
Chapter 3

Infinite Groups

Most physical situations that have a symmetry group have an infinite group.
Some examples:

• Rotational invariance, SO(3). Here we can rotate through an arbitrary
angle specified by a continuous parameter θ, restricted to some finite
range, say [0, 2π). There are a infinite continuum of possible values
of θ, even though its range is limited. There are also two continuous
parameters necessary to specify the direction about which this rotation
is to take place. This is a three-parameter group, and the space of these
transformations is a three dimensional manifold1.

• Translational invariance of the vacuum, ~x → ~x + ~a, for ~a an arbitrary
three dimensional vector with a continuum of possibilities for each co-
efficient.

• A combination of the above, ~x→ ~x ′ with x′i =
∑

j Rijxj + ai, with Rij

a rotation matrix.

• Translations on a lattice which leave the lattice unchanged. A perfect
lattice in D dimensions has D linearly independent lattice vectors

~ai, i = 1, ..., D, such that the lattice is unchanged if the whole thing
is translated by a vector

∑D
i=1 ni~ai, where the coefficients ni are all

arbitarary integers.

The last example differs from the others in an essential way — there are
no group elements which do arbitrarily little, although of course there is one,

1But not a vector space, and also it is not the space on which the rotations act.
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the identity, which does nothing. For the SO(3) rotations we can rotate
through an arbitrarily small angle, for the translations of the vacuum we can
translate by a femtometer (we theorists can — experimentalists might have
a hard time). But the symmetries on the lattice have a minimum nonzero
distance for which a translation can be a symmetry.

A group that has elements which are infinitesimally different from 1I is
called a continuous group. The others are called discrete. A continuous
group requires one or more continuous parameters to specify which element
is being discussed. For example, for the translation group of the vacuum,
~a = (ax, ay, az) is a set of three continuous parameters needed to specify the
translation. For the rotation group we can specify three Euler angles. Later
we will make a better choice, but it will still require three real parameters.

Notice that we have implicitly assumed some kind of topology on the
group, for we have talked of elements arbitrarily close to the identity, which
implies a sequence of elements converging to the identity. For this reason
these groups are also called topological groups.

3.1 Connectedness

With topology comes the concept of connectedness — can any two elements
of the group be connected by a continuous path of elements in the group.
The part of the group connected to the identity is called the connected

component

Clearly the translations of the vacuum form a connected group, because,
for any translation by ~a, the set of translations {Tλ : ~x 7→ ~x + λ~a, for
λ ∈ [0, 1]}, is a continuous path of translations starting from the identity at
λ = 0 and ending at the translation by ~a at λ = 1.

The proper rotations are also connected by the same approach. But if
we consider the set of all transformations that preserve lengths, which is to
say the set of all orthogonal transformations, O(3), this includes the parity
transformation P : ~x → −~x. It is clear, however, that there is no path of
orthogonal transformations which connects this parity transformation to the
identity. Parity in 3-D converts a left hand to a right hand, which can’t
be done continuously by orthogonal transformations. More abstractly, and
in arbitrary dimension, if A is an orthogonal matrix, A−1 = AT . Then
(detA)−1 = det(A−1) = det(AT ) = detA, so detA = ±1. The identity
has determinant +1 while parity (in 3-D) has determinant −1. But as no
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intermediate values are allowed for an orthogonal transformation, there is no
path between them.

Thus this group, O(3), consists of two pieces, the connected component,
called SO(3), which is the subgroup of orthogonal matrices with determinant
+1, and the piece connected to P . This second component is in fact the left
coset of SO(3) in O(3) with respect to P , and SO(3) is a normal subgroup2.

The connected component will always form a normal subgroup, and the
factor group will always be discrete. For the most part we will treat only
connected groups.

The space of parameters describing the connected component of the group
will form a manifold, that is, the neighborhood of each point can be described
by Euclidean coordinates in n dimensions, though the metric may be only
Euclidean in an infinitesimal neighborhood. We will define a metric (or
measure) on the parameter space of the group later, but for now I only
comment on topological issues. Besides connectedness, some other aspects
of the topology of the group manifold which will come into play are whether
or not it is simply connected and whether it is compact.

