
Chapter 10

Representations of Lie Groups

10.1 Fundamental Weights

Let us label the simple roots ~αi, i = 1, . . . , m. They and their conjugates gen-
erate (not linearly) any element of the Lie algebra. Thus any representation
can be determined by how it behaves under these roots1.

The weights have an ordering, so any finite dimensional representation
has a greatest weight ~µmax. The weight ~µ of a basis element is ~µmax if and
only if ~µ+~αi is not a weight for each ~αi. Define qi = 2~α i ·~µmax/(α

i)2, which
can be arbitrary nonnegative integers. As the ~α i are linearly independent
and complete, the {qi} and ~µmax determine each other.

Define m vectors ~µ j such that

2~α i · ~µ j

(αi)2
= δij .

These are called the fundamental weights of the Lie algebra corresponding
(as maximal weights) to a set of representations Dj called the fundamental
representations
Warning: ~µ i is a vector, the i’th fundamental weight, while µi is the i’th
component of any old weight ~µ. There is no connection, although each index
takes on the same values 1, 2, . . . , m.

A tensor product of representations of a group has weights which are
just the sum of the weights. In particular, the maximum weight of the

1A mathematician, who calls the representation the matrices which act on the vector

space, and module that which the physicist calls the representation, would say instead the

representation is determined by how it represents these roots.
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product is the sum of the maximum weights of the factors. Thus we can find
a representation of arbitrary maximal weight ~µ =

∑
qi~µ i by reducing the

tensor product
⊗

i

(
Di
)qi

.

10.1.1 SU(3) Multiplets

For SU(3), the positive roots are T+, V+, and U−, of which the last two are
simple.

V+ = E1/2,
√

3/2, U− = E1/2,−
√

3/2,

so ~α 1 =

(

1

2
,

√
3

2

)

, ~α 2 =

(

1

2
,−

√
3

2

)

, T+ = E~α 1+~α 2 = E(1,0).

The corresponding fundamental weights with 2
~α i · ~µ j

(αi)2
= δij is solved by

~µ 1 =

(
1

2
,

1

2
√

3

)

, ~µ 2 =

(
1

2
,− 1

2
√

3

)

.

Let us generate the representation D2. The q’s are q1 = 0, q2 = 1, the
highest weight state is d̄ :=

∣
∣~µ 2
〉

(a). Acting on

this state V− = E−~α 1 vanishes (b), and E−~α 2

∣
∣~µ 2
〉

can act once, giving a non-zero state, proportional
to s̄ :=

∣
∣0, 1/

√
3
〉

(c). Now acting on this state
again with E−~α2 gives zero (d), as 2 > q2 = 1,

but as 2 ~α 1·(0,1/
√

3)
(α1)2

= 1, the q for ~α 1 on s̄ is 1, and

so E−~α 1

∣
∣0, 1/

√
3
〉
∝ ū :=

∣
∣−1

2
,−1/2

√
3
〉

(e) is
not zero, but a second application vanishes rather
than giving a state at (−1, 2/

√
3) (f).

We must still check ~α 2 on ū, but ~α 2 ·
(−1

2
,−1/2

√
3) = 0 and we already know p = 0, so

q = 0 and there is no state at (−1, 1/
√

3) (g).

0-1

-1

1

1

H

H

d (a)

s (c)

u (e)

(b)

(d)

(f)

(g)

1

2

So we are done, having found three basis vectors, as there is no other way to
get another state.

In flavor SU(3), these are the antiquarks. On the horizontal axis, H1 =
T3 is the isospin component. The highest weight state (rightmost) is the
anti-d quark |µ2〉, part of an isospin doublet with the anti-u quark T− |µ2〉 =
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E−α1E−α2 |µ2〉. The antistrange quark s̄ = E−α2 |µ2〉 is an isosinglet, T =
T3 = 0. The vertical axis is generally described in terms of strangeness or
hypercharge.

