
Checking for Dimensional Correctness in Physics Equations

C.W. Liew
Department of Computer Science

Lafayette College
liew@cs.lafayette.edu

D.E. Smith
Department of Computer Science

Rutgers University
dsmith@cs.rutgers.edu

Abstract

One of the key components of an Intelligent Tutoring System
(ITS) is the mechanism for reasoning about the student’s in-
put. The impact of this component extends far beyond the
presentation of the lesson material to the success of the sys-
tem itself. It affects how precisely the system can pinpoint
student errors and thus the subsequent help that the system
provides.

This paper describes an example of a class of physics prob-
lems whose answers are most naturally represented as sys-
tems of algebraic equations. Analyzing such input requires
not only an understanding of algebra but also knowledge of
physics concepts.

This paper describes a technique for determining thedimen-
sional consistencyof algebraic equations in physics using
constraint propagation. Unlike other methods, it does not
depend on the user defining the dimensions of each vari-
able. Instead, it uses a knowledge base of well known physics
variables combined with constraint propagation to determine
both the dimensions of values (variables and constants) and
also the dimensional consistency of an equation. The tech-
nique has been successfully tested on answers obtained from
a class of college level introductory physics students.

Introduction
This paper describes ongoing work in addressing the credit-
blame assignment problem in the context of a tutoring sys-
tem for an introductory college level physics course. There
are many physics problems at this level whose answers are
most naturally represented as systems of algebraic equation-
s. Most physics tutoring systems are unable to reason about
systems of algebraic equations because analysis of such in-
put requires not only an understanding of algebra but also
knowledge of physics concepts.

One of the main differences betweengenericalgebraic e-
quations and algebraic equations describing a relationship in
physics is that the latter must be dimensionally consistent.
Two examples of such equations are shown below:

A. T �m1 � g = m1 � a

B. a1 = �a2

Copyright c
 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Algebraically speaking, these equations could be added
to one another to form a new equation. However in physics,
each of the variables, constants, terms, expressions, and even
equations must have dimensions. Further they can only be
combined using dimensionally consistent operations. Equa-
tion A is likely to have the dimensions of Force (kg m s�2)
while Equation B would have dimensions of Acceleration
(m s�2). It would thus be incorrect to add these equations
since that operation would violate dimensional consistency,
i.e., only equations in the same dimensions can be added
to or subtracted from one another. Such reasoning requires
knowledge of algebraic operations and of the underlying
physics concepts.

Before a system can decide if an algebraic equation in
physics is correct, it must first see if the equation isdimen-
sionally consistent. This is analogous to verifying that the
syntax of a program is correct by verifying that the type of
each variable is consistent with the operations on that vari-
able. This is a crucial step otherwise any attempt at cri-
tiquing the system of equations would result in erroneous
and misleading feedback, thus confusing the student even
more.

To date, the analysis techniques used by Intelligent Tu-
toring Systems (ITS) in this domain have required that all
variables be defined, i.e., the dimensions are known. This
can be a very cumbersome process as a typical set of equa-
tions can easily involve ten variables or more.

This paper describes a technique based on constrain-
t propagation for determining thedimensional consistency
of algebraic equations in physics. Unlike other methods,
it does not depend on the user defining the dimensions of
each variable. The algorithm uses a knowledge base of well
known physics variables and also heuristic inference based
on propagation of the values to evaluate the dimensions of
an equation. The algorithm is also able to heuristically iso-
late the error and give the student feedback about the most
likely source of a dimension error.

An Example Problem
A simple mechanism that is introduced early in the physics
curriculum is that of the pulley. An Atwoods machine is a
pulley with two masses,m1 andm2 hanging at either end
and is shown in Figure 1. A common problem based on the
Atwoods machine is to ask the student for the equation(s)



that would determine the acceleration of the massm1, as-
suming thatm1 andm2 are not equal.

m
2

m
1

Figure 1: Atwoods Machine

A set of equations that would solve the problem is shown
below. Equations 1, 2 and 3 deal with Force while Equation
4 is concerned with Acceleration.

1. T1 �m1 � g = m1 � a1

2. T2 �m2 � g = m2 � a2

3. T1 = T2

4. a1 = �a2

The equations represent (1) the net forces acting on the
block of massm1 (Equation 1 and the block of massm2

(Equation 2) through the rope, (2) the connection between
the two pieces of rope resulting in the tension in both pieces
being the same (Equation 3), and (3) the acceleration of the
two blocks in opposite directions with equal magnitude (E-
quation 4).

An example of an equation that is similar to these equa-
tions but is dimensionally inconsistent is:
T1 �m1 = m1 � a1
The equation is inconsistent because in common physics

usage,T1 could represent tension in the rope (kg m s�2) or
time (s), whilem1 represents a mass (kg) anda1 represents
an acceleration (m s�2).