A manifold is simply connected if every closed path can be continuously
shrunk to a point. The surface of a sphere is simply connected, the surface
of a donut, or a torus, is not.

The manifold is compact if it forms a closed and bounded set in the
topology we are considering. Only after defining a metric on the group
manifold can we really answer the question of whether or not a sequence
is a Cauchy sequence, which is necessary to define compactness. Usually
the metric will be uniformly continuous in the parameters, so a sequence
of elements whose parameters approach a limit themselves approach a limit.
When this is true, compactness reduces to having a compact set in parameter
space. But it is not always true3.

Examples:

• SO(2), the set of rotations in two dimensions4, where g(θ) is a counter-
clockwise rotation through an angle θ ∈ [0, 2π). This is compact, but
not simply connected. The group manifold is simply a circle.

2It is of index 2, see (1.6).
3Example: Lorentz transformations described in terms of velocity. The domain of

velocity is bounded, but rapidity rather than velocity is the appropriate measure, and the
space is not compact.

4As we are now dealing with infinite groups, we will no longer reserve g for the order
of the group, but will often use it to represent an element, rather than A as we have been.
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• The translations in one dimension by an arbitrary amount, T (a) : x→
x + a. Here a ∈ (−∞,∞) and the group is not bounded and not
compact. However, we can’t really tell just by the range of the param-
eter; we might have parameterized the group differently, T ′(θ) : x →
x+ tan(θ/2), for θ ∈ (−π, π). This is exactly the same group of trans-
formations as the {T (a)}, so it is still noncompact, even though the
parameters are on a bounded set. We will discuss very soon why a is a
more valid parameterization than θ.

• SO(3), rotations in three dimensions. Recall that the group elements
can be described by a 3-D real vector ~ω as a rotation through an angle
|~ω| about the axis in the direction of ~ω. But only ~ω’s with |~ω| ≤ π
are needed, so the parameter space is a ball of radius π, and indeed
the topology is strange, because for the points with |~ω| = π, the group
elements g(~ω) = g(−~ω), so opposite points of each diameter are iden-
tified, and points near the two ends of the diameter are close to each
other.

3.2 Infinitesimal Generators

Let us concentrate on the connected component of the group. Suppose that
the group elements, at least those sufficiently near the identity, are parame-
terized by a D dimensional parameter νi, with g(νi=0) = 1I. Any representa-
tion Γ which respects the topology of the group will then have a power series
expansion

Γ(g(ν)) = 1I +
∑

i

νiΓi + O(νiνj).

The D matrices Γi are just

Γi =
∂

∂νi

Γ(g(ν))

∣

∣

∣

∣

νj=0

.

Of course the Γi depend on the representation and each is a matrix.
More abstractly, we can consider a function f in the space of all (suffi-

ciently differentiable) functions defined on the group. Let us define a set of
differential operators Li on this space by

[Lif ](g) =
∂

∂νi
f(A(ν)g)

∣

∣

∣

∣

νj=0

for g ∈ G.
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But representations are functions on the group, and if we consider an
irreducible subspace Γk

ab(A),

[LiΓ
k
ab](g) =

∂

∂νi

Γk
ac(A(ν))

∣

∣

∣

∣

νj=0

Γk
cb(g)

so LiΓ
k
ab = Γk

ac(Li)Γ
k
cb

where Γk
ac(Li) :=

∂

∂νi
Γk

ac(A(ν))

∣

∣

∣

∣

νj=0

defines a representation not of the group5 but of the operators Li.
Thus far we have considered only group elements in an infinitesimal neigh-

borhood of the identity, i.e. A(ν) for infinitesimal ν. Let us extend this
parameterization by writing, for finite ν,

A(ν) = lim
N→∞

[

A
( ν

N

)]N

.

For any representation,

Γ(A(ν)) = lim
N→∞

[

Γ
(

A
( ν

N

))]N

= lim
N→∞

[

1 +
ν

N
Γi

]N

= exp
∑

i

νiΓ(Li),

so we can write at least formally,

A(ν) = eΣiνiLi .

It can be shown that any element in the connected component of a com-
pact Lie group6 is of this form, so we now have a good parameterization of
the whole thing.

