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Abstract.

An ITS dealing with students’ algebraic solutions to Phygcoblems needs to
map the student variables and equations onto the physmaépies and constraints
involved in a known correct solution. Only then can it detierenthe correctness
and relevance of the student’s answer. In earlier paperseseribed methods of
determining the dimensions (the physical units) of studemiables. This paper
describes the second phase of this mapping, determininghvgipiecific physical
guantity each variable refers to, and which part of the sebostraints imposed by
physics principles each student equation incorporatessitfe that knowledge of
the dimensions of the variables can be used to greatly reiecaimber of possible
mappings.
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1. Introduction

Many problems in introductory physics require the studemdrbvide a set of equations
as an answer. Such an answer is composed of several compamsgatling equations,
variables, and mathematical operators. An Intelligenobiiing System (ITS) for physics
mustunderstandhe student’s submission in order to generate useful feddba par-
ticular, it must determine the physics principle used inhegguation and to which prop-
erties and objects each variable refers. This is difficulemwfil) there are many possi-
ble ways to specify a correct answer, (2) there are many nad® names for variables
that represent properties.§, the mass of objedt could bem1 or m; or m), or (3) the
student submits an incorrect answer.

This paper describes a technique that reasons about allaa@nfs of a student’s
submission to determine a correct interpretation. The @y taken is to compare the
student’s submission to a recorded correct solution foptioblem {.e., theexemplay.

If the student submits a correct solution and that solutipregquation by equation and
variable by variable, a rephrasing of the the exemplar, thatisn can be validated by
identifying the mapping between the student’s and exerisplariables and equations.
The number of possible mappings can be very large; howdvercomplexity of the
search can be effectively managed when the dimensions afttitent variables are
known or can be determined.

Experience has shown that even correct answers seldom hsiepke correspon-
dence to an exemplar. Submissions that look very similantex@mplar can be symp-
tomatic of a misunderstanding of physics while those that ieery different can be seen
as correct once the concepts represented by the varialilesjaations are understood.

Consider a problem based on Atwood’s machine, a frictienjmgley with two
massesy; andms hanging at either end. A simplifi€@xemplar solution consists of

Ty —myxg=mq *ay ()
Ty — mo x g =mo * as (2)
T =T, ®3)
a; = —az 4

Table 1 shows three possible submissions to the problemeXémplar contains
four equations but none of the three submissions contairre than three equations.
Submission A is an incorrect solution that can result fromsumderstanding of how the
direction of a vector effects a result. Submission B is aexdirsolution and can be derived
by algebraic simplification of the exemplar. Submission ttoiduces a new variable that
is not found in the exemplar. It cannot be derived by an algielsimplification of the
exemplar, but it is correct it/ is understood to represemt; + mso.

Previous approaches have either (1) severely constraieesiitdent input to use pre-
specified variable names[5], or (2) ussttbng scaffoldindgo force the student to define
the referents of her variables[7], or (3) used heuristibmégues to map the variables and
equations[4]. Our algorithm considers all possible maggpiof the student’s variables
and equations onto the exemplar, and computeditancebetween the image and pos-

1The full exemplar solution used in the experiment of sec@ontains eight equations, with the additional
variablesWi, Wy, Fnet; and Fnets.
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Submission A Submission B | Submission C |
T—mi*xg=mi*a1 | T—m1*xg=m1*a a=(m1 —ma)*xg/M
T—moxg=maox*xaz | T —maxg=—m2*a

a1 = ag

Table 1. Several Possible Submissions for Atwood’s Machine

sible algebraic reductions of the exemplar set. If thasfalgive a full match, equations
are dropped from the student and exemplar sets to find thenagsiing. If there is more
than one best mapping, heuristics are used to select a ngafdpia selected mapping is
used to evaluate the submission for correctness and tafylpossible errors.

2. Algebraic Physics Problems

An ITS for physics must first determine (a) what physics propée.g.force, momen-
tum) each variable represents and (b) to which object oery$te property applies and
at what time. Only then can the ITS determine if (c) each eqoas relevant and correct
and finally (d) if the set of equations is correct and compl8tame ITS’s like ANDES
[8,7] solve problems (a) and (b) by strong scaffolding tleafuires the student to define
each variablei.e. specify its dimensions and the object it applies to, befbie used.
The system then uses its knowledge of the variables to datertime correctness of the
equations using a technique called “color-by-number$][1n earlier papers [1,2,3] we
described an alternative technique that determined themBians of students’ variables
from the context of the equations, thus solving issue (ajs Phaper describes our cur-
rent work on solving issues (b), (c) and (d). We illustrate pinoblems involved with an
example problem based on Atwood’s machine, as shown in Eitjar

(i) (i) (iii)
O
at Ttoat |l

tag ja #a

(@) (b)

Figure 1. Atwoods Machine

A common problem based on Atwood’s machine asks the studetité equation(s)
that would determine the acceleration of the massassuming that:; andms are not
equal. Equations 1 through 4 represent a correct solutimg wariable seti) in Figure
1b.