The Issues

An ITS system for physics should be able to generate useful
feedback for dimensionally inconsistent equations. The sys-
tem should do more than just indicate whether an equation
is dimensionally consistent or not. It should try and point
out where the error occurred. To do this, the system must be
able to resolve the following issues:

� determine the dimensions of variables: The system has to
reason about the dimensions of the variablesT; T1; T2 in
equations 1-3. In common physics usage, they could rep-
resent either tension with the dimensions of (kg m s�2)
or time with the dimensions of (s). Defining all variables
explicitly before they are used can be a long and tedious
process and it is desirable if this step can be minimized.

� determine the dimensional consistency of an equation
consisting of multiple terms.

� localize the error(s): Once an error has been detected, i.e.,
the equation has been determined to be dimensionally in-
consistent, the next step is to localize the error. The more
accurately the system can focus on the error, the more ac-
curate the user feedback will be. Depending on whether
the operators are additive (+;�) or multiplicative (�; =),
the terms may or may not all have the same dimensions.

Related Work
Checking for dimensional consistency is a necessary step
before a system can go on to reasoning about the equations.
If the dimensions are inconsistent, then the equations will
not make sense from a physics viewpoint. Existing systems,
e.g. ANDES (Gertner 1998) and PHYSICS-TUTOR (Liew,
Shapiro, & Smith 1999), require that the dimensions of each
variable and constant be knowna priori either through a
knowledge base of variables and constants or by having the
student define them. Once these dimensions are known, it
is a fairly simple step to determine if the equation is dimen-
sionally consistent by using some form of “dimension math-
ematics”.

There are many systems that use constraint propagation
to ensure consistency of values of variables. Examples of
such systems include VEXED (Steinberg 1987), OPIS (Ow
& Smith 1986). Their use of constraint propagation is sim-
ilar except that they are propagating values and not dimen-
sions.

There has also been some work done on adding dimen-
sion specifications to programming languages to support
compile-time (Novak 1995; Hilfinger 1988) and run-time
(Cunis 1992) detection of dimension errors. These systems
are more like strongly typed programming languages where
every variable has to be defined and has a type. Our system
is analogous to a weakly typed language where variables are
partially defined on first use and their types are inferred from
the context.

Dimension Check Algorithm
This section describes how the algorithm checks for dimen-
sional consistency in equations. The checks are performed
in a series of steps as described below:

1. reformulate the equation into a canonical form

2. setup the corresponding constraint tree of dimensions

3. instantiate the dimensions of the variables and thus the
dimensions of the leaf nodes in the constraint tree

4. propagate values in the constraint tree and determine the
consistency of the overall tree



5. generate feedback to the user

Our algorithm combines the use of a knowledge base of
commonly used physics variables and constants with con-
straint propagation. The knowledge base is used to deter-
mine the probable dimensions of each variable. There may
be more than one possible combination for a variable. Con-
straint propagation is used to propagate dimension informa-
tion to other terms and literals to (1) infer dimension infor-
mation and (2) determine dimensional consistency. The al-
gorithm can take partial information about the dimensions
of a variable and combine that with knowledge of opera-
tors and functions (which are just operators) to completely
determine dimensions. In essence knowledge, even incom-
plete knowledge, propagates from one part of the equation
to another. This permits the algorithm to reason about di-
mensional consistency when the variables are not explicitly
defined.

Reformulating Equations
In the first step, all equations are reformulated into a canon-
ical form as a sum of products with the right hand side of
the equation being set to zero. This involves rewriting the e-
quation to take care of multiplicative operators (�; =) as they
appear and moving terms to the left hand side. One advan-
tage of this canonical form is that each term must have the
same dimensions as every other term and the system can use
this requirement to check each term for correctness. Equa-
tion 1 would be rewritten as:

T1 �m1 � g �m1 � a1 = 0

Setting Up The Tree of Constraints
The system now sets up a binary constraint tree representing
the dimensions used within the equation. Each interior node
in the graph represents an operator (e.g.,=;+;�; �; =) or
a function (e.g.,sin; cos). The leaves of the tree represent
each instance of a variable or a constant in the equation. For
example, if a variable occurs twice in the equation, there will
be two nodes in the tree labeled with that variable. Figure 2
shows the initial tree from Equation 1.

=
/ \

0 -
/ \

T1 +
/ \

* *
/ \ / \

m1 g m1 a

Figure 2: Constraint Tree

The edges of the constraint tree connect nodes that affect
each other directly. The value at each node represents the
set of disjoint dimensional values that are consistent with the
values of the nodes connected to it. Each member of the set
is a three tuple specifying the values in each dimension. The

tuple is ordered as(mass; distance; time). For example,
a dimensionless variable has a value< 0; 0; 0 > while a
variablem for mass will have a value of< 1; 0; 0 >.

