
Chapter 14

Hamiltonian Formulation of
Local Symmetry

For several purposes, it is sometimes preferable to work on a lattice with dif-
ferent lattice spacings in different directions, as we have done in analyzing the
plaquette. We can write the action as a sum over sites with the appropriate
space-time volume,
∫

d4x → axayazat
∑

n

Un,n+µ = eigaµAµ on each link

F 2
µν → −

∑

µν

1

g2aµ 2aν 2
Tr
(

Upµν + U †
pµν

− 2 · 1I
)

for each placquette

and so1

S = axayazat
∑

n

{

1

4g2

∑

µν

1

aµ 2aν 2
Tr
(

Upµν + U †
pµν

− 2 · 1I
)

(−1)δµ0+δν0

+i
∑

µ

1

aµ
ψ̄n+µγ

µUn,n+µψn −mψ̄ψ

}

.

We now turn to a discussion of the Hamiltonian formulation, as well as the
Lagrangian. This will give us a quantum mechanics in the usual language,

1I am leaving out a discussion of fermion doubling. In general we shall concentrate on

the gauge field U .
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but of a rather unusual form, because the kinetic energy term will not be
the usual

∑
p2

i /2m, because the degrees of freedom, the group elements on
each link, do not live in a Euclidean space, but instead live on the group
manifold. The way the derivative operators enter the Hamiltonian will lead
us to a metric and a measure on the group manifold.

We will derive the Hamiltonian formulation of the lattice gauge theory by
considering the at → 0 limit. First we must use gauge invariance to remove
some of the degrees of freedom.

Quantum mechanics is an integral of the action over all possible config-
urations of the physical degrees of freedom. Gauge degrees of freedom have
no effect on the action, and are therefore not physical degrees of freedom.
Given any configuration U , ψ on all the links and sites, it is possible to find
a new configuration, gauge transformed, satisfying some imposed gauge re-
quirements but representing the same physical configuration. In our case, we
pick a particular time, say t = 0. We now perform gauge transformations
at each site with t 6= 0 in order to make all Un,n+t̂ = 1I. This can be done
iteratively. For example, at t = at, at site n = ~r, at we examine U(~r,0),t̂ = eiω~r ,
and then make a gauge transformation at the site (~r, at) with ω~r, with no
change at (~r, 0), so the new U on the timelike link is

U ′
(~r,0),t̂ = e−iω~reiω~re0 = 1I.

This set of transformations changes all the spacelike U ’s at t = at to new
values, but it does not affect the integral over all such U ’s, provided the
weight of integration is group invariant. We shall say more about this later.

Reiterating this step forwards in time to t = ∞, and also going backwards
from t = 0, we wind up with a configuration of U ’s and ψ’s equivalent to our
original one, but subject to the gauge constraint Un,t̂ = 1I. In the continuum
limit, this means A0 = 0 everywhere, which is called the temporal gauge.

Now let us consider the limit at → 0 with ax = ay = az = a held fixed.
The sum over times, times at, is just

∫
dt, so S =

∫
dtL as usual, with

L =
∑

nx,ny,nz

a3

{
−1

2g2a2at 2

∑

j

(
TrUP0j

− 1I + h.c.
)

+
1

4g2a4

∑

ij

Tr
(

Upij
+ U †

pij
− 2 · 1I

)

+ fermion terms.

The first term is the sum over placquettes in a time-space plane, while the
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second is in a space-space plane (at a fixed time). The first of these involves

Up0j
= U †

nν ,0
︸ ︷︷ ︸

1I

U †
nν+at,j Unν+aj ,0

︸ ︷︷ ︸

1I

Un,j.

Expand

U(~n,t+at),j = U(~n,t),j + at∂U(~n,t),j

∂t
+

1

2
at 2∂

2U

∂t2
,

so U †
(~n,t+at),jU(~n,t),j − 1I = at

(

∂U−1
nν ,j

∂t

)

Unν ,j +
at 2

2

∂2U−1
nν ,j

∂t2
Unν ,j.

