? Primarily because it is useless to as-
sign more challenging problems if the majority of the stu-
dents will get stuck early on and be unable to proceed fur-
ther without help. If, however, help can be provided conve-
niently at every point, such problems can be assigned, and
the student may learn to analyze complex situations and de-
velop the analytical abilities we seek.

Thus the problem we address in creating an ITS for sci-
ence and engineering is this: A problem is presented to the
student. The tutor is presented with a solution in the form of
an exemplar set of equations, expressed in canonical vari-
ables of known type, in particular having the appropriate
dimensions (units). The exemplar set is expected to be at as
close to the basic physics principles as possible. The tutor
is also presented a set of equations by the student, using her
own set of variables. The set of equations and variables is
likely to be smaller than the canonical set, because many
of the canonical equations can be simply used to eliminate
variables intuitively. An explicit example is presented in
detail in [6]. The tutoring system should be able to judge
the correctness of the student’s equations and the adequacy
of the set of equations. It should also offer help in correct-
ing incorrect equations or in finding necessary ones that are
missing.

Thus the basic task for an ideal ITS for engineering and
the physical sciences can be stated as follows:

Given:

• a description of a physical system,

• a student’s set of algebraic equations that describes the
physical system,

• a complete and correct set of equations, the principal
exemplar (the ITS is either provided the principal ex-
emplar or a means to generate it), and a means of gen-
erating from it other sets of correct equations exem-
plars that describes the physical system,

Goal:
Analyze the student’s system of algebraic equations and

determine if it is1

1In this analysis, we ignore redundant equations. The system will elim-
inate duplicate equations from consideration.



• correct and complete: all equations in the student’s
submission are correct and are sufficient to describe
the interactions of the physical system.

• correct and incomplete: all equations in the student’s
submission are correct but are insufficient to describe
the physical system (i.e., some necessary equations are
missing).

• incorrect and complete: one or more of the equations
in the student’s submission are incorrect. If the incor-
rect equations are corrected they are sufficient to de-
scribe the physical system.

• incorrect and incomplete: one or more the equations
in the student’s submission are incorrect. If the incor-
rect equations are corrected they are insufficient to de-
scribe the physical system.

If the submitted system of equations is either incorrect
or incomplete, then the ITS must further determine:

• the equations that are missing and necessary to com-
plete the description of the physical system.

• the equations that are incorrect and why they are incor-
rect.

3 Dimensional Constraints on Variables and
Numeric Quantities

Until an ITS has identified the physical meaning of a
student’s variables, it can judge only trivial aspects of cor-
rectness, such as whether the expressions are algebraically
well-formed. One of the main differences between purely
algebraic equations and algebraic equations describing a re-
lationship in a physical domain is that the latter must be
dimensionally consistent.

For example, Atwood’s machine (i.e., two masses sus-
pended from a single massless, frictionless pulley), a com-
monly used source of problems in introductory physics, has
a correct solution represented by the equations of Figure 1.

T1 −m1 ∗ g = m1 ∗ a1 (1)
T2 −m2 ∗ g = m2 ∗ a2 (2)

T1 = T2 (3)
a1 = −a2 (4)

Figure 1. Equation Set for Atwood’s Machine

In this set of equations, each of the variables, constants,
terms, expressions, and even equations must have specific

dimensions. Further they can only be combined using di-
mensionally consistent operations. Equations 1, 2 and 3
have the dimensions of force (kg · m/s2) while equation
4 has dimensions of acceleration (m/s2). The rules of al-
gebra would allow adding Eq. 3 and 4, but that would be
incorrect physically, since that operation would violate di-
mensional consistency.

These dimensional constraints on algebraic operations
are taught in introductory courses, and have even been in-
corporated in some programming languages[2, 1] as part of
variable declarations. Tutoring systems that predefine the
variables, and those [12] that require the students to explic-
itly identify their variables, use a priori knowledge to deter-
mine the variable dimensionality.

3.1 Dimension Inferencing Using Con-
straint Propagation

Student are allowed, and in fact should be encouraged, to
use variables and equations of their own choosing. They can
use more variables than found in the exemplar, fewer than
found in the exemplar, and name their variables differently
than those used in the exemplar. Similarly, students are not
restricted to use the same set of equations as found in the
exemplar.