Example: SO(2) are the rotations in two dimensions. Let us start with
a very bad parameterization of these 2 × 2 matrices,

A(x) =

(√
1 − x2 −x
x

√
1 − x2

)

(injudicious way of expressing A)

5Note we have two functions both called Γk
ac, one of which has group elements as

its argument, and the other has the differential operators Li (also called infinitesimal
generators) as its argument. This is not usually confusing.

6http://en.wikipedia.org/wiki/Lie group under “The exponential map”. It says
there that this is not true for SL(2, R), which is not compact.
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Then the one Li is

L =
d

dx
A(x)

∣

∣

∣

∣

x=0

=

(

0 −1
1 0

)

.

Note L2 = −1I, so

eθL =
∑

n

1

n!
θnLn = 1I

∑

even n

(

1

n!
(iθ)n

)

− iL
∑

odd n

1

n!
(iθ)n

= 1I cos θ + L sin θ =

(

cos θ − sin θ
sin θ cos θ

)

.

So although we started with a deliberately poor parameterization in terms
of x, we find a natural parameterization in terms of θ. And any rotation in
SO(2) can be written as A(θ) = eθL. L is the only generator of SO(2).

Clearly A(θ1)A(θ2) = A(θ1 + θ2) so the group is Abelian.

All of the irreducible representations of any Abelian group are one dimen-
sional, because all the representatives commute with each other and therefore
can be simultaneously diagonalized. Thus for our SO(2),

Γ(m)(A(θ)) = eimθ = χ(m)(A(θ)).

As θ + 2π describes the same group element as θ, A(2π) = 1I and we must7

have Γ(A(2π)) = e2πim = 1, so m must be an integer. We have a countable
infinity of representations.

The group-invariant volume for this group is just dθ, which is left invariant
under left multiplication by A(φ) because

∫ 2π

0

dθ f(A(φ)A(θ)) =

∫ 2π

0

dθ f(A(θ + φ)) =

∫ φ+2π

φ

dθ′ f(A(θ′))

=

∫ 2π

0

dθ f(A(θ)).

7Of course in quantum mechanics we will consider fermions, which are not actually
representations of the rotations group SO(3) because under a rotation by 2π, the wave
function changes sign. Fermions are actually representations of the covering group SU(2)
of SO(3), under which one must rotate by 4π to get back to the identity. Then we find
that m must be half of an integer.
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So we expect orthogonality of the characters in the continuous version:

∫ 2π

0

χm∗(θ)χn(θ) dθ = 2πδmn.

The functions em(θ) = eimθ, for m = −∞...∞ form a complete set of func-
tions on the group, which as a set is just a circle.

SO(2) is clearly connected. It is clearly multiply-, not simply-, connected,
because the path λ → A(2πnλ) for λ ∈ [0, 1] is a closed path which cannot
be continuously deformed to a point because it wraps around the circle n
times.

We have claimed that the group elements for the connected component
of any compact Lie group can all be written as

g(ν) = eΣiνiLi

where the Li are the generators of the group. The number of independent
Li’s is called the dimension of the group8.

How does the multiplication law of the group manifest itself in properties
of the generators Li? For small ν1, ν2,

g(ν1)g(ν2) ∼ (1 +
∑

i

ν1iLi)(1 +
∑

j

ν2jLj) = 1 +
∑

i

(ν1i + ν2i)Li + O(ν1ν2),

so a great deal of the group multiplication is built into our choice of param-
eters, where it is reflected additively. To see more we need to go to higher
order:

g(ν1)g(ν2) = 1 +
∑

i

(ν1i + ν2i)Li +
∑

ij

ν1iν2jLiLj + O(ν2
1 , ν

2
2),

g(ν2)g(ν1) = 1 +
∑

i

(ν1i + ν2i)Li +
∑

ij

ν2jν1iLjLi + O(ν2
1 , ν

2
2).