Strangeness S is defined as zero for the u and d quarks and their antiparticles,
and 1 for the anti-strange quark. Baryon number B is invariant under SU(3),
and is defined as 1/3 the number of quarks minus the number of antiquarks,
so is −1/3 for all the antiquark states. The (strong2) hypercharge Y = S+B

(in the absence of charm, topness and bottomness)
is then 2/3 for s̄ and −1/3 for ū and d̄. This
representation is the conjugate of the representa-
tion D1 corresponding to the fundamental weight
µ1, which is also called the defining represen-
tation for SU(3). In flavor SU(3) this is the rep-
resentation of the first three quarks, with the up
quark u at the upper right, the down quark d to
its left, and the strange quark s at the bottom.

0-1

-1

1

1

H

H

1

2

The defining repre-
sentation of SU(3)

The quarks have B = 1/3. The
electric charge is Q = T3 + Y/2
times the positron charge e. Then
the quarks have the quantum num-
bers as shown. The antiquarks have
all the quantum numbers (except
T ) reversed.

quark B T T3 S Y Q/e

u 1
3

1
2

1
2

0 1
3

2
3

d 1
3

1
2

−1
2

0 1
3

−1
3

s 1
3

0 0 −1 −2
3

−2
3

In general, if we have a representation Ta of the generators of a Lie algebra,
so that [Ta, Tb] = ic d

ab Td, with real structure constants c d
ab , then

T ′
a := −T ∗

a satisfies [T ′
a, T

′
b] = [Ta, Tb]

∗ = −ic d
ab T

∗
d = ic d

ab T
′
d,

so T ′ is also a representation, called the conjugate represention to T . The
weights are the eigenvalues of T (Hi), which are real, so ~µ ′ = −~µ. Thus the
conjugate representation has a weight diagram which is just a parity reversed
(i.e. ~µ → −~µ) image of the original representation. The highest weight of
the conjugate representation is minus the lowest weight of the original.

2To be distinguished from weak hypercharge.
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The lowest weight of the defining represen-
tation for SU(3) is the d, and the d̄ = |µ2〉
is the highest weight of the antiquark rep-
resentation. The adjoint representation of
SU(3) is self-conjugate, that is, it is the
same (equivalent, isomorphic) representa-
tion as its conjugate.

The adjoint
representation of
SU(3).

For another example,
q1 = 2, q2 = 1, ~µmax =
2~µ 1 + ~µ 2 =

(
3/2, 1/2

√
3
)
.

Then to µmax we can apply
E−α1 twice to get 2 roots
shown as ♣, and E−α2 once
to get ♦.

Now consider Eα1 on
♦ =

∣
∣1, 2/

√
3
〉
. p must be

zero or we would get a root
vector

∣
∣3/2, 7/2

√
3
〉

which is
higher weight than µmax.

♦

♣

♣♥

♥⊗

♠♥⊕♠

♠

T

E

E

µ
α

α

max

3

1

2

But 2
~µ · ~α1

(α1)2
= q − p = 2

(

1,
2√
3

)

·
(

1

2
,

√
3

2

)

= 3, so E−α1 on ♦ generates

three states, shown with ♥.

Next consider the higher ♣ =
∣
∣1,−1/

√
3
〉
, acted on by Eα2 The p is zero

because

Eα2

∣
∣
∣1,−1/

√
3
〉

∝ Eα2E−α1 |µmax〉 = E−α1 Eα2 |µmax〉
︸ ︷︷ ︸

=0

where the first = is because different simple raising and lowering operators
commute and the = 0 is because you can’t raise the highest weight. So

q = 2

(
1,−1/

√
3
)
·
(

1
2
,−

√
3/2
)

1
= 2, Thus E−α2 on

∣
∣1,−1/

√
3
〉

generates the

two ♠ states.

Now the question arises whether the ♥ and ♠ at

(
1

2
,

1

2
√

3

)

are the same
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state or not. This amounts to asking whether

E−α2E−α1 |µmax〉 and E−α1E−α2 |µmax〉

are linearly independent. You will show (problem 9.A) that they are linearly
independent, so there are in fact two states corresponding to the weight(

1

2
,

1

2
√

3

)

.

Rather than continuing down and to the left, we will find that the sym-
metries of the root diagram will determine the rest.

Given any root, there is a reflection which one can perform analogous
to eiπL2 which reflects the weight vector of any representation. To see this,
consider, for any root ~α, not necessarily simple,

[Eα −E−α, Hi] = −αi (Eα + E−α) .