Decoupling students solutions from the specific details
of the exemplar encourages students to think about the prob-
lem in their own terms and discourages a plug and chug ap-
proach. But this decoupling comes with a cost. The student
submission does not provide dimensionality information to
the PHYSICS TUTOR system and thus the system must in-
fer what each equation and variable represents.

The system begins by assigning a set of likely dimen-
sions to each variable based on typical naming conventions
used in the field. It then constructs a constraint graph for
the equation where variables and numeric quantities in the
equation are instantiated as leaf nodes and operators (e.g.,
, +,−, ∗, /, =) and functions (e.g., , cos, sin, tan) are in-
stantiated as internal nodes. Finally it applies all constraints
until a final assignment of dimensions is found or an in-
consistency is detected. Constraints are instantiated for the
following types of conditions:

• terms that are added, subtracted or set equal must have
the same dimensions (i.e., equality constraints)

• multiple instances of a variable must have the same
dimensions (i.e.,identity constraints)

• the dimensions of the result of a multiplicative oper-
ator is the sum or difference of the dimensions of its
operands.

The initial dimensions assigned to each variable are crit-
ical to the success of this method. The PHYSICS TUTOR



system uses a dictionary that contains information about
variable prefixes and the concepts to which they usually re-
fer in Physics. For example, a variable beginning with T
is likely to represent a time, a force (tension), an energy
(kinetic), a temperature, or a distance (thickness), but very
unlikely to represent a velocity or frequency or angle. These
lists represent domain knowledge about physics, and can be
further refined if the problem sub-domain(s) is known. For
example, if a problem set involves only classical mechanics,
we can exclude temperature (and probably thickness) from
the list of possibilities.

3.2 Validation of Dimensionality Inferenc-
ing

The constraint propagation technique used in the
PHYSICS TUTOR system effectively determines the di-
mensions of the variables, numeric quantities and equations
using a dictionary of commonly used prefixes. The effec-
tiveness of the technique was evaluated on several data sets,
two of which were obtained from the repository of ANDES
data. The ANDES system [10] is a physics ITS currently in
use at the United States Naval Academy. Student answers
were extracted and used to evaluate the PHYSICS TUTOR
system. The three data sets were:

1. ANDES (Fall 2000 and Fall 2001): These two data
sets were characterized by:

• large number of student generated equation
sets — There were approximately 10,000 equa-
tion sets in each of the semesters. We only ex-
tracted correct equations and thereby limited our
evaluation to equations sets that were correct but
possibly incomplete and could contain irrelevant
equations.

• a large number of problem types — The AN-
DES system has a repository of approximately
one hundred different problems.

• constrained input — ANDES required stu-
dents to define variables before they were
used. This information was not used by the
PHYSICS TUTOR system but could have af-
fected how students entered their answers.

2. Lafayette: This data set consists of approximately 350
answers to four similar problems from 88 students in
an introductory physics course. There were no restric-
tions on the input. Students wrote their answers on
paper that were later transcribed into electronic form.

The system was most effective when the dictionary was
limited to knowledge of variables used in Newtonian me-
chanics rather than all of Physics. In 90% to 95% of all

submissions the PHYSICS TUTOR was able to either (1)
determine the dimensionality of all the variables and nu-
meric quantities or (2) determine that the equations were di-
mensionally inconsistent.These results show that constraint
propagation techniques augmented with domain knowl-
edge can be effective at determining the dimensions of the
components of systems of algebraic equations representing
physical systems. Further details about this technique can
be found in [4, 5, 6].

4 Mapping Equations and Variables

In the previous section, we described how constraint
propagation along with domain knowledge is used to deter-
mine the dimensions of the variables in systems of algebraic
equations. Determining the correctness of the submission,
however, requires mapping the equations, variables and nu-
meric quantities to the specific physical quantities and con-
cepts of the problem, as represented by variables and equa-
tions in a known correct solution, an exemplar. The ITS
needs to find the mappings between:

• variables in the student submission and the corre-
sponding variables in the exemplar,

• numeric quantities in the student submission and either
corresponding variables or numeric quantities from the
exemplar,

• equations in the student submission and the corre-
sponding equations in the exemplar.