In an alternative formulation, the student chose to usegiesirariable: to represent
acceleration and a singfefor the tension. She implicitly used the principle that ggsa
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Ty andTs, and the constraint; = —as, which comes from the fixed length of the cord.
Variable sef(i7) in Figure 1b identifies the variables used with such an amroghe
resulting equations are “Submission B” in table 1.

In comparing the student’s equations with the exemplatgwiuan ITS must deter-
mine the mapping of the variables and equations from onesghetother. This process
is complicated by several issues:

1. variable renaming:The student and the instructor may use different variable
names to represent the same quantities. There is no riestrart the names of
variables or choice of subscripts even though there are rs@mgard variable
names. There are also many commonly used variations F&.@§'net, F; can
represent the same force.

2. simple aliasing of one variabldzrequently, variables that have the same magni-
tude and dimensions are aliased for one another. For exathpleariables
andT; in equations 1, 2 and 3 are equal to one another. In submiBsifrtable
1, there is only a single variablethat is used to represent both, i/E.is an alias
for both 77 andT,. When variables are aliased, the number of equations in the
set is reduced.

3. elimination by solution for variablesthere are many ways to specify the alge-
braic solution to a problem. These may involve using a greatéesser number
of variables and thereby a greater or lesser number of emsati-or example,
one very different but correct solution to the example peabls:

mp*g—Mmp*a=ma*g+mg*a

In this case, there is no variable representing the tenditimeaope (commonly
T, Ty or T3). Instead that variable has been solved for in one equatibith is
eliminated from the set, and then substituted for in therotl@ations.

These issues result in there being many possible mappingeée the variables
and equations of a student’s submission and that of the daesgdution. Systems like
ANDES [8,7] require that the student specify the mappingarfables. A mapping of
equations (if it exists) can then be more easily derivedhéf student input is not con-
strained in this way, the ITS must deal with the computatiocoeplexity issues. If each
equation is evaluated singly, then each evaluation reisuitsany possible interpretations
and requires the use of strong heuristics to select a camapping [4]. Our algorithm
considers all the variable and equation mappings simubtaglg. The combination of all
constraints greatly reduces the number of possible mappivag must be considered.

3. The Mapping Algorithm

The algorithm identifies properties and concepts by findiagpings of the variables and
equations from a student set of equations to the variabl@égquations in an exemplar
solution. The variables and equations in the exemplar aretated with their dimensions
and the associated physical principle [3].

The mappings of variables and equations are interdepemaenthe algorithm si-
multaneously finds a mapping for both variables and equsitibhis section describes
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how the dimensions of the variables are used to find the JVaréid equation mappings.
Sections 3.1.2 and 3.3 show how the mappings can then be usiedermine the alge-
braic differences between the student’s equations andkdraar.

3.1. Matching Dimensions

The dimensions of the variables are used to infer the dimassif the equations. Each
equation has a signature consisting of the dimensions adhation and a vector of 1's
and 0’s, where a 1 indicates this equation contains the gporeding variable. Similarly,

the signature of a variable consists of the dimensions ofdniable and a vector of 1's
and 0’s, where a 1 indicates this variable is contained irctineesponding equation. The
signatures are combined together to form a matrix where eaels the signature of an

equation and each column is the signature of a variable € T2l

| | T1 | T2 | ml | m2 | al | a2 | g || dimensi0n|
Eqn1 1 0 1o 1] 0] 1| kg-m/s2
Eqn2 0 1 0 1 0 1 1 kg - m/s?
Eqn3 1 1 ol o| o] o] o] kg-mys?
Eqn 4 0 0 0 0 1 1 0 m/s2
dimension: kgs~2m kgs'Qm kg | kg ?2 ?2 ?2

Table 2. Matrix of signatures for Equations 1 through 4

3.1.1. Comparison of Matrices

In this section we assume that the exemplar and the studeonf squations have the
same number of equations and variables of each dimengiprfalinatrix of dimension
signatures is constructed for both the solution set andttident set of equations. The
goal is to find one or more correct mappings between the Vasgand equations of the
two sets. A mapping between the two matrices is correct ifia@rices are identicallge.
every entry in one matrix is identical to the correspondintyyein the other matrix and
the giver? variables are in the same columns in both matrices. Wherhtippens, we
have adimension majpetween the student solution and the exemplar. Possiblpingsp
are generated by permuting the rows and columns of the solutiatrix subject to the
following constraints:

e Rows (equation signatures) can be interchanged only if thmt®ons have the
same dimensions.

e Columns (variable signatures) can be interchanged onheifvariables have the
same dimensions.