Adding the hermitean conjugate gives

at

(

∂U−1
nν ,j

∂t
Unν ,j + U−1

nν ,j

∂Unν ,j

∂t

)

+
at 2

2

(
∂2U−1

∂t2
U + U−1∂

2U

∂t2

)

.

The first term is at ∂
∂t

(U−1U) = at ∂
∂t

1I = 0, while from the second we may
subtract

at 2

2

∂

∂t
0 =

at 2

2

∂

∂t

(
∂U−1

∂t
U + U−1∂U

∂t

)

=
at 2

2

(
∂2U−1

∂t2
+ 2

∂U−1

∂t

∂U

∂t
+ U−1∂

2U

∂t2

)

which leaves

Tr
(
UP0j

− 1
)

+ h.c. = Tr
(

U †
t+atUt − 1I

)

+ h.c. = −at 2 Tr

(
∂U−1

∂t

∂U

∂t

)

.

We can improve this by using our expression for zero again, ∂U−1

∂t
U = −U−1 ∂U

∂t
,

so ∂U−1

∂t
= −U−1 ∂U

∂t
U−1 and

Tr
(

U †
t+atUt − 1I

)

+ h.c. = at 2 Tr
(

U−1U̇U−1U̇
)

,

and

L =
∑

~n

−a

2g2
Tr
(

U−1U̇U−1U̇
)

− V {U},

where V contains the spacelike placquette terms, without any time deriva-
tives.

To get the Hamiltonian we need first to find the canonical momenta Π =
δL
δq̇

. In our case the coordinates q are the matrix elements of U on each
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spacelike link Uℓ ab, where ℓ specifies the link (both spacelike direction and
spatial position) and ab are the matrix indices. For convenience we will define
the matrix P as the transpose, so

(Pℓ)cb :=
δL

δ
(

U̇ℓ

)

bc

=
−a

g2

(

U−1
ℓ U̇ℓU

−1
ℓ

)

cb
,

H =
∑

ℓ,c,b

U̇ℓ bcPℓ cb − L =
∑

ℓ

−g2

2a
Tr (UℓPℓUℓPℓ) + V ({U}).

Quantum mechanically, we write the momentum conjugate to q as −i ∂
∂q

,

so Pℓcb = −i ∂
∂Uℓbc

. But P only enters H together with U . So let us define,
for each link,

(Eℓ)ab = i (UℓPℓ)ab = Uℓ ac
∂

∂(Uℓ)bc
.

In terms of of the E’s, the kinetic energy term in L becomes
∑

ℓ
a

2g2 TrE2
ℓ .

The E’s are a scaled electric field (ag times the usual field). As a differ-
ential operator it is very interesting.

But before we pursue the group theoretic arguments over the interpreta-
tion of E, let us meet an objection to the above procedure, that the Uab are
not independent real coordinates2. Instead, we should write U = eiωiLi and
treat the real, independent ωi as the coordinates. Then we get

Πi =
δL

δω̇i
=
δU̇ab

δω̇i

δL

δU̇ab

=
δUab

δωi

δL

δU̇ab

where I have made use of U̇ab = δUab

δωi ω̇
i.

But
δL

δU̇ab

= −
a

g2

(

U−1U̇U−1
)

ba
, so

Πi = −
a

g2
Tr

(

δU

δωi
U−1

[
∑

j

ω̇j δU

δωj

]

U−1

)

and ω̇iΠi = −
a

g2
Tr

(

ω̇i δU

δωi
U−1ω̇j δU

δωj
U−1

)

= −
a

g2
Tr
(

U̇U−1U̇U−1
)

2Of course we have a U and an ω for each link, but we will drop the index ℓ, or ~n, ℓ

that specifies which link, in what follows.
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in agreement with what we found by careless manipulation.
One sees, however, that there are only N2 − 1 coordinates and momenta

for SU(N), not N2 as on might expect from Pℓ cb. The requirement that U be
unitary and of determinant 1 means there are constraints on the Pℓ cb’s — we
can vary U only preserving the unitarity and determinant. Interpreting the
Pℓ cb quantum mechanically as −i δ