The ITS can then use these maps to determine the cor-
rectness and relevance of the student’s answer. If some part
of the student’s submission is incorrect, the maps can also
be used to isolate the incorrect equations for further analysis
and tutoring.

4.1 Computational Issues in Mapping

As previously noted there are numerous correct solutions
to each problem. These are represented as a single principal
exemplar together with a procedure for generating from it
other exemplars, sets of correct equations, each of which de-
scribes the physical system. We assume that if the student’s
submission is correct there will be a 1-1 mapping of each
variable and equation in the student’s submission to one
of the correct solutions generated by PHYSICS TUTOR2.
But which one? Computationally we decompose the prob-
lem into two phases: a) identifying a correct solution to be

2It is possible a correct solution will not be mappable to any of the
solutions generated by PHYSICS TUTOR. This occurs infrequently; ad-
ditional work is needed to handle such case



mapped to the student’s submission and b) determining if a
correct solution is mappable to the student’s submission.

Identifying correct solutions that are likely to be map-
pable to the student’s submission uses heuristics based on
the number of equations and number of variables. Iden-
tifying possible maps between a correct solution set and
the submission uses insights from graph isomorphism. The
heuristics have proven to reduce what is seemingly an in-
tractably large search space (i.e., exponential in both the
number of variables and number of equations) to one that
can be searched effectively. These heuristics and exam-
ples of the reductions they provide are described in sections
4.1.1, 4.1.2, and 4.2.

The tutor’s task must address the following issues to
identify a map from the student submission to a correct so-
lution. Further details about these issues can be found in
[7].

1. variable aliasing: Students often use a single variable
to represent either (1) groups of variables that have the
same magnitude, e.g., T to represent T1 and T2 if T1 =
T2, or (2) a product of variables, e.g., F where F =
m1 ∗ a1.

2. substitution of numeric quantities for variables:
Most problems in introductory physics involve nu-
meric quantities. Students may interchangeably use
numeric quantities and variables, e.g., the use of g or
9.8 m/s2 to represent the acceleration due to gravity.

3. algebraic simplification of numeric quantities: For
example, the use of 19.6 instead of 2 ∗ 9.8, or the re-
moval of a common factor from equations.

4.1.1 Generating Mappable Correct Solutions

The dimensional consistency checks that were described
earlier ensure that the ITS only need focus on reasoning
about dimensionally consistent equations. The information
inferred from the dimension checks includes the dimensions
of the variables, numeric quantities and equations in the stu-
dent’s submission and in the exemplar (i.e., problem and in-
stance specific knowledge). The exemplar and the student’s
submission may differ in (1) the number of equations, (2)
the number of variables, (3) the names of the variables and
(4) the numeric quantities present. Generating all solution
sets that are consistent with and equivalent to the exemplar
would require using:

• all possible variable substitutions.

• all possible substitutions of numeric quantities for vari-
ables.

• all possible numeric simplifications.

This would be prohibitively expensive.
The PHYSICS TUTOR takes the following steps to gen-

erate the “exemplar lattice” of most likely equivalent sets of
equations:

1. transform each equation into a canonical sum of prod-
ucts

2. systematically reduce the number of variables (and
equations) by introducing variable substitutions one at
a time, generating a new exemplar with each substitu-
tion. Repeat this step for each set until the resultant
set contains only a single equation. For computational
reasons, the PHYSICS TUTOR system only uses the
most likely variable substitutions.

This procedure generates the exemplar lattice, the nodes
of which are sets of equations derived from the principal
exemplar through correctness-preserving algebraic transfor-
mations. Each node in the lattice (exemplar) differs from
the others in one or more of the following ways: a) the
number of equations and variables, b) the dimensions of the
equations, c) the dimensions of the variables, or d) how the
variables are used in the equations. Once the lattice is built,
it is searched to find the exemplar that best matches the stu-
dent submission. The ITS compares the student’s submis-
sion with every node in the lattice that has the same numbers
of variables and equations of each dimensionality.