We now consider two cases. If ~β · ~α = 0,

[

Eα − E−α, ~β · ~H
]

= 0,

while [

Eα −E−α, ~α · ~H
]

= −α2 (Eα + E−α) .

Suppose we consider the state

|ψ〉 = e−t (Eα −E−α) |~µ,D〉

where ~µ is an arbitrary basis state with weight vector µi in an arbitrary
representation Di. The Cartan generators

~β · ~H |ψ〉 = ~β · ~He−t (Eα − E−α) |~µ,D〉
= e−t (Eα − E−α)~β · ~H |~µ,D〉 = ~β · ~µ |ψ〉

for ~β · ~α = 0.

To calculate ~α · ~H |ψ〉 = ~α · ~He−t (Eα −E−α) |~µ,D〉 we use the general
expression

etABe−tA =

∞∑

n=0

tn

n!
Ωn(A,B),
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where Ωn means the n’th multiple commutator:

Ω0(A,B) = B, Ωn(A,B) = [A,Ωn−1(A,B)] .

Let A = Eα −E−α, B = ~α · ~H ,

Ω1 = −α2 (Eα + E−α) ,

Ω2 = −α2 [Eα − E−α, Eα + E−α]

= −2α2 [Eα, E−α] = −2α2~α · ~H.

Thus Ωn =

{
(−2α2)n/2~α · ~H n even

(−2α2)
n−1

2 (−α2) (Eα + E−α) n odd
,

and etA~α · ~He−tA = ~α · ~H cos(t
√

2α2) −
√

α2

2
(Eα + E−α) sin(t

√
2α2). Let

t = π√
2α2

, so etA~α · ~He−tA = −~α · ~H. Now ~α · ~H |ψ〉 = ~α · ~He−tA |~µ,D〉 =

e−tA(−~α · ~H) |~µ,D〉 = −~α · ~µ |ψ〉. But for ~β · ~α = 0, ~β · ~H |ψ〉 = ~β · ~µ |ψ〉.
Now any vector ~γ can be written

~γ =
~γ · ~α
α2

~α + ~β, ~β = ~γ − ~γ · ~α
α2

~α, ~β · ~α = 0.

~γ · ~H |ψ〉 =

(

~β − ~γ · ~α
α2

~α

)

· ~µ |ψ〉

=

(

~γ − 2
~γ · ~α
α2

~α

)

· ~µ |ψ〉 .

Each generator Hi corresponds to γj = δij ,

Hi |ψ〉 = µi − 2
~µ · ~α
α2

αi |ψ〉 ,

so ψ has weight vector ~µ ′ = ~µ− 2
~µ · ~α
α2

~α.

The transformation e
− π√

2α2
(Eα − E−α)

is a unitary transformation, so
it makes a 1-1 correspondence between weights of weight ~µ and those of
weight ~µ− 2 ~α·~µ

α2 ~α. This corresponds to reflection in a plane (or hyperplane)
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perpendicular to ~α. Thus the weight diagram of any representation must be
symmetric under such reflections.

From the part of the (2, 1) representation we have found so far, as shown
in (a), we can reflect in the plane (line) perpendicular to α1, to get the states
in (b). Then we reflect perpendicular to T3 to get (c), then perpendicular to
α2 to get the full representation, or multiplet (d).

T

E

E

µ
α

α

max

3

1

2

(a)

T

E

E

µ
α

α

max

3

1

2

(b)

T

E

E

µ
α

α

max

3

1

2

(c) (d)

This is the 15 representation of SU(3).

The reflection about the hyperplane perpendicular to ~αi is known as a
Weyl reflection, and the group generated by all such reflections for a given
algebra is called the Weyl group. Any representation must be invariant under
the Weyl group.