In Table 2, if dimensions are ignored there dfex 7! (= 120, 960) possible permu-
tations. If we restrict row and column interchanges to theib the same dimensions
then rows 1,2 and 3 can be permuted, columns 1 and 2 can behatgyed, columns 3
and 4 can be interchanged and columns 5, 6 and 7 can be perfiéeskt of four equa-
tions (Equations 1 through 4) can yield 144 different pemtiahs (mappings of vari-

2Thegivenvariables are those explicitly named in the problem prestiemt.
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ables and equations) that are dimensionally equivalentafidurther restrict the inter-

changes such that rows (equations) can only be interchafthegt use the same number
of variables of each type. Applying this restriction to bodv and column interchanges
as well as constraining the given variables to be in the sasharms in the exemplar

and student matrices further reduces the number of periogato 8. This technique

when applied to the full exemplar solution for Atwood’s mah(8 equations) reduces
the number of permutations by a factor of 100 million fréinx 11! = 1.61 trillion to

2! x 4! x 2! x 2! = 9216.

3.1.2. Evaluation of Equations for Correctness

The dimension information significantly reduces the seapdte but it is not sufficient
to determine if the equations are correct. One of the marhynigoes for determining
correctness, developed by Shapiro [6,7] and used in the AB§)Stem, is to instantiate
the variables with random consistent values and then eeatha equations to see if
the values hold. This method, while effective for correcti@ipns, does not help in
identifying the causes of errors in equations. Our techamigstead compares the mapped
student equations with the corresponding equation fronsttation set, term by term,
to find the algebraic differences between the equations fHujuires that the equations
in both the solution set and the student set be representedanonical form as a sum
of products. The algebraic differences (errors) that caddiected include (1) missing
terms, (2) extra terms, (3) incorrect coefficients and (dpinect signs (a+’ instead of a
'—"and vice versa). For this technique to be generally appleand successful, it must
also take into account differences that are not errors, asefarious orderings of terms or
factors, and multiplication of the entire equation by a ¢ant The algebraic differences
are then used to identify the physics principles that haenligcorrectly applied.

3.2. Dealing with Equation Sets with a Different Number ofi&ipns/Variables

It is often the case that students will generate answerscthratin a different number
of variables through the use of algebraic transformati@hs. matching algorithm uses
the exemplar solution to construct a lattice of equivalens ®f equations that contain
a smaller number of equations and variables. Constructicheolattice proceeds as
follows from the exemplar equations:

1. Initialize the lattice with the exemplar and mark it on frantier.

2. The equations in each node on the frontier of the lattie@aalyzed for variables
that can be solved for in terms of other variables. Variablesse values are
specified (givens) or that the student is supposed to findyha® are excluded.

3. Substitute for the variable in each of the other equatiotise node. This results
in a new set of equations with one fewer equation and formsaanuele in the
lattice.

4. This process (steps 2 and 3) is repeated until the noddsedrontier all contain
only one equation for the goal variable.

The student’s set of equations is then compared (Sectioh)&adainst the equations
from nodes in the solution lattice that have the same numbequations and variables
of each dimensionality. All valid mappings are collectetbia list of possible mappings
which are then used to evaluate the student’s set for coeest(Section 3.1.2). If there
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is a mapping that results in the student’s equations beiatyated as correct, then the
student’s equations are marked correct.

3.2.1. Application of Substitutions

Substitutions are applied only to the solution set of equatiand not the student’s set.
This allows the system to refer to the student’s originalagiquns when generating feed-
back. In addition, this restriction greatly reduces the banof possible mappings. An
exemplar set of 8 equations, if we ignore repetitions, tesnola lattice that containz®
nodes.

This approach works only if the exemplar solution encomgsisd the correct vari-
ations that the student might use. If the student uses ablatiaat is not in the solution
set e.g.submission C in Section 1), the algorithm will not be ableapfind a map or
reference for the variable (b) evaluate the equation foreobness.

3.3. Matching Incorrect or Incomplete Equation Sets

The algorithm has been extended to determine the mappimgsvelven there are equa-
tions that are missing, extra, incorrect or irrelevant.siphase of the algorithm is exe-
cuted when a complete dimension match of the variables amatieqs cannot be found.