4.1.2 The Mapping Algorithm

Once a candidate exemplar has been identified it must be
mapped to the student’s submission. Before the mapping
is undertaken a pre-processing step that replaces numeric
quantities in the student’s equations with variables or a com-
bination of variables is performed. This facilitates the map-
ping of submission into the exemplar and requires that the
system be able to recognize common combinations of nu-
meric quantities (i.e., multiplication or division by 2) and
replace them with the appropriate variables. For example,
given the velocities of two objects when only the relative ve-
locity is relevant, students frequently use the numeric value
of the relative velocity. The pre-processing step determines
that this numeric value is in fact v1−v2 and replaces it with
this expression.

As noted earlier, establishing a mapping between the
submission and correct equation sets has great similarity
to determining if two graphs are isomorphic. For each of
the two equation sets for which a map is desired a bipartite
graph can be constructed with edges between variables and
equations if a variable is used in an equation. If the graphs
are isomorphic there is a 1-1 mapping of equations to equa-
tions and variable to variables.

Our algorithm uses an adjacency matrix to represent the
bipartite graph. The rows in this matrix correspond to the



equations, the columns to the variables, and the boolean en-
tries to whether a given variable occurs in a given equation.
For example, the exemplar equations given in Figure 1 for
Atwood’s machine is shown in Table 4.1.2.

Table 1. Example Matrix for Atwood’s Ma-
chine

T1 T2 m1 m2 a1 a2 g
Eq. 1: 1 0 1 0 1 0 1
Eq. 2: 0 1 0 1 0 1 1
Eq. 3: 1 1 0 0 0 0 0
Eq. 4: 0 0 0 0 1 1 0

If we look for a match between the graph of a student’s
set of Ne equations in Nv variables to an exemplar graph
with the same number of each, the most general mapping
of nodes could have (Ne + Nv)! mappings. However, since
we know the graph is bipartite (i.e., variables can only map
to variables and equations to equations) the number of pos-
sible mappings can be reduced to Ne! ·Nv!, corresponding
to permutations of the rows of the matrix times permuta-
tions of the columns. The number of permutations that must
be examined is next reduced by labeling each equation and
variable with its dimensionality, and considering permuta-
tions only with variables (or equations) of the same label.
The label of each node can then be extended by giving the
number of nodes with each label to which this node is con-
nected. This is a recursive procedure. For example, label-
ing in the Atwood’s machine example first partitions nodes
into equations and variables and then partitions equations
and variables, based on dimensionality. It continues by sep-
arating g from the ai’s based on the fact that g appears in
two equations both with the dimensions of force but the ai’s
appear in one equation with a dimension of force and in an-
other with a dimension of acceleration.

The fixed point of this iterative labeling for Atwood’s
machine is indicated in Table 4.1.2 by the vertical and hor-
izontal lines that partition the adjacency matrix into boxes.
A valid mapping cannot permute elements from different
boxes. Equation 3 cannot be permuted with any other equa-
tion, nor can g be permuted with ai. For the example pre-
sented, the search space is reduced as as follows:

Labeling Permutation Bound Value
Uninformed 11! 39,916,800

Bipartite (7!) · (4!) 120,960
Dimension (2! · 2! · 3!) · (3! · 1!) 144
Fixed Point (2! · 2! · 2! · 1!) · (2! · 1! · 1!) 16

This leaves (2!)4 = 16 permutations to try on the student
equation matrix to see if it matches the exemplar’s. Such a

match may not be unique, however, because there may be a
permutation which leaves the matrix invariant. In our case,
there is one nontrivial permutation T1 ↔ T2, m1 ↔ m2,
a1 ↔ a2, Eq. 1↔ Eq. 2 which does this, so there are two
possible mappings of the student variables which need to be
examined further.