Initializing Values

Once the constraint tree has been constructed, the system
attempts to obtain initial dimension values for the leaf nodes,
the variables and constants. The algorithm uses a knowledge
base of commonly used variables and “constants” along with
their dimensions. It may be that there is either no mapping
available or that there is more than one mapping. In these
cases, the system will either leave the specific dimension
blank or set the node to reflect that more than one dimension
is possible. For example, the knowledge base contains the
knowledge thatT typically means either tension with the
dimensions of (kg m s�2) or time with the dimensions of
(s). The system will therefore map the variablesT; T1; T2
from the instructor’s solution to a disjoint set of tension and
time. Figure 3 shows the constraint tree for Equation 1 after
the initial values have been acquired.

=
<?,?,?>

/ \
0 -

<?,?,?> <?,?,?>
/ \

T1 +
<1,1,-2> <?,?,?>
<0,0,1> / \

/ \
* *

<?,?,?> <?,?,?>
/ \ / \

m1 g m1 a1
<1,0,0> <0,1,-2> <1,0,0> <0,1,-2>

Figure 3: Constraint Tree with Initial Values

Note that the nodeT1 has two possible values represent-
ing that it could either be tension (kg m s�2) or time (s).
In addition note that the nodes with values<?; ?; ? > are
dimensionally unconstrained.

Propagating Constraints

Once the initial dimensions for the leaf nodes have been ac-
quired (as much as possible), the next step is to propagate
the dimensions to determine if the overall equation is di-
mensionally correct. The system uses a few simple rules
to propagate and infer dimensions. The rules for reasoning
about dimensions are listed below:

1. If a node represents an additive operator (+;�;=), then
the dimension of this node and its children must be the
same.

2. If a node represents a trigonometric function (sin; cos),
then the node and its child are dimensionless.



3. If a node represents a multiplication operator (�), then the
dimension of this node is the component-by-component
sum of the dimensions of its children.

4. If a node represents a division operator (=), then the di-
mension of this node is the result of subtracting the di-
mension (component by component) of the right child
from the dimension of the left child.

5. Nodes with unknown dimensions acquire them as neces-
sary to maintain dimensional consistency.

Figure 4 shows the tree of Equation 1 after the initial val-
ues have been propagated one step.

=
<?,?,?>

/ \
0 -

<?,?,?> <1,1,-2>
<0,0,1>

/ \
T1 +

<1,1,-2> <?,?,?>
<0,0,1> / \

/ \
* *

<1,1,-2> <1,1,-2>
/ \ / \

m1 g m1 a1
<1,0,0> <0,1,-2> <1,0,0> <0,1,-2>

Figure 4: Propagating Dimension Values

At each node when new values for dimensions from its
neighbors are acquired, the information is used to determine
how the values at the current node are affected. This may
result in the set contracting or staying the same, it will never
expand. For example, Figures 5 and 6 show how the val-
ue at the node labeled (�) just below the node labelled (=)
changes as information is propagated through two and three
steps1.

If the values at the current node change, then the new val-
ues are propagated to all of its nearest neighbors. The algo-
rithm terminates when no contractions can be made to the
values of any node in the tree. Figure 7 shows the final tree
of dimension values.

Throughout the process, the algorithm checks each node
when its set of possible values changes. If the set is reduced
to a null set at any time, then the equation is determined to
bedimensionally inconsistent. In the best case, every node
has only one possible value for dimensions and every value
is fully determined.

However, it may happen that some nodes may have more
than one value that could make the whole equation dimen-
sionally consistent. This can happen when one or more vari-
ables are not dimensionally specified or many constants are

1The representation<?; ?; ? > is a shorthand for all possi-
ble choices, the universal set of possibilities. The possible val-
ues for the node labeled (�) was contracted from<?; ?; ? > to
(< 1; 1;�2 >, < 0; 0; 1 >)

=
<1,1,-2>
<0,0,1>

/ \
0 -

<?,?,?> <1,1,-2>
<0,0,1>

/ \
T1 +

<1,1,-2> <1,1,-2>
<0,0,1> / \

/ \
* *

<1,1,-2> <1,1,-2>
/ \ / \

m1 g m1 a1
<1,0,0> <0,1,-2> <1,0,0> <0,1,-2>

Figure 5: Values after Two Propagation Steps

=
<1,1,-2>
<0,0,1>

/ \
0 -

<1,1,-2> <1,1,-2>
<0,0,1> / \

/ \
T1 +

<1,1,-2> <1,1,-2>
<0,0,1> / \

/ \
* *

<1,1,-2> <1,1,-2>
/ \ / \

m1 g m1 a1
<1,0,0> <0,1,-2> <1,0,0> <0,1,-2>

Figure 6: Values after Three Propagation Steps

=
<1,1,-2>

/ \
0 -

<1,1,-2> <1,1,-2>
/ \

T1 +
<1,1,-2> <1,1,-2>

/ \
* *

<1,1,-2 <1,1,-2>
/ \ / \

m1 g m1 a1
<1,0,0> <0,1,-2> <1,0,0> <0,1,-2>

Figure 7: Final Tree of Dimension Values



used. In such cases, the system will display the list of possi-
ble dimensional values for the variables and ask the student
to select one.