δUℓ bc
would be varying into a dimension for

which the action is undefined, where detU 6= 1. Our Eℓ cb do not have that
problem. Consider any function f on n × n unitary matrices u. Each such
matrix is u = eiφU with U ∈ SU(N), so we may write f(u) = f̃(φ, U) and

∂f̃

∂Uab

∣
∣
∣
∣
∣
φ

=
∂f

∂ucd

∂ucd

∂Uab

∣
∣
∣
∣
φ

= eiφ ∂f

∂uab

,

so if Eab = iuac
∂

∂ubc
, Eabf = ieiφUac

∂f

∂ubc
= iUac

∂f̃

∂Ubc

∣
∣
∣
∣
∣
φ

and has no depen-

dence on how f varies off the det u = 1 subset. So we see that the Eab does
not involve a derivative in the direction away from detU = 1, but does form
a complete set of N2 − 1 first order differential operators on functions of
SU(N) matrices.

The N2 − 1 momenta conjugate to ωi are quantum mechanically

Πi = −i
δ

δωi

= −i
δUab

δωi

δ

δUab

.

Collectively these clearly span the same space as the Eab. To understand the
connection, consider different ways of asking how a function on G varies as
we move the element g ∈ G.

We see that Πi is not the same as E. To understand the connections,
consider a function f : G → C defined on the group. Then derivatives of
f mean finding the change in f(U) under small changes in U . If we write
U = eiωiLi, then

∂

∂ωi
f(U) = iΠif.

On the other hand, we could consider the change in f as U → U ′(ω) =
eiωiLiU , for infinitesimal ωi. If we define the differential operators

Ejf(U) = −i
∂

∂ωj
f
(

eiωjLjU
)∣∣
∣
∣
ω=0

= −i
∂f(U ′)

∂U ′
ab

∂U ′
ab

∂ωj

∣
∣
∣
∣
ωj=0

=
∂f(U)

∂Uab
i(Lj)acUcb

= (Lj)acUcb
∂

∂Uab
f = Tr(LjE)f.
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So we see that the electric fields Eab = Uℓ acPℓ cb which we defined earlier
are just linear combinations of the left-handed differential operators Ej, with
E =

∑

j EjLj .
For completeness, let us also define a right derivative on the space of

functions from G→ C by

Rjf(U) = −i
∂

∂ωi
f
(
UeiωjLj

)
∣
∣
∣
∣
ω=0

=
∂f

∂Ucb

(

−i
∂

∂ωi

(
UeiωjLj

)

cb

)∣
∣
∣
∣
ω=0

=
∂f

∂Ucb
Uca (Lj)ab .

This is not exactly the same as Ej If we make a matrix from Rj in the
same way as we did for Ej ,

Rab =
∑

j

Rjτj ab = Ucb
δ

δUca

and recall Eab = Uac
δ

δUbc
,

so

Rf =
δf

δUT
U = U−1U

δf

δUT
U = U−1(Ef)U.

Note that the Ej, Rj and Πj are each sets of N2−1 first order differential
operators on the space of functions from G → C, an N2 − 1 dimensional
space. Thus they are linear combinations of each other. The connection
between them is associated with the adjoint representation of the group.

We will write [S(Lℓ)]jk for the adjoint representation of the generators,

so [S(Lℓ)]jk = ic k
jℓ . Let us call the adjoint representation of the group S:

Sjk(e
iωℓLℓ) =

[

eiω
ℓS(Lℓ)

]

jk

.

[Note: S and S were both previously called Γadj. Also it is hard to distinguish
S from S. ] These will come up in the connections we are seeking.

14.1 Relation of Rj to Ej

Now U−1LℓU is a linear combination of the L’s, so U−1LℓU = Mℓm(U)Lm.
We can show Mℓm = Sℓm.
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Proof: Let U(λ) = eiλωjLj , M(λ) := M(U(λ)). Then e−iλωjLjLℓe
iλωkLk =

Mℓm(λ)Lm. Differentiate with respect to λ:

e−iλωjLj [Lℓ, iω
kLk]

︸ ︷︷ ︸

−ωkc n
ℓk

Ln

eiλωjLj =
dMℓm(λ)

dλ
Lm = −ωkc n

ℓk Mnm(λ)Lm.

