
Chapter 15

Phonons, Bloch Waves;

Spontaneous Symmetry

Breaking

15.1 Translations on a Lattice

We have seen that symmetry groups may have different implications on the
physics. The first we have seen is an “internal symmetry”, global, manifested
by multiplets of states which form the space acted upon by a representation
of the group. Quite different is a local symmetry, which, although it is a
much larger group, being a product of groups at each space-time point, does
not have a corresponding map of different physical states into each other.
Rather, through gauge invariance, it makes some of the apparent fields Aa

µ

unphysical, so that the 4n fields Aa
µ (n is the dimension of the group) only

describe 2n degrees of freedom, transversely polarized “photons”.
Another form of symmetry’s effect is given by the translation group. Con-

sider a spatial cubic lattice with sites ~x = (nx, ny, nz)a, with ni ∈ Z, a the
lattice spacing, and with a field φ on each site. If we think of this as an
approximation to a relativistic field theory with Lagrangian density

L =
1

2
(∂µφ) (∂µφ) −

1

2
µ2φ2 −

1

4
λφ4,

the latticized Hamiltonian density is

H =
1

2
φ̇2

~n +
1

2a2

∑

s

(φ~n+s − φ~n)2 +W (φ~n),
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where W (φ) = 1
2
µ2φ2 + 1

4
λφ4, and the

∑

s means summing over the three
directions x, y, z with ~n+ s meaning the vector (nj + δjs), that is, one of the
nearest neighbors in each direction.

The same form is a standard Hamiltonian in solid state physics, although
W need not be given by φ2 and φ4 terms there. (This limitation comes from
requiring renormalizability for a relativistic continuum theory.)

Let us first ask what translational invariance imposes on the states of
this system. Under a translation ~n→ ~n+~t, where ~t has integer components,
implemented by an operator U~t,

U−1
~t
φ~n U~t = φ~n+~t,

the Hamiltonian is invariant because it is a sum over all sites equally. We
expect the states to transform as a sum of irreducible representations of the
group

U~t |ψj〉 = Γk
ij(U~t) |ψi〉 .

The translation group is Abelian, so all of its irreducible representations
are one dimensional, because all of the Γ(U)’s commute and can be simul-
taneously diagonalized. The group is generated by the three translations by
one lattice spacing, which must have unitary representations Γ (U~t) = eiakjtj .

The ~k is a momentum. For an infinite lattice it may take on any value. But
kj → kj + 2π

a
has no effect on any of the fields. So both k’s are the same

representation of lattice translations.
It is possible to reformulate the Hamiltonian in terms of operators which

transform more simply under translations. Let

q~k =
∑

~n

ei~k·(a~n)φ~n

where we restrict ~k to the interval
(

−π
a
, π

a

]

. Then

∫ π/a

−π/a

d3k q̇~k q̇−~k =

∫ π/a

−π/a

d3k
∑

~n,~n ′

eia~k·(~n−~n ′)φ̇~n φ̇~n ′

=
∑

~n

∑

~n ′

φ̇~n φ̇~n ′

(

2π

a

)3

δ~n,~n ′ =

(

2π

a

)3
∑

~n

φ̇2
~n

so the momentum term can be easily reexpressed. Without the time deriva-
tives the same thing holds, so the 1

2
µ2φ2 is no problem either.
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Inverting, φ~n = (a/2π)3
∫ π/a

−π/a
d3k e−ia~k·~nq~k, so we see that

φ~n+~s − φ~n =
a3

(2π)3

∫ π/a

−π/a

d3k e−ia~k·~n
(

e−ia~k·~s − 1
)

q~k,

so

1

2a2

∑

~n,s

(φ~n+~s − φ~n)2 =

(

1

2π

)6
1

2a2

∫

d3k d3k′
∑

~n

e−ia(~k+~k ′)·~n

(

e−ia~k·~s − 1
)(

e−ia~k ′·~s − 1
)

q~kq~k ′.

But
∑

~n

e−ia(~k+~k ′)·~n =

(

2π

a

)3

δ3(~k +~k ′),

so ~k ′ = −~k,
(

e−ia~k·~s − 1
)(

e−ia~k ′·~s − 1
)

= 4 sin2
(

a~k·~s
2

)

, so the gradient term

is
( a

2π

)3 2

a2

∫

d3k
∑

s

sin2

(

a~k · ~s

2

)

q~kq−~k.

We note that hermiticity of φn implies q−~k = q†~k. So we see that the Hamilto-
nian, except for the terms inW higher order than 2nd order in φ, are diagonal
quadratic operators in q~k, of a harmonic oscillator type. The quartic term
gives a coupling interaction between different q~k’s.

The q~k operators transform very simply under the translations:

U−1
~t
q~kU~t =

∑

~n

eia~k·~nφ~n+~t =
∑

~n ′

eia~k·(~n ′−~t)φ~n ′ = e−ia~k·~tqk,

so U only changes the phase of q~k.