We see that if the group is Abelian, g(ν1)g(ν2) = g(ν2)g(ν1), then [Li, Lj ] = 0,
and the generators commute. If the generators do all commute, then

eΣiν1iLieΣiν2iLi = eΣi(ν1i+ν2i)Li = eΣiν2iLieΣiν1iLi , (Abelian group)

8It is also the dimensionality of the manifold, or of the tangent space at the identity,
and also of the tangent space everywhere else.
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and the group multiplication simply corresponds to addition in the vector
space spanned by the Li’s, and the statement that the group elements com-
mute is true, not just perturbatively.

If the generators do not commute, then the multiplication

eΣiν1iLieΣiν2iLi = eΣiν3iLi

will have an expression for ν3(ν1, ν2) which is a more complicated function of
its arguments. We may, however, expand ν3 in a power series in ν1 and ν2,
and as we saw above it begins with ν3 = ν1 + ν2 + ... Expanding to second
order, (summations understood9)

g(ν1)g(ν2) =

(

1 + ν1iLi +
1

2
ν1iν1jLiLj

) (

1 + ν2iLi +
1

2
ν2iν2jLiLj

)

=

(

1 + ν3iLi +
1

2
(ν1i + ν2i)(ν1j + ν2j)LiLj

)

,

where in the last term, which is quadratic in ν3, the first order expression for
ν3(ν1, ν2) is sufficient. Expanding the two sides we have

1 + (ν1i + ν2i)Li +

(

1

2
ν1iν1j +

1

2
ν2iν2j + ν1iν2j

)

LiLj

= 1 + ν3iLi +

(

1

2
ν1iν1j +

1

2
ν2iν2j +

1

2
ν1iν2j +

1

2
ν2iν1j

)

LiLj

Subtracting gives 0 = (ν3i − ν1i − ν2i)Li − 1
2
ν1iν2j [Li, Lj]. As the Li are a

complete set, this can only have a solution for ν3, as it must, if

[Li, Lj ] = c k
ij Lk

for some set of coefficients c k
ij , which are called the structure constants of

the group. Clearly a group is Abelian if and only if all the structure constants
are zero.

We see that the generators of the group form a Lie10 Algebra.

Definition: An r dimensional Lie Algebra L is an r dimensional vector
space together with a bilinear composition [·, ·] : L × L → L with the prop-
erties

[x, y] = −[y, x]

9Students who are not fully expert at using indices without making mistakes should
read “On Indices and Arguments” on the Supplementary Notes webpage.

10Marius Sophus Lie 1842–1899
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[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The second equation is called the Jacobi identity. These requirements are
automatically satisfied if the [·, ·] law is defined as the commutator of an
associative multiplication law, [x, y] = xy− yx. But the commutator itself is
not associative,

[x, [y, z]] − [[x, y], z] = [x, [y, z]] + [z, [x, y]] = −[y, [z, x]] 6= 0.

Note that the two laws of [·, ·] imply

c k
ij = −c k

ji ,

c m
iℓ c ℓ

jk + c m
jℓ c ℓ

ki + c m
kℓ c ℓ

ij = 0.

Example 1: SO(2)

For SO(2) there is only one generator, and by antisymmetry c 1
11 = 0,

and the group is Abelian.

Example 2: SO(3)

SO(3) is the group of rotations in three dimensions. Consider a rotation
about the z-axis, (viewed as an active transformation ~r → ~r ′) :

x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ

z′ = z
so





x′

y′

z′



 =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1









x
y
z



 .

The infinitesimal generator is therefore

Lz =
d

dθ
Rz(θ) =





0 −1 0
1 0 0
0 0 0



 .

Similarly,

Lx =





0 0 0
0 0 −1
0 1 0



 Ly =





0 0 1
0 0 0
−1 0 0







58. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

To calculate the structure constants we expand

[Lx, Ly] =





0 0 0
1 0 0
0 0 0



 −





0 1 0
0 0 0
0 0 0



 =





0 −1 0
1 0 0
0 0 0



 = Lz

[Ly, Lz] =





0 0 0
0 0 0
0 1 0



 −





0 0 0
0 0 1
0 0 0



 =





0 0 0
0 0 −1
0 1 0



 = Lx

[Lx, Lz] =





0 0 0
0 0 0
1 0 0



 −





0 0 1
0 0 0
0 0 0



 =





0 0 −1
0 0 0
1 0 0



 = −Ly

This should be familiar to you except for some i’s. This is because, for the
moment, I am using mathematician’s notation for the generators. Physicists
like to think of the group elements as unitary operators but the generators
as hermitian, so we write