The Lm are linearly independent, so

(
dM(λ)

dλ

)

ℓm

= −ωkc n
ℓk Mnm(λ) = iωk [S(Lk)M ]ℓm .

This is a differential equation with solution

M(λ) = eiλω
kS(Lk)K

with initial condition Mℓm(0) = δℓm = 1I = K, so M(λ) = eiλωkS(Lk) =
S(U(λ)). Thus

e−iωkLkLℓe
iωkLk = Sℓm(eiωbLb)Lm =

(

eiωbS(Lb)
)

ℓm
Lm.

So U−1LℓU = Sℓm(U)Lm and by exponentiation, U−1eiωkLkU = eiωkSkm(U)Lm .
Now reconsider

Rℓf(U) = −i
∂

∂ωℓ
f
(

UeiωkLk

)∣∣
∣
∣
ω=0

= −i
∂

∂ωℓ
f
(

eiωkSkm(U−1)LmU
)
∣
∣
∣
∣
ω=0

= −i
∂ω′n

∂ωℓ
︸ ︷︷ ︸

Sℓn(U−1)

∂

∂ω′n
f
(

eiω′ mLmU
)

∣
∣
∣
∣
∣
∣
∣
∣
ω=0

where ω′m = ωkSkm(U−1). So

Rℓf(U) = Sℓm(U−1)Emf(U), Rℓ = Sℓm(U−1)Em, and Em = Smℓ(U)Rℓ,

as S−1 (U−1) = S(U).
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Why is Eℓ better than Rℓ? In the Hamiltonian we have
∑
E2

ℓ , why not
∑
R2

ℓ?
∑

E2
m = Smℓ(U)RℓSmk(U)Rk

= Smℓ(U)Smk(U)RℓRk − iSmℓ

[
∂

∂ωℓ
Smk

(

UeiωjLj

)∣∣
∣
∣
ω=0

]

Rk.

Note that S is hermitean and imaginary so S = eiωjS(Lj) is unitary and real,
hence orthogonal, and Smℓ(U)Smk(U) = δℓk. Also Smk(Ue

iωjLj) =
Smn(U)Snk(e

iωjLj ), so −i ∂
∂ωℓSmk(Ue

iωL)
∣
∣
ω=0

= Smj(U)Sjk(Lℓ), so the second

term is −iSmℓ (−Smj)Sjk(Lℓ)Rk = δℓj(ic
k

jℓ )Rk. Thus

∑

E2
m =

∑

RℓRkδℓk + iδℓmc
j

mℓ Rj =
∑

R2
j ,

by the antisymmetry of c. So in fact the Hamiltonian does not distinguish
between

∑
E2

ℓ and
∑
R2

ℓ , as they are the same thing.
We can also ask what the connection is between Eℓ and ∂

∂ωℓ . To find the

connection we need to develop a formula for ∂
∂x
eA(x) for an operator A which

need not commute with its derivative. The formula is

∂

∂x
eA(x) =

∫ 1

0

dα eαA(x) ∂A(x)

∂x
e(1−α)A(x) (14.1)

which you proved for homework. Then around a fixed element U0 = eiωℓ
0
Lℓ ,

we may write
eiωℓLℓ = eiρℓLℓeiωℓ

0
Lℓ

with ρ→ 0 as ω → ω0. Thus

∂

∂ωℓ
f
(

eiωℓLℓ

)

=
∂ρm

∂ωℓ

∂

∂ρm
f
(
eiρmLmU0

)
=
∂ρm

∂ωℓ
iEmf.