Equations are systematically removed one at a time fromtkenplar and/or the
student set of equations. After removal of the non-matcleiggations, the matching
algorithm (Section 3.1.1) can be used to match the remamiugtions and variables.
The variable maps that are found from the match can then bktodey to derive the
complete variable maps.

The algorithm starts by taking each node in the lattice ofexirsolutions (Section
3.2). and making it the top of a new lattice where all the otfmies contain incomplete
sets of equations with one or more missing equations. Thidtein many lattices with
incomplete sets of equations except for the top of eacleéatfi similar lattice of incom-
plete sets of equations is constructed for the studentsfsjuations. Starting from the
top of the student lattice, the algorithm compares each mattethe equivalent nodes
(ones with the same number of equations and variables ofdda@nsionality) from the
lattice of lattices created from the exemplar. The compari&ops after trying to match
all nodes at a level in the student lattice if any dimensiotcimés found (Section 3.1.1).
These matches are then applied to the student’s variabtiescarations to give a set that
is evaluated for correctness (Section 3.1.2).

4. Experiments

We collected answers to four pulley problems from 88 stuslgran introductory physics
course. One of the four problems was the Atwoods problem amdndtial evaluation
focused on the answers to that problem. The students wereesipicted in any way
except that they were asked to refrain from making algelsenplifications to their
answers. The student answers were evaluated against thekexevith 8 equations and
the results are described below.

e Five equation sets were dimensionally inconsistent.
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e Three equation sets were dimensionally ambiguous. Dirnaasambiguities fre-
quently arise when the students only enter a single equafio@ single equa-
tion does not provide sufficient context for the system tajuely determine the
dimensions of one or variables.

e 47 equation sets matched using substitutions and the nediimensions. These
were further broken down into:

x 31 equation sets that matched exactly when compared terertowtith a node
in the exemplar solution set lattice.

* 16 equations sets that had algebraic differences corgsisfirither (1) an in-
correct sign, (2) an extra term or (3) a missing term.

e 22 equation sets dimension-matched partialg, only after elimination of one
or more equations from either the student or solution setqofgons. Six of
the 22 equation sets had extra equations. The algorithm blag@identify the
extraneous equations as well as determining that the rémga@gguations were
both correct and complete.

e 11 sets of equations had no non-empty subset that matchmaeérfdionally) any
equations in the solution set.

For comparison, we used the ANDES algebra subsystem [6plo&ie the same set
of equations. In this case, we had to define the variable soitkpbefore evaluating each
set of equations. The ANDES system found the same resultsrasgorithm except for
one instance where the student used a correct but non-stefodisulation (submission
(C) in Section 1). In this one case, applying substitutioac{®n 3.2) on the student
set of equations would have resulted in the algorithm disdayg that the answer was
correct. ANDES would not have permitted the student to definese the variabl@/.

4.1. Discussion

The results show that the algorithm performed as well as tHBBS system on the equa-
tion sets that both could solve. This indicates that the doatlon of our earlier algo-
rithm for determining the dimensions of variables and thgeathm for matching equa-
tions and variables may be sufficient to relax the scaffgdirot requiring the student
to explicitly define variables before using them. In additithe algebraic differences
detected will facilitate generation of specific and use@ég@ldback to the student.

The technique is most successful when the student usesatangpber of equations,
i.e. minimizes the use of algebraic simplifications. The add#@ioequations provide a
context that enables the technique to efficiently find theemimapping of variables and
equations in most instances. When a correct mapping canunel fthe algorithm finds
either one or two mappings and if there are two or more magpimeuristics are used to
select one. The algorithm has been shown to be effectiveeaxhmple problem as it
reduces the possible mappings to just one or two correct imgpp

The algorithm relies on the student using variables thabeamapped onto variables
from the exemplar solution. This does not always happem #sei case of submission
(C) in Section 1. In those cases, we can apply the substitafigorithm to the student
equations as well. This is applied as a last resort becajsbganumber of possible
matches grows very quickly and (b) it is difficult to genenaasonable feedback.
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5. Conclusion

We have described a technique that determines the objextsyatems of objects) and
properties that variables in algebraic equations refef e algorithm efficiently uses
the dimensions of the variables to eliminate most of the iptessnappings and find
either one or two correct mappings which can then be furéfared with heuristics. The
technique is effective even if the student’s answer useffereint number of variables
and equations than the solution set. The mapping of vasadel equations has been
used to determine the algebraic differences between tbersts answer and the solution
set. This can lead to more effective feedback when the stisdamswer is incorrect.
The technique has been evaluated on a small set of answars gpecific question and
compares well with the results of a well-known system (ANDEft uses much tighter
scaffolding.
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