U = e−iΣjθjLP
j

with Physicist’s generators

LP
j = iLj , Lj = −iLP

j ,

so

[LP
x , L

P
y ] = iLP

z , etc., or better: [LP
j , L

P
k ] = iǫjkℓL

P
ℓ

which should be more familiar11. We also see for a Lie algebra in general
that

[LP
j , L

P
ℓ ] = ic k

jℓ L
P
k

with the same structure constants c k
jℓ the mathematicians use.

We see that for SO(3), c ℓ
jk = ǫjkℓ. Note that a rotation through angle

θ about a general axis ω̂, (with ω̂2 = 1) is given by e−iθω̂jLP
j . Then ~ω = θω̂

can be used as the parameters for the group, g(~ω) = e−i~ω·~LP

, and the space
of these parameters is a ball in three dimensions, |~ω| ≤ π.

Note that for any given axis, a rotation through π is the same transfor-
mation as a rotation about the same axis through −π. This means that the

11If you don’t know all about ǫjkℓ and how to use it in calculations, see “ǫijk and cross
products in 3-D Euclidean space” on the Supplementary Notes webpage.
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group manifold is the closed ball |~ω| ≤ π, but with the opposite ends of each
diameter of the ball identified with each other.

Then the path shown is a closed path, because its
ends, the points A and A′ at the opposite ends of
a diameter, are considered to be the same point.
No matter how we try to continuously deform
this path, the endpoints always stay opposite each
other, and we cannot shrink the path to a point.
Thus the manifold of SO(3) is not simply con-
nected.

A

A’

In fact, the path AA′ above can be continuously deformed into any other
diameter, so any path on the SO(3) manifold is deformable either into a
point or into a particular diameter. In fact, AA′ can be deformed into its
“negative”, the path taken in the reverse direction. Thus the path given by
adding AA′ to itself, in the sense of gluing the tail of the first path to the
head of the second, is a closed path which is deformable to the identity12.

Example 3: SU(2)

The group U(N) is the set of unitary N × N matrices under ordinary
matrix multiplication. As for O(N), the group of N × N real orthogonal
matrices, it is useful to limit ourselves to those with determinant equal to 1,
called SU(N) and SO(N) respectively. So SU(2) is the group of 2×2 complex
unitary matrices with determinant 1. A unitary matrix U can always be
written U = eiH with H a hermitian matrix (proof: diagonalize first, prove it
for the diagonalized version, then observe that the similarity transformation
factors out). We can also use the useful formula

detU = eTr ln U

so detU = ei Tr H = 1 implies13 TrH = 0, so H is hermitian and traceless and
is therefore a real linear combination of the Pauli matrices σj , H = 1

2

∑

j ωjσj .

12Two paths are homotopic if they can be continuously deformed into one another, so
simply-connected means all closed paths are homotopic to a point (a path that doesn’t
move). For SO(3), we see that all paths are either homotopic to a point or to a given diam-
eter. Homotopy defines an equivalence relation on the set of closed paths, and this gives a
group called the first homotopy group π1(M) on any manifold M. Thus π1(SO(3)) ∼= Z2.

13Well, at least for small H . We are looking for the infinitesimal generators, so that is
sufficient.



60. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

We have already parameterized the group in terms of its generators

LP
j =

1

2
σj .

The factor of 1
2

is conventional, so that the Li’s are normalized so as to have
the same structure constants as for SO(3). For

[LP
j , L

P
ℓ ] =

1

4
[σj , σℓ] =

i

2
ǫjℓkσk = iǫjℓkLk,

so the structure constants are

c k
jℓ = ǫjℓk just as for SO(3).

Thus the Lie algebra of SU(2) and the Lie algebra of SO(3) are the same.
The groups are locally isomorphic. But a “rotation” through θ about the
j axis gives

eiθσj/2 =
∑

n

(−1)n

2n!