10.2 Tensor Methods

Consider the basis vectors e1, e2, e3 of the
defining representation of SU(3). The algebra
generators act by Taei = ej (Ta)

j
i with (Ta)

j
i =

1
2
(λa)ji (and we are using the summation conven-

tion that an index appearing once upstairs and
once downstairs in a term is understood to be
summed over).

d = e u = e

s = e

2 1

3

From this point on we must be careful with upper and lower indices in
another sense than in our previous discussion. Here we are using them in the
sense of co- and contra-variant quantities, as is done in relativity.
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We consider the basis vectors of the conjugate
representation ū = e1, d̄ = e2, s̄ = e3. The gener-
ators act here with the conjugate representation
T ′ = −T ∗, so

Tae
i = ej (T ′

a)
i

j = −ejT ∗ i
j = −ejT i

j,

as λ is hermitean.

u = e d = e

s = e

1 2

3

Now if we consider a tensor product, eij
k = ei ⊗ ej ⊗ ek, the Lie algebra

generators act as a sum of pieces (like a derivative does), so

Tae
ij

k = eij
mT

m
a k − emj

kT
i

a m − eim
kT

j
a m.

A vector ~v can be specified in terms of its components, which we give
indices to so as to contract with the basis vectors. Thus a vector in the
defining representation is

|v〉 = viei, Ta |v〉 = viejT
j

a i =: |δv〉 = δvjej ,

with δvi = T i
a jv

j.

A vector in the tensor product space has coefficients with several indices

|v〉 = v k
ij e

ij
k, Ta |v〉 = |δv〉 = δv k

ij e
ij

k

where δv k
ij = T k

mv
m

ij − Tm
iv

k
mj − Tm

jv
k

im .

The set of all states ~v = v k
ij e

ij
k, for arbitrary v, clearly form a representation,

but it is also clearly not irreducible, because the operation of the group
does nothing that alters the symmetry of the v’s under i ↔ j). That is,
suppose we start off with a particular state v k

ij , and divide it into parts

v k
ij = s k

ij + a k
ij symmetric and antisymmetric under i ↔ j). Then s k

ij is
mapped into other symmetric coefficients under the group operations, while
a is mapped into other antisymmetric ones, and they don’t mix, so we have
reduced the representation into two.
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As an example, consider 3 ⊗ 3, where 3 is
the usual name for the defining representation
with qi = (1, 0). The tensor product is a 9 dimen-
sional representation with nine basis vectors ei⊗ej

having weights µ(ei)+µ(ej), with a general vector
|v〉 = vijei ⊗ ej. The three basis vectors ei ⊗ ej

with i = j have weights which can only be com-
posed in one way, but the ones with i 6= j have
the same weight for i, j and for j, i. So the weight
diagram is as shown.

Dividing the space of 3 × 3 matrices v into symmetric ones sij and anti-
symmetric ones aij , we see that sij forms a six dimensional space and aij a

three dimensional one. This divides
⊗

=
⊕

= 6 + 3̄, each

of which is irreducible. Note that we can write the antiquark 3̄, one of the
fundamental representations, in terms of the quark, or defining, representa-
tion.

There is something else left invariant by the generators of SU(3). If we
trace (i.e. set equal and sum) a lower with an upper index, the corresponding
terms in δv cancel.

The simplest example is v j
i of 3̄⊗3. The trace

v =
∑

i v
i

i is invariant under the generators,

δv i
i = T i

mv
m

i − Tm
iv

i
m = 0.

Writing v j
i = 1

3
w δ j

i +w j
i with w = v i

i , which

ensures that w j
i is traceless, reduces the nine-

dimensional representation 3̄ ⊗ 3 into the ir-
reducible representations 1 and 8, where 1
is the identity representation (all group ele-
ments are represented by 1, and the genera-
tors by zero), and 8, called the octet, is the
adjoint representation,

The adjoint (or octet) repre-
sentation.

Notice that |v〉 := δ j
i e

i⊗ej is actually an invariant under the group, even
though it looks like a tensor, i.e. both of its indices do transform under the
group.

If we have a representation defined by some tensor coefficients v k
ij which

transform in the correct manner under the group, then the trace in any upper
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index paired with any lower index extracts a tensor, with fewer indices, which

transforms appropriately: vj =
∑

i

v i
ij transforms properly as a 3̄.