The reduction in complexity provided by the algorithm
is even more dramatic when the exemplar set is bigger. In
fact, the four equations given to describe Atwood’s machine
is oversimplified if we are to anticipate all reasonable stu-
dent variables. Students might well use variables describing
the two weights, W1 and W2, and the net forces on each ob-
ject, F1 and F2. This introduces four new equations and
four new variables, all with dimensions of force. Of the 1.6
trillion possible permutations (i.e., 8!·11!) for this expanded
bipartite graph, not permuting variables and equations with
different dimensions reduces the possible permutations to
4.4 million (i.e., 7! · 1! · 6! · 2! · 3!). Recursively refining
the labels (three times) as described previously reduces the
complexity to (2!)3(1!)2 = 8 equation permutations and
(2!)5 = 32 variable permutations for a total of 256 possible
mappings for the full set of equations.

This discussion addressed the isomorphism of two equa-
tion sets, but there are many correct ways a student can
specify a system of equations that describes a physical sit-
uation. Thus, we must search our exemplar lattice for an
exemplar with a graph that is isomorphic to the student’s
submission. Finding such a dimensionally matching exem-
plar does not mean that the student’s submission is correct.
First we need to check that variables occur correctly in each
term of each expression. If we find such a term-by-term
match, a further comparison is made to check (1) if there
are sign mistakes, (2) the coefficients of each term and (3)
the functions used in each term. A measure of difference is
generated which is then used to judge which term-by-term
matching exemplar provides the best match. Experimental
evaluation (Section 4.4) has shown that application of the
algorithm results in the correct match even when there are
multiple nodes that match the student submission.

This algorithm does not find a map for all correct equa-
tions. For example, it is unable to find a map when the
student simplifies the equation by removing common fac-
tors. The number of failures of this type are few and can be
reduced further by generating equation sets with common
factors removed and adding these as nodes to the lattice of
complete and correct solutions. This approach does not al-
low all submissions with one or more common factors re-
moved to be matched since students can remove some, and
not all, common factors.



4.2 Mapping Against Incorrect Equations
and Incomplete Equation Sets

The previous section described the process by which the
PHYSICS TUTOR system builds a map from the variables
and equations of the student’s submission to the correspond-
ing entities in a known correct solution. This works very
well when the student’s submission is correct and complete.
But when the student’s submission is incomplete or no term-
by-term match is found, the PHYSICS TUTOR expands the
student and exemplar lattice, greatly increasing the compu-
tational cost, in an attempt to identify as many correct equa-
tions as possible in the student’s submission.

To identify these equations, the algorithm constructs, for
each exemplar, another lattice of equation sets (called sub-
exemplars) in which nodes at each level of the sub-lattice
contain one less equation than its parent node. Therefore
a sub-exemplar with five equations will lead to five sub-
exemplars, each an incomplete set of four correct equations.
We construct a similar lattice for the student’s submission.
The algorithm then uses the matching procedure described
in the previous section to find the best term-by-term match
from all the newly generated incomplete equation sets to a
node in the student’s lattice. Since the goal is to maximize
the number of matching equations, the algorithm starts with
the node at the top of the student’s lattice that contains the
entire student submission. If that fails, the algorithm then
tries to find the best match for the nodes at the next level in
the student’s lattice. This procedure iterates, moving down
the lattice, until either a match is found or all newly gener-
ated equation sets are visited.

If all newly generated equation sets are visited and no
term-by-term match is found the algorithm has failed to
map (“understand”) any part of the student’s submission. If
a term-by-term match is found, the matched subset of stu-
dent’s equations is analyzed to determine if there are sign,
coefficient, or function errors (see Section 4.1.2) and the un-
matched subset of student equations is compared to the un-
matched subset of exemplar equations. Heuristics are used
to determine if the following types of mistakes could trans-
form one of the unmatched exemplar equations to one of the
unmatched student equations.

• omission of a term: where the student’s equation has
omitted one or more terms.

• addition of an extraneous term: where the student’s
equation contains extra terms.

4.3 Generating Feedback

The errors that the algorithm can detect are algebraic in
nature due to the fact that both the submission and the so-

lution are sets of algebraic equations. The algebraic errors
that are currently detected are:

1. dimensional inconsistency: The algorithm is fre-
quently able to isolate the inconsistency to one or two
terms in an equation.