(

θ

2

)2n

+ iσj

∑

n

1

(2n+ 1)!
(−1)n

(

θ

2

)2n+1

= cos(θ/2) + iσj sin(θ/2),

so θ = ±π gives e±iπσj/2 = ±iσj , which are not the same.
In fact, the group space now consists of all |~ω| ≤ 2π rather than |~ω| ≤ π,

but on the boundary |~ω| = 2π

e−i~ω·~σ/2 = cos(ω/2) − i~ω · ~σ sin(ω/2) −→
|ω|→2π

−1,

so all the points on the surface of the ball, |ω| = 2π
are identified. And we now have a simply con-
nected manifold, because if we consider the path
AA′ now, we can deform it by moving A′ without
moving A, because all the points on the surface
are the same, and so we can bring A′ back to A
and then shrink the rest of the path to a point.

A

A’

Thus SU(2) is simply connected. It is said to be the covering group of
SO(3). The subgroup {1I,−1I} is obviously a normal subgroup Z2 of SU(2),
and SU(2)/Z2

∼= SO(3). Every point in SO(3) corresponds to two points in
SU(2). Every representation Γ of SU(2) thus provides two matrices for each
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element of SO(3), and the product of one of these for A and one for B will
give one of the two matrices for AB, but in general there is no way to select,
for each element g ∈ SO(3), a unique choice Γj(g) such that the product for
two elements will always give the correct choice for the product. Instead, we
have

Γ(g1)Γ(g2) = ±Γ(g1g2).

This is familiar from quantum mechanics. Representations of the rotation
group with j = 2n+1

2
are not really representations at all, because they change

sign under rotation by 2π. These representations are used by fermions, and
we escape the ill-definedness of the representation by insisting that only
quadratic expressions in the fermions have physical meaning.

Most of our understanding of Lie groups comes from studying the Lie
algebra of the generators. The study of these will permit us to find the rep-
resentations, and to classify all finite dimensional compact simply connected
Lie groups. We will do so following the book by Georgi14.

3.3 Adjoint Representation, Killing Form, etc.

We will assume our algebra is finite dimensional and over the reals. From
now on we will use Physicist’s generators, so

g = eiωiLi, [Li, Lj] = ic k
ij Lk.

Every finite dimensional Lie group has an adjoint representation,
given by

Γadj
jk (Li) = ic k

ji .

Note Γadj
ab ([Li, Lj ]) = ic k

ij Γadj
ab (Lk) = −c k

ij c
b

ak

= c k
ai c

b
jk + c k

ja c
b

ik =
(

ic k
ai

)

(

ic b
kj

)

−
(

ic k
aj

)

(

ic b
ki

)

= Γadj
ak (Li) Γadj

kb (Lj) − Γadj
ak (Lj) Γadj

kb (Li)

=
[

Γadj (Li) ,Γ
adj (Lj)

]

ab
,

14Howard Georgi, “Lie Algebras in Particle Physics” Second Edition, Westview Press
(1999). Note the second edition is a considerable expansion of the first (Addison-Wesley,
1982)
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verifying that it is a representation of the Lie algebra.

The adjoint representation has the same dimension as the algebra. It is
used to construct a bilinear form on the algebra β : L × L → R given by its
action on the generators

β(Li, Lj) = Tr
(

Γadj (Li) Γadj (Lj)
)

= −c b
ai c

a
bj = βij .

Note that although we have traced the product of the Γ’s, we still have the
indices i and j left over, and in these β(Li, Lj) is a symmetric real matrix,
which can be diagonalized15. Doing so corresponds simply to a change in
basis Li of the vector space L. So β(Li, Lj) = kiδij in this basis.

Furthermore, by changing the scale of the basis vectors Li, we can change
the magnitude of ki. But we cannot change the sign or whether or not it is
zero. We could, however, normalize our Li so that each ki is ±1 or 0.

The form β is called the Killing form16. The singularity of the matrix
β (the existence of ki = 0) is tied up with whether or not there is an abelian
invariant subalgebra.