The q~k and q̇~k, for each ~k separately, can be combined into harmonic

oscillator raising and lowering operators a†~k and a~k, which correspond to the

creation and annihilation of quanta of momentum ~k. The quadratic terms
in the Hamiltonian become

∑

~k ω~ka
†
~k
a~k, which simply counts the number of

phonons of momentum ~k, multiplies by the energy ω~k of each, and sums.

Invariance of a term in the Hamiltonian ∝
∏

i q~ki
requires e−ia(

P~ki)·~t = 1, or

∑

i

~ki =
2π

a
× integer.
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So we have interactions of phonons with the total incoming momentum not
conserved, but conserved modulo 2π/a. If we write a momentum operator
~P =

∑

~k
~ka†~ka~k we can show that

U~t = eia~t·~P .

~P is not a conserved quantity, because only U~t are symmetries, not other

translations by non-integer numbers of lattice spaces. But ~P is conserved
modulo 2π/a, so U~t is conserved.

The nuclei of a crystal lattice carry degrees of freedom which are displace-
ments from the lattice points, but they are not fields defined for all ~x, so the
translational modes only involve integer numbers of lattice spaces. The elec-
trons, however, at least the ones not tightly bound, need to be treated as fields
and therefore dependent on ~x as a continuous variable. We can ask how the
lattice translational invariance affects the wave functions ψ(~x) for an electron
which experiences a periodic potential V (~x) = V (~x + a~t). Again the possi-
ble states can be decomposed into irreducible representations, which as the

group is Abelian are one-dimensional and unitary, so ψ(~x+ a~t) = eia~k·~tψ(~x).

Then, if we write ψ(~x) = ei~k·~xu~k(~x), we see that u~k(~x + a~t) = u~k(~x), so the
Bloch function u~k(~x) is periodic on the lattice. But we must keep in mind
that the electron wave function is not periodic.

As before, the irreducible representation ~k is defined only for ~k modulo
the reciprocal (or Bravais) lattice, so is essentially defined only within the
Brillouin zone (kj ∈ [−π

a
, π

a
)). But there may be several Bloch functions, in

bands, for the same ~k. For example, a free electron (V = 0) is trivially in a

periodic potential, and has eigenfunctions ei~k·~x for all ~k, so when considered
as Bloch functions with ~k ′

j ∈ [−π
a
, π

a
), the higher k values will be shown as

higher energy states with the same ~k ′.

15.2 Spontaneous Symmetry Breaking

We will return to momenta and the translation group in a relativistic contin-
uum theory later, only for the continuum. But first let us consider another
symmetry.

The Hamiltonian

H =
1

2
φ̇2

~n +
1

2a2

(

φ~n+~t − φ~n

)2
+

1

2
µ2φ2

~n +
1

4
λ
(

φ2
~n

)2
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is invariant under a global transformation φ~n → −φ~n. In fact, if one considers
φ~n to be a vector in some N dimensional real vector space, with φ2

~n :=
∑

j(φ~n)
2
j , H is invariant under SO(N) global transformations on the φ’s.

Consider the classical ground state of the system. Any time derivative
or gradient only increases the energy, so the ground state is φ~n = constant
=: φ0, with

V (φ) =
1

2
µ2φ2 +

1

4
λφ4

taking its minimum value at φ0.

If µ2 and λ are positive, the minimum is clearly at
φ0 = 0, and this classical ground state is invariant
under sign reversal or rotation of φ. If µ2 < 0,
however, the potential has a local maximum at
φ = 0, with two degenerate minima at φ = ±φ0 6=
0. If φ is a vector, this diagram is rotated into
the bottom of a wine bottle, and the minimum
becomes ring or sphere.

φ

φ
0

V(  )φ

If we were talking about a one-dimensional

quantum mechanics problem H = p2

2m
− |µ2|

2
x2 +

λ
4
x4, the two classical ground states at x = ±φ0 =

±
√

|µ2|/λ would become two approximate eigen-
states ψ1 and ψ2 concentrated around the two
minima. If there were no overlap, ψ1 and ±ψ2

would be eigenstates of the same energy.

φ

ψψ1 2

But as there is some overlap, the true eigen-
states would be linear combinations

ψ1(x) + ψ2(x) ground state

ψ1(x) − ψ2(x) first excited state

with an energy separation proportional to the
overlap between ψ1 and ψ2. ψ+ has slightly
lower energy than ψ−, which bends a bit more.

φ

ψ+

φ

ψ−

For our lattice, there are also a set of degenerate classical ground states,
with all φ~n = ±φ0, but all the φ~n’s must be the same. The quantum
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mechanical states then have wave functions ψ(φ1, φ2, . . .) centered around
φ1 = φ2 = · · · = φV = ±φ0 if there are V points in our lattice. The overlap
of these states, however, is approximately the V ’th power of the single site
overlap, V is likely to be very large, and for the infinite lattice limit, there
is no overlap at all! And so the quantum system has a true degeneracy of
eigenstates, including the ground state.