If we have two representations transforming properly, say uij and v k
ij ,

the tensor product wij k
ℓm = uijv k

ℓm is a tensor which transforms properly. It

can be contracted to form reduced representations, e.g. wk = wij k
ij = uijv k

ij

is a 3. So this is one way of extracting a smaller representation from the
tensor product. But we can also impose symmetries to reduce it.

We will now construct the arbitrary SU(3) irreducible representation
(n,m) from reducing a tensor product of n defining representations and m
of its conjugate.

First construct w = D(n,0). ~µmax = n~µ1, so |~µmax〉 = e1⊗e1⊗· · · e1 (n of
them). This state corresponds to the tensor wj1···jn =

∏

i δji,1 which is clearly
symmetric under interchange of any two indices. How many components of
w of the full representation are there? One needs only to know how many
1’s, 2’s and 3’s are picked to make a total of n. If you choose r 1’s, there are
n− r + 1 choices of how many 2’s to pick, so in total there are

n∑

r=0

(n− r + 1) =

n+1∑

1

j =

(
n+ 2

2

)

=
(n + 2)!

n! 2!
=

1

2
(n + 1)(n+ 2)

choices, so w has (n + 1)(n + 2)/2 independent components, and the D(n,0)

representation is (n+ 1)(n+ 2)/2 dimensional.
The same argument applies to the representation D(0,m) of weight ~µmax =

m~µ 2,

|~µmax〉 = e2 ⊗ e2 ⊗ · · · e2, (with m factors).

So the uk1···km
corresponding to this representation is totally symmetric in all

its indices, and is a (m+ 1)(m+ 2)/2 dimensional representation.
The tensor product of wj1···jn with uk1···km

can be reduced

wj1···jnuk1···km
= vj1···jn

k1···km
+
∑

rs

δjr

ks
Xj1···ĵr···jn

k1···k̂s···km

,

where ĵr means leave out the jr index. The division is arranged so that v is
traceless,

∑

j1

vj1j2···jn

j1k2···km
= 0.
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The
(

n+2
2

)(
m+2

2

)
degrees of freedom in wu have had

(
n−1+2

2

)(
m−1+2

2

)
degrees of freedom in X constrained out, leaving

Dim D(n,m) =
(n+ 2)(n+ 1)(m+ 2)(m+ 1)

4
− (n+ 1)n(m+ 1)m

4

=
(n+ 1)(m+ 1)(n+m+ 2)

2

for the dimension of the (n,m) representation.
We have extracted the leading irreducible representation from the prod-

uct, but we have not fully reduced the product. Although v is irreducible, we
could reduce X iteratively in the same way, extracting the traces and being
left with traceless parts. Thus we find

D(n,0) ⊗D(0,m) = D(n,m) ⊕D(n−1,m−1) ⊕ · · · ⊕D(n−m,0)

if n ≥ m, or ending with D(0,m−n) if m > n.
We have constructed an arbitrary representation of SU(3) by products

of 3’s and 3̄’s, but we have also seen that 3̄ is the antisymmetric part in
the product of two 3’s. So any representation can be built of the defining
representation alone. This is a general feature of SU(n). The states, however,
will not correspond to some simple symmetry under permutations. Consider
3⊗3⊗3, the states of three quarks. The highest weight is 3 u’s, so (3, 0) = 10
is the symmetric part. There is also a totally antisymmetric part wijk, but as
there is only one choice for {i, j, k} which doesn’t vanish by antisymmetry,
there is only one degree of freedom here, wijk = wǫijk, so this is the one
dimensional identity representation 1. The remaining 16 degrees of freedom
are in fact two octets (two 8’s). We will have to show this.

For rank greater than 2, using
⊗

i(D
i)qi requires 3 or more sets of indices,

and our notational skills are not up to that. But, as we saw for SU(3),
a fundamental representation may be extracted from a tensor product of
copies of the defining one. In Chapter 13, Georgi shows that for SU(N), all
fundamental representations can be extracted from tensor products of the
defining representation, with mixed symmetries.

If we start with the tensor product of k defining representations of SU(n),
we have an nk dimensional space which is not only a representation of SU(n)
but also of Sk, the permutation group on the indices. In fact, these operations
commute, so we may reduce the space into simultaneous representations.
So we must first learn something about representations of the permutation
group.