The partial derivative matrix can be evaluated with this formula as applied
to f(U) = U ,

∂

∂ωℓ
eiωkLk = i

∂ρm

∂ωℓ
Lme

iωkLk =

∫ 1

0

dα eiαωkLk iLℓ e
i(1−α)ωkLk

or

∂ρm

∂ωℓ
Lm =

∫ 1

0

dα eiαωkLkLℓe
−iαωkLk =

∫ 1

0

dαSℓm

(

e−iαωkLk

)

Lm,
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or
∂ρm

∂ωℓ
=

∫ 1

0

dα
[

e−iαωkS(Lk)
]

ℓm
=

[

1 − e−iωkS(Lk)

iωkS(Lk)

]

ℓm

.

so
∂

∂ωℓ
=

[

1 − e−iωkS(Lk)

ωkS(Lk)

]

ℓm

Em

gives the connection of the left derivative with the ordinary partial derivative.
[Note: the fraction in square brackets is well defined even though ωkS(Lk)
is likely not an invertible matrix, so dividing by it is dubious. But the
expression in the bracket has a well defined power series expansion and thus
a well defined meaning.]

We have given a great deal of discussion to our Hamiltonian operator. We
now turn to the states on which this operator acts. A state can be specified
by giving
(a) at each site, the occupation number for the fermions at that site
(b) on each link, a group element. We focus on this.

We are not accustomed to having dynamics with canonical coordinates
defined on a compact space like U ∈ G, except in advanced courses in classical
mechanics (e.g. . the orientation of a rigid body). In quantum mechanics we
know that the momentum is related to translations, so the ordinary kinetic
energy term

∑

i p
2
i /2m is connected with a space of q’s which is translation

invariant in each pi. Our kinetic energy is not of that form, as the Eℓ’s
don’t commute and the ∂/∂ωℓ’s do not enter H in this simple fashion. This
is consistent with the fact that our space of U ’s is just not a Euclidean
N2 − 1 dimensional space. Now quantum mechanics can be viewed as a
functional integral over all possible configurations, which requires a weight

for the configurations. In a deep sense this weight is connected with the
kinetic energy term in the Lagrangian density. We can sidestep this issue
(temporarily) by observing that the only sensible way to integrate over the
U ’s is in a group invariant way. In terms of eigenstates |Uab〉 of U (on a given
link), we need to be able to write

1I =

∫

dµ(U) |Uab〉 〈Uab| ,

or in terms of the parameters ωℓ, dµ(U) = dµ(ωℓ), the measure must be group
invariant,

∫
dµ(ω)f(U(ω)) =

∫
dµ(ω)f(GU(ω)) for any function f : G → C



160. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro

and any fixed element G in the group. This is also what we needed long ago
to define the orthogonality of group representations.

So now we leave physical applications and turn to the problem of finding
the Haar or Hurwitz measure dµ(ωℓ) satisfying the invariance.

Let us write dµ(ω) = h(ω)dω1 · · · dωn for an n dimensional Lie group. For
a fixed G and ω, the group element U ′ = GU(ω) = U(ω′) = eiω′ jLj , where
the ω′ j are functions of the ω’s (and also of G, but we are holding G fixed).
If we change variables on the right hand side of our invariance equation, we
get

∫

h(ω)f (U(ω)) dnω =

∫

h(ω)f (U(ω′))

∣
∣
∣
∣

∂ωj

∂ω′k

∣
∣
∣
∣
dnω′

where |∂/∂| is the Jacobian determinant. Invariance for arbitrary functions
f clearly requires

h(ω′) = h(ω)

∣
∣
∣
∣

∂ωj

∂ω′ k

∣
∣
∣
∣
.

Let h(0) = c. Then h at any other point ω is determined by taking G = eiωjLj ,

h(ω) = c

∣
∣
∣
∣

∂ν ′ k

∂νj

∣
∣
∣
∣

−1

ν=0

,

where eiν′ kLk = eiωkLkeiνkLk .

This is a necessary condition for the
invariance. To show it is also sufficient,
we need to show that the relation holds
for all ω. Consider the measure at two
points, ω′ and ω′′. We need to show that
if U(ω′′) = GU(ω′) for a fixed G,

h(ω′′) = h(ω′)

∣
∣
∣
∣

∂ν ′

∂ν ′′

∣
∣
∣
∣
ν′′=ω′′

.

