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Abstract.
An ITS dealing with students’ algebraic solutions to Physics problems needs to

map the student variables and equations onto the physical properties and constraints
involved in a known correct solution. Only then can it determine the correctness
and relevance of the student’s answer. In earlier papers we described methods of
determining the dimensions (the physical units) of studentvariables. This paper
describes the second phase of this mapping, determining which specific physical
quantity each variable refers to, and which part of the set ofconstraints imposed by
physics principles each student equation incorporates. Weshow that knowledge of
the dimensions of the variables can be used to greatly reducethe number of possible
mappings.
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1. Introduction

Many problems in introductory physics require the student to provide a set of equations
as an answer. Such an answer is composed of several components including equations,
variables, and mathematical operators. An Intelligent Tutoring System (ITS) for physics
mustunderstandthe student’s submission in order to generate useful feedback. In par-
ticular, it must determine the physics principle used in each equation and to which prop-
erties and objects each variable refers. This is difficult when (1) there are many possi-
ble ways to specify a correct answer, (2) there are many reasonable names for variables
that represent properties (e.g., the mass of object1 could bem1 or m1 or m), or (3) the
student submits an incorrect answer.

This paper describes a technique that reasons about all components of a student’s
submission to determine a correct interpretation. The approach taken is to compare the
student’s submission to a recorded correct solution for theproblem (i.e., theexemplar).
If the student submits a correct solution and that solution is, equation by equation and
variable by variable, a rephrasing of the the exemplar, the solution can be validated by
identifying the mapping between the student’s and exemplar’s variables and equations.
The number of possible mappings can be very large; however, the complexity of the
search can be effectively managed when the dimensions of thestudent variables are
known or can be determined.

Experience has shown that even correct answers seldom have asimple correspon-
dence to an exemplar. Submissions that look very similar to an exemplar can be symp-
tomatic of a misunderstanding of physics while those that look very different can be seen
as correct once the concepts represented by the variables and equations are understood.

Consider a problem based on Atwood’s machine, a frictionless pulley with two
masses,m1 andm2 hanging at either end. A simplified1 exemplar solution consists of

T1 − m1 ∗ g = m1 ∗ a1 (1)

T2 − m2 ∗ g = m2 ∗ a2 (2)

T1 = T2 (3)

a1 = −a2 (4)

Table 1 shows three possible submissions to the problem. Theexemplar contains
four equations but none of the three submissions contains more than three equations.
Submission A is an incorrect solution that can result from a misunderstanding of how the
direction of a vector effects a result. Submission B is a correct solution and can be derived
by algebraic simplification of the exemplar. Submission C introduces a new variable that
is not found in the exemplar. It cannot be derived by an algebraic simplification of the
exemplar, but it is correct ifM is understood to representm1 + m2.

Previous approaches have either (1) severely constrained the student input to use pre-
specified variable names[5], or (2) usedstrong scaffoldingto force the student to define
the referents of her variables[7], or (3) used heuristic techniques to map the variables and
equations[4]. Our algorithm considers all possible mappings of the student’s variables
and equations onto the exemplar, and computes thedistancebetween the image and pos-

1The full exemplar solution used in the experiment of section4 contains eight equations, with the additional
variablesW1, W2, Fnet1 andFnet2.
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Submission A Submission B Submission C

T − m1 ∗ g = m1 ∗ a1 T − m1 ∗ g = m1 ∗ a a = (m1 − m2) ∗ g/M

T − m2 ∗ g = m2 ∗ a2 T − m2 ∗ g = −m2 ∗ a

a1 = a2

Table 1. Several Possible Submissions for Atwood’s Machine

sible algebraic reductions of the exemplar set. If that fails to give a full match, equations
are dropped from the student and exemplar sets to find the bestmapping. If there is more
than one best mapping, heuristics are used to select a mapping. The selected mapping is
used to evaluate the submission for correctness and to identify possible errors.

2. Algebraic Physics Problems

An ITS for physics must first determine (a) what physics property (e.g.force, momen-
tum) each variable represents and (b) to which object or system the property applies and
at what time. Only then can the ITS determine if (c) each equation is relevant and correct
and finally (d) if the set of equations is correct and complete. Some ITS’s like ANDES
[8,7] solve problems (a) and (b) by strong scaffolding that requires the student to define
each variable,i.e. specify its dimensions and the object it applies to, before it is used.
The system then uses its knowledge of the variables to determine the correctness of the
equations using a technique called “color-by-numbers” [7,6]. In earlier papers [1,2,3] we
described an alternative technique that determined the dimensions of students’ variables
from the context of the equations, thus solving issue (a). This paper describes our cur-
rent work on solving issues (b), (c) and (d). We illustrate the problems involved with an
example problem based on Atwood’s machine, as shown in Figure 1a.
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Figure 1. Atwoods Machine

A common problem based on Atwood’s machine asks the student for the equation(s)
that would determine the acceleration of the massm1, assuming thatm1 andm2 are not
equal. Equations 1 through 4 represent a correct solution using variable set(i) in Figure
1b.