Consider a ferromagnet below the Curie point. The magnetic dipoles
want to line up, but which way is immaterial. They must all line up in the
same way, however, to get the lowest energy state.

Once the whole material is lined up, the possibility of a transition to one of
the other degenerate vacuum states is an exponentially decreasing function of
the volume of the system. So the statement that the states of the system form
multiplets of the group becomes irrelevant — the relevant physical states are
the ones close enough to the particular original ground state for transitions
to be possible. The Hamiltonian still has a symmetry group, but the relevant
states no longer transform as an irreducible representation of it. This is called
spontaneous symmetry breaking.

A particularly interesting feature emerges when the symmetry group is a
continuous one. Consider φ as anN -vector, and let φ0 be the “vacuum” value.
Then the Hamiltonian is invariant under a global symmetry eiωbLb with Lb the
generators of the Lie algebra of SO(N). If we consider a local transformation
eiωb(~x)Lb , the Hamiltonian is invariant except for the gradient term, which
gets a piece ∼ ~∇φ · ~∇ωbLbφ. Then the energy of the state eiωb(~x)Lb |Ω〉 is

〈Ω| e−iωb(~x)LbHeiωb(~x)Lb |Ω〉 = 〈Ω|H + i[H,ωbLb] −
1

2
[[H,ωbLb], ω

cLc] + · · · |Ω〉 .

The first term is just the ground state energy E0. The second term is
∫

d3x~∇ωb(~x) 〈Ω| ~∇φ(~x)Γ(Lb)φ(~x) + h.c. |Ω〉. As Γ(Lb) is hermitean, the op-

erator is ~∇(φΓ(Lb)φ), which therefore vanishes as 〈Ω|φ(~x)Γ(Lb)φ(~x) |Ω〉 is ~x
independent by translational invariance. Therefore the leading term in ∆E
is proportional to the integral over space of the square of the gradient of ω.
If the variation of ω takes place over a region of length L, for a total fixed
variation of ∆ω, ∇ω ∝ ∆ω/L, and the region over which this energy density
is increased is ∝ L, so

∆E ∝ L×

(

∆ω

L

)2

∝
1

L
∝ k
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if ω(x) varies roughly as eikx. Thus if the variation is slow enough, the energy
of this state differs from the ground state by arbitrarily little, proportional to
the momentum of the “spin-wave”, which is rotating the φ field with a gentle
long wavelength. The added energy can be attributed to this spin-wave or
Goldstone boson, which has an energy proportional to its momentum as
would be expected for a zero-mass particle.

Let’s consider this more generally. Suppose the theory is invariant under
a Lie group G with Lie algebra G, but the vacuum state |Ω〉 is invariant
only under a subgroup K with Lie Algebra K. If the fields transform under a

constant transformation φa →
(

eiωjΓ(Lj)
)

ab
φb ≈ φa + α∆a(φ) acting on |Ω〉

the energy of the transformed vacuum state1 becomes

V (φa + α∆a(φ)) ≈ V (φa) + α∆a(φ)
∂V (φ)

∂φa
= V (φa)

because the theory, and V , must be invariant under G. So

∆a(φ)
∂V (φ)

∂φa

= 0

for all fields φ. Differentiate with respect to φb and set φ to its value in the
vacuum state φ0:

∂∆a

∂φb

∣

∣

∣

∣

φ0

∂V

∂φa

∣

∣

∣

∣

φ0

+ ∆a(φ0)
∂2V

∂φa ∂φb

∣

∣

∣

∣

φ0

= 0.

But the first term vanishes as
∂V

∂φa

∣

∣

∣

∣

φ0

= 0 because φ0 minimizes V . So

∆a(φ0)
∂2V

∂φa ∂φb

∣

∣

∣

∣

φ0

= 0. (15.1)

Note that m2
ab =

∂2V

∂φa ∂φb
is a mass term in the lagrangian. Now if our

ωjLj lies within K and leaves the vacuum state φ0 invariant, ∆a(φ0) = 0 and
we learn nothing from (15.1). But if ωjLj 6∈ K, ∆a(φ0) is a nonzero vector in
the space of φ, and then (15.1) tells us that the mass matrix acting on ∆a(φ0)

1V can represent the energy of a full quantum state |φ〉 for a φ(x) field configuration.
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vanishes, so that this corresponds to a massless excitation. Thus there is one
massless Goldstone boson for each dimension in the coset space G/K.

We have not exhausted the ways symmetries can work their magic, how-
ever. We see that a broken symmetry can give rise to massless scalar particle
for directions in the Lie algebra. We previously saw that gauge theories
gave massless vector particles for each direction in a Lie algebra. The Higgs
mechanism combines these two — and the massless vectors eat the Goldstone
bosons, gaining the third degree of freedom which allows them to become fat,
i.e. massive. This is the basis of the electroweak interactions, with the weak
vector particles W± and Z0 getting mass from the Higgs field, while the pho-
ton retains its masslessness in the direction of the unbroken Maxwell gauge
invariance. Before we do this, however, let us consider what happens in
more detail in SO(N) scalar field theory.