’ ’’

’
’’

1
ν

ω ν
ω

ν

Let G′ = eiω′ kLk and G′′ = eiω′′ kLk and U(ν ′) = G′U(v) and U(ν ′′) = G′′U(ν).
Then U(ν ′′) = G′′(G′)−1U(ν ′) = GU(ν ′), so G = G′′(G′)−1

∣
∣
∣
∣

∂ν ′′

∂ν ′

∣
∣
∣
∣
ν′=ω′

=

∣
∣
∣
∣

∂ν ′′

∂ν

∣
∣
∣
∣
0

/∣
∣
∣
∣

∂ν ′

∂ν

∣
∣
∣
∣
0

=

(
c

h(ω′′)

)/(
c

h(ω′)

)

=
h(ω′)

h(ω′′)

which verifies the invariance in general
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Now we need to evaluate the Jacobian at ν = 0. As eiν′ kLk = eiωkLkeiνkLk ,

∂

∂ν ′ k
eiν′ kLk

∣
∣
∣
∣
ν=0

=
∂νj

∂ν ′ k
eiωkLk

∂

∂νj
eiνkLk

∣
∣
∣
∣
ν=0

=
∂νj

∂ν ′ k
eiωkLk iLj

=

∫ 1

0

dα ei(1−α)ν′ kLkiLj e
iαν′ kLk

∣
∣
∣
ν′=ω

so
∂νj

∂ν ′ k
Lj =

∫ 1

0

dαe−iαωjLjLke
iαωjLj =

[
1 − eiωmS(Lm)

−iωmS(Lm)

]

kj

Lj .

Thus

h(ω) = c det
∂ν

∂ν ′
= c det

(
eiωmS(Lm) − 1

iωmS(Lm)

)

.

For any fixed (real) ω, ωmS(Lm) is a hermitean matrix and can be diag-
onalized. If λj are the real eigenvalues, we have

h(ω) = c
∏

j

eiλj − 1

iλj

=
∏

j

sin(λj/2)

λj/2

∏

j

eiλj/2.

But ωmS(Lm) is also imaginary, while still hermitean, so it is antisymmetric
and has zero trace. This is preserved by similarity, so

∑

j λj = 0, and

h(ω) = c
∏

j

sin(λj/2)

λj/2
.

Let us consider an explicit example, SU(2). Any U = ei~ω·~τ/2 is equivalent
(by similarity) to one along the z axis, with the same ~ω 2. Then ωjS(Lj) =
|ω|S(L3). S is the adjoint representation, so L3 has the eigenvalues ±1, 0.
The zero eigenvalue gives 1 in the product (recall the note on the definition
of the [] expression) and the others each give 2 sin(|ω|/2)/|ω|, so all together

h(ω) = 4c
sin2(|ω|/2)

ω2
.

Choosing c = 1, we may take the invariant volume to be

∫

|ω|≤2π

dω1dω2dω34 sin2(|ω|/2)

|ω|2
.
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If we used spherical coordinates for ~ω, this gives

∫ 2π

0

dω d2Ω 4 sin2(|ω|/2),

where dΩ = sin θ dθ dφ as usual. We note that the volume with |ω| ≥ 2π − ǫ
is ≈ 4π

3
ǫ3, the same as the volume with |ω| ≤ ǫ, and not ǫ times the ordinary

area of the sphere, that is, 4π(2π)2ǫ. The metric says points with ω ≈ 2π,
even in very different directions, are close together, because for ω = 2π, all

these ω’s correspond to the same U =

(
−1 0
0 −1

)

. Note h(ω) is exactly the

metric3 on S3 induced by embedding in E4, with the angle with respect to
the 4’th axis ω/2.

Some comments:

(a) For SU(3), not all directions are equivalent. So there is no equivalent of
|ω|.

(b) For many applications, we needed the existence of the invariant measure
but not the actual expression for it. For example, in our orthogonality
proofs.

(c) Most discussions of SU(2) parameterize the group in terms of Euler an-
gles rather than in the way we did, the angle of the rotation and the
direction of the axis.

(d) Note that the factor in h is just the determinant of the matrix which
connects the left derivatives to the ordinary derivatives. This is not
an accident, but rather has to do with this relation defining a metric
(not just a measure) on the group space, and the measure given by the
determinant of the metric.

3See “hypersph” in Supplementary Notes.


