
Chapter 6

SU(3)

SU(3) first hit the Physics world in 1961 through papers by Gell-Mann and
Ne’eman which applied it to what we now call the flavor of hadrons, at a time
when particles involving charm, top, or bottom were unknown. In modern
language, these hadrons are made up of quarks of three different “flavors”,
called up, down, and strange. The SU(3) acts on these quarks exactly as
isospin acts on p’s and n’s, which is in fact the same as isospin’s action on

the u and d quarks. That is, the symmetry
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, where U is

a unitary 3 × 3 matrix of determinant one, is an approximate symmetry
of the Lagrangian or Hamiltonian for strong interactions. The subset of
unitary U matrices which leave the third component unchanged is just the
isospin group. This flavor SU(3) symmetry is, however, clearly not an exact
symmetry, even for the strong interactions, as the particles involving strange
quarks are considerably heavier than the others.

The interest in SU(3) as a flavor symmetry has largely faded away, after
the discovery of 3 more quark flavors which act so differently from the first
three that symmetry seems an inappropriate approximation. But in the
meantime the theory of QCD, which requires the quarks to have three colors
as well as flavors, has become the standard way of understanding the strong
interactions, and it is based on an exact color SU(3) symmetry, in fact
a gauge symmetry. So we still have a good reason to investigate SU(3) in
detail, both for its own sake and as an example of more elaborate groups.
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The generators of the group are clearly 3 × 3 hermitean1 traceless2 ma-
trices. This is an eight dimensional space, as the 9 real values have the one
constraint of tracelessness. The standard basis is Gell-Mann’s original one,

λi =




σi
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

 for i = 1, 2, 3; λ4 =




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 ; λ5 =
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
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

λ6 =
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
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

 ; λ7 =




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

 ; λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

We take the generators to be Ta = λa/2. Note T1, T2, and T3 generate an

SU(2) subalgebra which just rotates the isotopic spin doublet

(
u
d

)

, leaving

the isotopic singlet s invariant, so this is just the isospin group.

The structure constants for the Gell-Mann basis of SU(3) are always called
fjkℓ, with [λj, λk] = 2ifjkℓλℓ. As the first three Ti form an SU(2) subgroup,
fjkℓ = ǫjkℓ when all indices are ≤ 3, and fjkℓ = 0 for j, k ≤ 3 when ℓ > 3.
Also T4, T5 and 1

2

(√
3T8 + T3

)
form a canonical SU(2) basis 3, and so do

T6, T7 and 1
2

(√
3T8 − T3

)
, so f458 = 1

2

√
3, f453 = 1

2
, f678 = 1

2

√
3, f673 = −1

2
.

Finally [λ1, λ4] = iλ7, so f147 = 1
2
, and similarly f246 = f257 = 1

2
, f156 = −1

2
.

The others are given by total antisymmetry, or vanish.

The commutators are a general feature of a Lie algebra, but for SU(n)
only there is also an anticommutator relation,

{λi, λj} =
4

3
δij1I + 2dijkλk

because the λ’s and 1I are a complete set of hermitean matrices.

The matrices are themselves a representation (the defining represen-
tation, not the adjoint representation). There can only be 2 independent

1An N × N hermitean matrix H is diagonalizable with N real eigenvalues λj , so the
exponential eiH has the same eigenvectors with eigenvalues eiλj , which has magnitude 1,
so eiH is unitary.

2Quite generally for a finite square matrix M , detM = exp Tr(lnM).
3One often defines

√
2 U± = T6 ± iT7 and

√
2 V± = T4 ± iT5, 2U3 =

√
3T8 − T3

2V3 =
√

3T8 + T3, so the U ’s form an SU(2), and so do the V ’s. Finally Y = 2T8/
√

3 is
called hypercharge.
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simultaneously diagonalized traceless hermitean 3 × 3 matrices, and we al-
ready have them in λ3 and λ8, so the Cartan subalgebra is H = 〈T3, T8〉. Let
H1 = T3, H2 = T8.

The weights in this representation are just the
combinations (H1 ii, H2 ii) (no sum) or 1

2
(λ3 ii, λ8 ii) (no

sum) or

(µ1, µ2) =

(
1

2
,

1

2
√

3

)

︸ ︷︷ ︸

u

,

(

−1

2
,

1

2
√

3

)

︸ ︷︷ ︸

d

,

(

0,− 1√
3

)

︸ ︷︷ ︸

s

.
0-1

-1

1

1

H

H

1

2

The three root vectors Eα and their conjugates E−α span the six dimensions
orthogonal to H. These make transitions between the weights. The root
which takes d → u, which we used to call T+, is now E(1,0) = 1√

2
(T1 + iT2).

We also have E(1/2,
√

3/2) = 1√
2
(T4 + iT5), sometimes called V+, which takes

s → u, and E(−1/2,
√

3/2) = 1√
2
(T6 + iT7), also called U+, which takes s → d.

So the root space of the generators looks like the
figure, with the roots forming a regular hexagon,
with angles between them of 60◦ × n. From the
diagram we see T− generates doublets on V+ and

U− as required by
~αT+

· ~αV+

~α 2
T+

=
n

2
=

1

2
. Similarly

U− generates doublets (“U spin doublets”) start-
ing with V+ or T−.
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