
Physics 618 Twentieth Lecture April 4, 2017

Last time we found we could make a locally invariant field theory of
matter transforming according to a representation of a Lie group, Ψ(xµ) →
e−iω(xµ)Ψ(xµ), but only by introducing new vector fields Aν(x

µ) taking values
in the representation of the Lie algebra. This replaced ordinary derivatives of
Ψ by covariant derivatives DνΨ = [∂ν − igAν] Ψ. Now we have new degrees
of freedom, Aν(x

µ) which transform under local symmetry (gauge) transfor-
mations in an inhomogeneous manner
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We found we could understand this as the continuum limit of a lattice theory
where these gauge degrees of freedom are group elements required to under-
stand how to compare Ψ’s at different points. Modifying nearest neighbor
differences to include parallel transport by the gauge fields, we found we could
make the matter part of the Lagrangian locally gauge invariant, but then we
needed to ask about finding a group-invariant dynamics for these gauge de-
grees of freedom. We saw that we could minimize the dependence on local
group transformations by considering the placquette, GP = U−1
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which is invariant under ω(xµ) at xµ = b, c, and d, and transforms by
GP → e−iω(xµ

a )
GP eiω(xµ

a) The remaining gauge dependence could be elimi-
nated by taking the trace in some representation, except that would be a
phase rather than a hermitean piece suitable for a lagrangian.

We expect our lattice to be helpful in the continuum limit where Ψ ought
to change only slightly between neighboring points, and the parallel transport
by one lattice spacing should differ from 1I by order the lattice spacing aρ, so
we expanded Gb = eigaνAν ∼ 1I+ iaνgAν −
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ν + . . ., and also expressed
its xµ dependance in terms of A evaluated at the center of the placquette
and the derivatives in each direction. We found that GP ≈ 1 + igaµaνFµν

with
Fµν(x) = ∂µAν(x) − ∂νAµ(x) − ig [Aµ(x),Aν(x)] .

We note that this crucial field, the field strength tensor, is a representative
of the Lie algebra, is an antisymmetric tensor, and transforms under gauge
transformations (under the symmetry group) by

Fµν(x
µ) → e−iω(xµ)

Fµν(x
µ)eiω(xµ) .

Today

From the fact that Tr GP is gauge invariant, but not hermitean, we are
led to the form for the gauge field lagrangian, both for the lattice and for the
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continuum. In the continuum, we are led to the covariant derivative opera-
tors, and note the connection of their commutators with the field strength
tensor.

We will review the meaning of gauge invariance, and some of the ways it
complicates normal lagrangian or hamiltonian mechanics. We will go back
to the lattice, looking only at the gauge degrees of freedom.

We will take the continuum limit in time, but not in spatial directions,
and we will ask about the Lagrangian and Hamiltonian formulations of the
dynamics. You may never have explicitly considered dynamics for degrees
of freedom which live on curved manifolds rather than Euclidean space, but
this will give an enlightening discussion, and also tell us about the manifold
of our Lie group.

To get to a Lagrangian, we will get time derivatives of spatially depen-
dent fields by first going to the temporal gauge, where the group elements
on all time-links are set to 1I, and so the time-space placquettes (electric
fields) will behave quite differently from the space-space placquettes (mag-
netic fields). Taking the continuum limit in the time direction, these time-
space placquettes will give us a dependence on U̇ as well as U , where U is
the gauge field on spatial links only. We will concentrate our attention on
the U̇ terms, as these determine the canonical momenta and thus the tran-
sition to the Hamiltonian. We shall see that the canonical momenta do not
enter as

∑

ℓ Π2
ℓ , where Πℓ is the canonical momentum conjugate to Uℓ, but

rather as the square of “electric field operators”, which are “left-derivatives”,
and do not commute with each other. In terms of the canonical momenta
the Hamiltonian involves the metric tensor for the curved group manifold,
which we shall see is given in terms of the adjoint representation [S(La)]ij of
the generators of the group. The determinant of the metric gives the group-
invariant measure, the weight we need to integrate over the group for the
rearrangement theorem.

This is actually the way to formulate hamiltonian mechanics quite gener-
ally when the coordinates live in a curved rather than flat Euclidean space.
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