In an alternative formulation, the student chose to use a single variablea to represent
acceleration and a singleT for the tension. She implicitly used the principle that equates
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T1 andT2, and the constrainta1 = −a2, which comes from the fixed length of the cord.
Variable set(ii) in Figure 1b identifies the variables used with such an approach. The
resulting equations are “Submission B” in table 1.

In comparing the student’s equations with the exemplar solution, an ITS must deter-
mine the mapping of the variables and equations from one set to the other. This process
is complicated by several issues:

1. variable renaming:The student and the instructor may use different variable
names to represent the same quantities. There is no restriction on the names of
variables or choice of subscripts even though there are manystandard variable
names. There are also many commonly used variations, e.g.F , Fnet, F1 can
represent the same force.

2. simple aliasing of one variable:Frequently, variables that have the same magni-
tude and dimensions are aliased for one another. For example, the variablesT1

andT2 in equations 1, 2 and 3 are equal to one another. In submissionB of table
1, there is only a single variableT that is used to represent both, i.e.,T is an alias
for bothT1 andT2. When variables are aliased, the number of equations in the
set is reduced.

3. elimination by solution for variables:There are many ways to specify the alge-
braic solution to a problem. These may involve using a greater or lesser number
of variables and thereby a greater or lesser number of equations. For example,
one very different but correct solution to the example problem is:

m1 ∗ g − m1 ∗ a = m2 ∗ g + m2 ∗ a

In this case, there is no variable representing the tension of the rope (commonly
T, T1 or T2). Instead that variable has been solved for in one equation,which is
eliminated from the set, and then substituted for in the other equations.

These issues result in there being many possible mappings between the variables
and equations of a student’s submission and that of the exemplar solution. Systems like
ANDES [8,7] require that the student specify the mapping of variables. A mapping of
equations (if it exists) can then be more easily derived. If the student input is not con-
strained in this way, the ITS must deal with the computational complexity issues. If each
equation is evaluated singly, then each evaluation resultsin many possible interpretations
and requires the use of strong heuristics to select a correctmapping [4]. Our algorithm
considers all the variable and equation mappings simultaneously. The combination of all
constraints greatly reduces the number of possible mappings that must be considered.

3. The Mapping Algorithm

The algorithm identifies properties and concepts by finding mappings of the variables and
equations from a student set of equations to the variables and equations in an exemplar
solution. The variables and equations in the exemplar are annotated with their dimensions
and the associated physical principle [3].

The mappings of variables and equations are interdependentand the algorithm si-
multaneously finds a mapping for both variables and equations. This section describes
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how the dimensions of the variables are used to find the variable and equation mappings.
Sections 3.1.2 and 3.3 show how the mappings can then be used to determine the alge-
braic differences between the student’s equations and the exemplar.

3.1. Matching Dimensions

The dimensions of the variables are used to infer the dimensions of the equations. Each
equation has a signature consisting of the dimensions of theequation and a vector of 1’s
and 0’s, where a 1 indicates this equation contains the corresponding variable. Similarly,
the signature of a variable consists of the dimensions of thevariable and a vector of 1’s
and 0’s, where a 1 indicates this variable is contained in thecorresponding equation. The
signatures are combined together to form a matrix where eachrow is the signature of an
equation and each column is the signature of a variable (Table 2).

T1 T2 m1 m2 a1 a2 g dimension

Eqn 1 1 0 1 0 1 0 1 kg · m/s2

Eqn 2 0 1 0 1 0 1 1 kg · m/s2

Eqn 3 1 1 0 0 0 0 0 kg · m/s2

Eqn 4 0 0 0 0 1 1 0 m/s2

dimension:
kg · m

s2
kg · m

s2
kg kg

m

s2
m

s2
m

s2

Table 2. Matrix of signatures for Equations 1 through 4

3.1.1. Comparison of Matrices

In this section we assume that the exemplar and the student set of equations have the
same number of equations and variables of each dimensionality. A matrix of dimension
signatures is constructed for both the solution set and the student set of equations. The
goal is to find one or more correct mappings between the variables and equations of the
two sets. A mapping between the two matrices is correct if thematrices are identical,i.e.
every entry in one matrix is identical to the corresponding entry in the other matrix and
the given2 variables are in the same columns in both matrices. When thishappens, we
have adimension mapbetween the student solution and the exemplar. Possible mappings
are generated by permuting the rows and columns of the solution matrix subject to the
following constraints:

• Rows (equation signatures) can be interchanged only if the equations have the
same dimensions.