Generating Feedback
If the equation is determined to be dimensionally correct,
then the algorithm terminates. However, if an equation has
been found to be dimensionally inconsistent, the next step
is to localize the error. The advantage of reformulating the
equation as a sum of products is that individual terms can be
verified against each other. The algorithm can usually tell
the user what the desired dimensions are for the term that
is incorrect. However, this does not apply when there are
only two terms. In this case, the algorithm cannot identify
which term is at fault only that they are not in agreement.
For example, if the equation is:

T �m1 = 0

then the equation is inconsistent but which term is incor-
rect cannot be determined. Thus the parent, in this case the
whole equation, is marked as the culprit.

In the general case, it is difficult to be accurate when try-
ing to localize errors below the level of a term. There are
two general cases:

1. missing a dimension: For example, if the term ism1 � v
< 1; 1;�1 > and the desired dimensions are in Force
(< 1; 1;�2 >), it could be because (i) thev should be an
acceleration or (ii) the term should be divided by a vari-
able with the dimensions of time< 0; 0; 1 >.

2. extra dimension: If the term ism1 � v2 < 1; 2;�2 >
and the desired dimensions are in Force (< 1; 1;�2 >),
it could be because (i) the term should be divided by a
distance or (ii) the use ofv2 is erroneous and should be
replaced with an Acceleration.

All dimension errors for each term can be seen as a com-
bination of the above two cases. In most cases, the algorith-
m cannot accurately localize the error below the level of the
term and can only point to the whole term as being in error.

There are a few circumstances when the algorithm can
more accurately localize errors below the level of a term.
This arises when functions with known dimensions are used.
As an example, trigonometric functions return a dimension-
less value. If we have a term like (m1 � a � sin�) and the
desired dimension is Energy< 1; 2;�2 >, then the algo-
rithm will point at m1 � a as the faulty variable. Thesin
function does not change the dimensions of the term at all
and so cannot affect the dimensional consistency.

Experimental Evaluation
In the spring of 2001, we collected roughly 350 answers to
four physics problems from 88 different students. They var-
ied in difficulty from the example presented to a problem
involving an accelerating pulley. The answers came from an
introductory physics course for engineers and science ma-
jors at Lafayette College. Analysis showed that dimension
errors occurred in roughly fifteen percent of the answers.

Our algorithm was able to correctly analyze all the an-
swers. There were two to three answers for each problem
where it was unable to determine the dimensions of some
variables and had to prompt the user for further input.

Conclusion
This paper has described a technique for determining the
dimensional consistencyof algebraic equations in physics.
Unlike other methods, it does not depend on the user defin-
ing the dimensions of each variable. The algorithm uses a
knowledge base of well known physics variables and also
heuristic inference based on constraint propagation to deter-
mine (1) the dimensions of values (variables and constants)
and also the dimensional consistency of an equation. The
algorithm has been successfully tested on answers obtained
from a class of introductory physics students at a small col-
lege. Unlike existing systems, variables need not be defined
explicitly before they are used.

Acknowledgments
Margie Dunn was instrumental in the implementation of the
algorithm. Joel Shapiro was helpful in many discussions of
the algorithm. Bradley Antanaitis greatly helped our work
by collecting the answers from his physics class at Lafayette
College. We are grateful to the students in the Spring 2001
physics 121 course at Lafayette College for participating in
our experiment. The comments of several reviewers helped
improve the readability of this paper.

References
Cunis, R. 1992. A package for handling units of measure
in lisp. ACM Lisp Pointers5(2).
Gertner, A. S. 1998. Providing feedback to equation en-
tries in an intelligent tutoring system for physics. InPro-
ceedings of the 4th International Conference on Intelligent
Tutoring Systems.
Hilfinger, P. N. 1988. An ada package for dimensional
analysis.ACM Transactions on Programming Languages
and Systems10(2):189–203.
Liew, C.; Shapiro, J. A.; and Smith, D. 1999. Reason-
ing about algebraic answers in physics. InProceedings of
Twelfth International Florida AI Research SocietyConfer-
ence, 167–171.
Novak, G. S. 1995. Conversion of units of measuremen-
t. IEEE Transactions on Software Engineering21(8):651–
661.
Ow, P. S., and Smith, S. F. 1986. Towards an opportunistic
scheduling system. InProceedings of 19th Hawaii Inter-
national Conference on System Sciences.
Steinberg, L. 1987. Design as refinement plus constraint
propagation: The VEXED experience. InProceedings of
AAAI-87.