An ideal or invariant subalgebra H of L is a subspace such that
[H,L] ∈ H, that is, ∀h ∈ H, ∀ℓ ∈ L, we have [h, ℓ] ∈ H. An invariant subal-
gebra generates a normal subgroup. H is abelian if ∀h1, h2 ∈ H, [h1, h2] = 0.

If an algebra has no nontrivial invariant subalgebra it is called simple17.
Here trivial means either the whole algebra L or the algebra {0} consisting
only of the zero element.

If an algebra has no nontrivial abelian invariant subalgebra it is semisim-

ple.

Theorem: β is a singular matrix if and only if L is not semisimple.

Theorem: L is semisimple if and only if it is the direct sum of simple ideals18.

15Real symmetric matrices are diagonalizable by an orthogonal matrix.
16The mathematician Jacobson in his book “Lie Algebras” defines β with mathemati-

cian’s generators, so his is −1 times ours. That means for him β is negative definite for a
compact group, as we shall see.
PS: Wilhelm Karl Joseph Killing, 1847-1923. That it kills an abelian invariant subalgebra
is just a plus.

17Compare to simple finite groups, which means they have not nontrivial normal sub-
group.

18Jacobson: Lie Algebras p. 71.
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Example 1: SO(3) or SU(2):

c k
ij = ǫijk

βij = −
∑

ab

ǫaibǫbja = 2δij

which is already diagonalized and all ki normalized to be equal (although not
to 1). This is a nonsingular matrix, so the algebra is semisimple. In fact, as
any rotational direction can be rotated into any other, it is simple.

Example 2: The Poincaré group:
For a relativistic system, Physics is unchanged by translations and Lorentz

transformations19

xµ → x′ µ =
∑

ν

aµ
νx

ν + bµ, a, b constants.

The matrix a is constrained to be a Lorentz transformation preserving

(dx0)2 − (d~x)2 =
∑

µν

ηµν dx
µdxν , where ηµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









.

η is called the Minkowski metric. The group of such transformations is
called the Poincaré group. The Lorentz group is the subgroup for which
b = 0. The condition on a is a pseudo-orthogonality condition, in that dx′µ =
∑

ν a
µ
νdx

ν , so
∑

µρ ηµρdx
′µdx′ ρ =

∑

µνρσ ηµρa
µ
νdx

νaρ
σdx

σ =
∑

ρσ ηρσdx
ρdxσ

only if
∑

µρ ηµρa
µ
νa

ρ
σ = ηνσ. If ηµρ were δµρ, this would be the condition for

orthogonality of the matrix a··. Because of the −1’s we say a is pseudo-

orthogonal.
For orthogonal matrices we can write O = eG, where G is an antisym-

metric real matrix, G = −GT , so we suspect to get pseudo-orthogonality we
need a = eG with ηG = −GT η, i.e.

∑

ρ ηµρG
ρ
ν = −

∑

σ G
σ
µησν .

We can check this by noting ηG2 = −GTηG = (GT )2η, and similarly for
any function of G, ηf(G) = f(−GT )η, so with f the exponential function,

ηO = (O−1)
T
η, i.e.

∑

ρ ηµρa
ρ
ν =

∑

σ(a
−1)σ

µησν or
∑

µρ

ηµρa
ρ
νa

µ
τ = ητν as required.

19x0 := ct. Those people who don’t know why some indices are up and some are down
should, for now, ignore that fact.
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Thus the generators consist of the four momenta Pµ with

(

eiΣµbµPµ x
)ν

= xν + bν ,

and the six Lorentz transformation generators Lµ
ν with

∑

ρ

ηµρL
ρ
ν = −

∑

ρ

ηνρL
ρ
µ, with

(

ei
P

µν Gµ
νLν

µ/2 x
)ρ

=
∑

σ

aρ
σx

σ.

Lν
µ acts like −ixν∂µ + ixµ∂

ν , or better, let us define20 Lµν =
∑

ρ ηµρL
ρ
ν .

Then Lµν acts like −ixν∂µ + ixµ∂ν , and we also have Pµ acts like −i∂µ. Then

[Lµν , Lρσ] = ((iηρµLνσ − (µ↔ ν)) − (ρ↔ σ))

= iηρµLνσ − iηρνLµσ − iησµLνρ + iησνLµρ

[Lµν , Pρ] = −iηρνPµ − (µ ↔ ν) = −iηρνPµ + iηρµPν

[Pµ, Pν ] = 0.