• Columns (variable signatures) can be interchanged only if the variables have the
same dimensions.

In Table 2, if dimensions are ignored there are4!× 7! (= 120, 960) possible permu-
tations. If we restrict row and column interchanges to thosewith the same dimensions
then rows 1,2 and 3 can be permuted, columns 1 and 2 can be interchanged, columns 3
and 4 can be interchanged and columns 5, 6 and 7 can be permuted. The set of four equa-
tions (Equations 1 through 4) can yield 144 different permutations (mappings of vari-

2Thegivenvariables are those explicitly named in the problem presentation.
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ables and equations) that are dimensionally equivalent. Wecan further restrict the inter-
changes such that rows (equations) can only be interchangedif they use the same number
of variables of each type. Applying this restriction to bothrow and column interchanges
as well as constraining the given variables to be in the same columns in the exemplar
and student matrices further reduces the number of permutations to 8. This technique
when applied to the full exemplar solution for Atwood’s machine (8 equations) reduces
the number of permutations by a factor of 100 million from8! × 11! = 1.61 trillion to
2! × 4! × 2! × 2! = 9216.

3.1.2. Evaluation of Equations for Correctness

The dimension information significantly reduces the searchspace but it is not sufficient
to determine if the equations are correct. One of the many techniques for determining
correctness, developed by Shapiro [6,7] and used in the ANDES system, is to instantiate
the variables with random consistent values and then evaluate the equations to see if
the values hold. This method, while effective for correct equations, does not help in
identifying the causes of errors in equations. Our technique instead compares the mapped
student equations with the corresponding equation from thesolution set, term by term,
to find the algebraic differences between the equations. This requires that the equations
in both the solution set and the student set be represented ina canonical form as a sum
of products. The algebraic differences (errors) that can bedetected include (1) missing
terms, (2) extra terms, (3) incorrect coefficients and (4) incorrect signs (a ’+’ instead of a
’−’ and vice versa). For this technique to be generally applicable and successful, it must
also take into account differences that are not errors, suchas various orderings of terms or
factors, and multiplication of the entire equation by a constant. The algebraic differences
are then used to identify the physics principles that have been incorrectly applied.

3.2. Dealing with Equation Sets with a Different Number of Equations/Variables

It is often the case that students will generate answers thatcontain a different number
of variables through the use of algebraic transformations.The matching algorithm uses
the exemplar solution to construct a lattice of equivalent sets of equations that contain
a smaller number of equations and variables. Construction of the lattice proceeds as
follows from the exemplar equations:

1. Initialize the lattice with the exemplar and mark it on thefrontier.
2. The equations in each node on the frontier of the lattice are analyzed for variables

that can be solved for in terms of other variables. Variableswhose values are
specified (givens) or that the student is supposed to find (thegoal) are excluded.

3. Substitute for the variable in each of the other equationsin the node. This results
in a new set of equations with one fewer equation and forms a new node in the
lattice.

4. This process (steps 2 and 3) is repeated until the nodes on the frontier all contain
only one equation for the goal variable.

The student’s set of equations is then compared (Section 3.1.1) against the equations
from nodes in the solution lattice that have the same number of equations and variables
of each dimensionality. All valid mappings are collected into a list of possible mappings
which are then used to evaluate the student’s set for correctness (Section 3.1.2). If there
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is a mapping that results in the student’s equations being evaluated as correct, then the
student’s equations are marked correct.

3.2.1. Application of Substitutions

Substitutions are applied only to the solution set of equations and not the student’s set.
This allows the system to refer to the student’s original equations when generating feed-
back. In addition, this restriction greatly reduces the number of possible mappings. An
exemplar set of 8 equations, if we ignore repetitions, results in a lattice that contains28

nodes.
This approach works only if the exemplar solution encompasses all the correct vari-

ations that the student might use. If the student uses a variable that is not in the solution
set (e.g.submission C in Section 1), the algorithm will not be able to (a) find a map or
reference for the variable (b) evaluate the equation for correctness.

3.3. Matching Incorrect or Incomplete Equation Sets

The algorithm has been extended to determine the mappings even when there are equa-
tions that are missing, extra, incorrect or irrelevant. This phase of the algorithm is exe-
cuted when a complete dimension match of the variables and equations cannot be found.