2. incorrect coefficients

3. incorrect operators: The equation has passed the
dimensional consistency check and the term-by-term
matching check. But these will not detect an incorrect
choice an addition operator, i.e., a + for a − and vice
versa.

4. incorrect functions: A dimensionally matched equa-
tion can also be wrong by using the incorrect function
that has the same dimensional signature (dimensions
of the input parameters and the result) as the correct
function. This frequently happens with trigonometric
functions.

5. missing or extra terms: These can be the result of
either an arithmetic or a conceptual error.

6. missing equations: these are equations in the exem-
plar that cannot be mapped to any equations in the stu-
dent’s submission.

7. extra equations: these are equations in the student’s
submission that cannot be mapped to any equations in
the solution.

¿From a tutoring standpoint, it is desirable to discuss the
student’s errors in terms of the conceptual errors that were
made rather than the algebraic errors. This can be difficult
to determine because different conceptual errors can result
in the same algebraic error. For example, one common error
that is found when analyzing an equation describing con-
servation of momentum is a missing term, i.e., the student
has neglected the contribution from one of the objects in the
system. This can be due to an oversight on the student’s part
or that the student has not correctly grasped the concept of
a system. In other problems, a missing term is frequently
caused by arithmetic or algebraic errors. Domain knowl-
edge and heuristics are necessary if the tutoring system is to
generate feedback beyond the level of algebraic errors.

4.4 Validation of Variable and Equation
Mappings

Experiments were run to evaluate the effectiveness of the
mapping techniques. They were run against much smaller
data sets because the PHYSICS TUTOR system does not
currently handle problems that use trigonometric functions.



The first data set consisted of answers to the Atwood’s
problem that were collected from 88 students in an introduc-
tory physics course. The students were not constrained in
any way. The students’ answers were evaluated against an
exemplar with 8 equations. Eight of the submissions had di-
mension errors or were dimensionally ambiguous and were
not considered. The PHYSICS TUTOR system was able to
correctly classify all but 11 of the rest of the submissions. In
six submissions, the system correctly identified extraneous
equations.

The second data set consisted of data extracted from the
ANDES logs of Fall 2001. Three problems were selected
that (1) had a large number of submissions and (2) did not
require the use of trigonometric functions. The three prob-
lems (Exkt3a, Exkt4a and Exe5a) had 234, 260 and 145 sub-
missions respectively. The results from the evaluation are
shown in Table 2. The system failed to map some submis-
sions either because (1) the system did not have the algorith-
mic transformations that would generate the equivalent set
from the exemplar or (2) the student used some combination
of numeric quantities that the system could not identify.

Table 2. Results from ANDES Fall 2001 data
Exkt3a Exkt4a Exe5a

Successful analysis 89.8% 96.2% 93.2%
a) Correct Solution 35% 45.4% 81.4%
b) Partial Solution 47% 38.1% 7.6%
c) No nontrivial equations 7.3% 12.7% 4.1%
Unsuccessful analysis 10.2% 3.8% 6.8%
d) Non-derived equations 2.5% 0% 2.7%
e) Unknown constants 7.7% 3.8% 4.1%

5 Conclusion

This paper has shown how domain and problem specific
knowledge has been used to solve a complex problem, that
of determining the correspondence between the variables,
numeric quantities and equations in a student’s submission
and the physical quantities and concepts that apply to a
problem. Without the domain knowledge, the constraint
propagation techniques that were used would not be able
to either (1) solve the problem or (2) solve it within a rea-
sonable amount of time. Domain knowledge about the role
of dimensions in Physics and the vocabulary by which vari-
ables are assigned dimensions (concepts) based on the first
letter of the variable play a very important role. The do-
main knowledge helped the PHYSICS TUTOR system to
identify the dimensions of the variables, numeric quantities
and equations in the students’ submissions. The derived
instance-specific knowledge was then used in conjunction

with constraint propagation to find the best fitting maps
(correspondence) between the student’s submissions and a
correct solution. The efficacy of these techniques was eval-
uated on data sets of submissions obtained from students
enrolled in several introductory Physics courses.
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