The four dimensional algebra generated by the P ’s is invariant and abelian,
so the Poincaré group is not semisimple. The six dimensional algebra gen-
erated by the L’s is a subalgebra but not invariant. Considered by itself,
it is called the Lorentz algebra and generates the Lorentz group. It is
semisimple, but it is not compact. Considering just Lorentz boosts in one
dimension, the appropriate (measure-preserving) parameter is not velocity
but rapidity φ, with β = v/c = tanhφ. But then the range of the parameter
φ is (−∞,∞) and is not compact. If you look at the diagonalized Killing
form for the Lorentz algebra, you find ki’s of both signs. There is a theo-
rem that says all the ki’s are positive if and only if the group is compact.
Compact semisimplicity also means the irreducible unitary representations
are finite dimensional. This is not true for the Lorentz group, for which finite
dimensional representations are not unitary. That is why we need ψ̄ instead
of ψ† for fermion fields in quantum field theory.

3.4 Quantum Operators

Let us return to compact semisimple algebras generating symmetry groups
which do have unitary representations.

20From now on, we cannot ignore whether an index is up or down — the two quantities,
called contra- and co-variant, are related with the Minkowski metric.
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The states of a physical system having a symmetry group G transform
under symmetry transformations according to some representation. That is,
we can find a basis of states |i〉 and the operators of the group are unitary
operators on the states,

|i〉 → ei~ν·~L |i〉 =
∑

j

|j〉Γji

(

ei~ν·~L
)

.

Bras are the hermitian conjugates. Assuming unitarity,

〈i| → 〈i| e−i~ν·~L =
∑

j

Γij

(

e−i~ν·~L
)

〈j|

as Γ is unitary.

Note 〈k|ℓ〉 →
∑

jm

Γkj

(

e−i~ν·~L
)

〈j|m〉Γmℓ

(

ei~ν·~L
)

=
∑

jm

Γkj

(

e−i~ν·~L
)

δjm Γmℓ

(

ei~ν·~L
)

= Γkℓ(1I) = δkℓ.

so the scalar products are invariant under the action of the group, for unitary
representations.

Consider an operator O which corresponds to a physical variable p. If I
measure p in a state ψ, I get various values averaging to p = 〈ψ| O |ψ〉.

If I ask how a physical variable is changed under the action of a symme-
try transformation, I measure the new value p′ by inserting O between the
transformed states

p′ = 〈ψ′| O |ψ′〉 = 〈ψ| e−i~ν·~LOei~ν·~L |ψ〉 .

Thus I can equivalently think of the transformation as acting on the operator
and leaving the states alone:

O → O′ = e−i~ν·~LOei~ν·~L.

Under an infinitesimal transformation ν,

δO = O′ −O = −iνa [La,O] .

Note my interpretation of the symmetry action on O is opposite to Georgi.
His is a kind of compensating transformation, while mine is active.
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There is some advantage to thinking of the symmetry operations as pas-
sive, a kind of compensating transformation, as Georgi does. This is espe-
cially useful for rotations, as the symmetry transformation can be thought
of as not affecting the state at all, but only its description in terms of a
rotated coordinate systems. Suppose ψ and O are a wave function and an
operator described with respect to an original coordinate system, and ψ′ and
O′ the same state and operator described in a rotated one. Then the eigen-
value 〈ψ| O |ψ〉 must change only as appropriate for an object of O’s spin.
This leads to very powerful constraints on the matrix elements, known as the
Wigner-Eckart theorem.

First we will work out the needed mathematics for SU(2), and then con-
sider an arbitrary semisimple compact Lie group. The things we must discuss
are

• Irreducible representations of the group

• Completeness and orthogonality

• The Wigner-Eckart theorem

There are several classic standard reference texts on SU(2):

• Condon and Shortley “Theory of Atomic Spectra”

• Edmunds “Angular Momentum in Quantum Mechanics” QC174.E4

• Rose “Elementary Theory of Angular Momentum” QC174.1R7