Equations are systematically removed one at a time from the exemplar and/or the
student set of equations. After removal of the non-matchingequations, the matching
algorithm (Section 3.1.1) can be used to match the remainingequations and variables.
The variable maps that are found from the match can then be used to try to derive the
complete variable maps.

The algorithm starts by taking each node in the lattice of correct solutions (Section
3.2). and making it the top of a new lattice where all the othernodes contain incomplete
sets of equations with one or more missing equations. This results in many lattices with
incomplete sets of equations except for the top of each lattice. A similar lattice of incom-
plete sets of equations is constructed for the student’s setof equations. Starting from the
top of the student lattice, the algorithm compares each nodewith the equivalent nodes
(ones with the same number of equations and variables of eachdimensionality) from the
lattice of lattices created from the exemplar. The comparison stops after trying to match
all nodes at a level in the student lattice if any dimension match is found (Section 3.1.1).
These matches are then applied to the student’s variables and equations to give a set that
is evaluated for correctness (Section 3.1.2).

4. Experiments

We collected answers to four pulley problems from 88 students in an introductory physics
course. One of the four problems was the Atwoods problem and our initial evaluation
focused on the answers to that problem. The students were notrestricted in any way
except that they were asked to refrain from making algebraicsimplifications to their
answers. The student answers were evaluated against the exemplar with 8 equations and
the results are described below.

• Five equation sets were dimensionally inconsistent.
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• Three equation sets were dimensionally ambiguous. Dimensional ambiguities fre-
quently arise when the students only enter a single equation. The single equa-
tion does not provide sufficient context for the system to uniquely determine the
dimensions of one or variables.

• 47 equation sets matched using substitutions and the matrixof dimensions. These
were further broken down into:

∗ 31 equation sets that matched exactly when compared term by term with a node
in the exemplar solution set lattice.

∗ 16 equations sets that had algebraic differences consisting of either (1) an in-
correct sign, (2) an extra term or (3) a missing term.

• 22 equation sets dimension-matched partially,i.e. only after elimination of one
or more equations from either the student or solution set of equations. Six of
the 22 equation sets had extra equations. The algorithm was able to identify the
extraneous equations as well as determining that the remaining equations were
both correct and complete.

• 11 sets of equations had no non-empty subset that matched (dimensionally) any
equations in the solution set.

For comparison, we used the ANDES algebra subsystem [6] to evaluate the same set
of equations. In this case, we had to define the variables explicitly before evaluating each
set of equations. The ANDES system found the same results as our algorithm except for
one instance where the student used a correct but non-standard formulation (submission
(C) in Section 1). In this one case, applying substitution (Section 3.2) on the student
set of equations would have resulted in the algorithm discovering that the answer was
correct. ANDES would not have permitted the student to defineor use the variableM .

4.1. Discussion

The results show that the algorithm performed as well as the ANDES system on the equa-
tion sets that both could solve. This indicates that the combination of our earlier algo-
rithm for determining the dimensions of variables and this algorithm for matching equa-
tions and variables may be sufficient to relax the scaffolding, not requiring the student
to explicitly define variables before using them. In addition, the algebraic differences
detected will facilitate generation of specific and useful feedback to the student.

The technique is most successful when the student uses a larger number of equations,
i.e. minimizes the use of algebraic simplifications. The additional equations provide a
context that enables the technique to efficiently find the correct mapping of variables and
equations in most instances. When a correct mapping can be found, the algorithm finds
either one or two mappings and if there are two or more mappings, heuristics are used to
select one. The algorithm has been shown to be effective on the example problem as it
reduces the possible mappings to just one or two correct mappings.

The algorithm relies on the student using variables that canbe mapped onto variables
from the exemplar solution. This does not always happen, as in the case of submission
(C) in Section 1. In those cases, we can apply the substitution algorithm to the student
equations as well. This is applied as a last resort because (a) the number of possible
matches grows very quickly and (b) it is difficult to generatereasonable feedback.
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5. Conclusion

We have described a technique that determines the objects (and systems of objects) and
properties that variables in algebraic equations refer to.The algorithm efficiently uses
the dimensions of the variables to eliminate most of the possible mappings and find
either one or two correct mappings which can then be further refined with heuristics. The
technique is effective even if the student’s answer uses a different number of variables
and equations than the solution set. The mapping of variables and equations has been
used to determine the algebraic differences between the student’s answer and the solution
set. This can lead to more effective feedback when the student’s answer is incorrect.
The technique has been evaluated on a small set of answers to one specific question and
compares well with the results of a well-known system (ANDES) that uses much tighter
scaffolding.
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