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Energy in Bremsstrahlung, Note on p. 179
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As discussed on pages 178-179 in Peskin and Schroeder, the radiation field
in the impulse approximation for electron scattering is given by the residues
of the poles at k° = +|k| in
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Reversing the sign of the integration variable k in the second term, this may
be written as
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in agreement with 6.6 of Peskin and Schroeder. Thus we have
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Note k,A*(K) = 0 for k% = |k|. If we define k* := (—|k|, k) (so k, = —k"),

we also have k, A"(— k) = 0. This will prove useful in evaluating the energy

in the radiation field.

From homework #2 we learned that the energy density is the (0,0) com-
ponent of the Noether current associated with translations. This approach
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has a complication for the Maxwell field which is discussed by Jackson, who
explains that a correction is necessary to get a symmetric stress-energy tensor
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Evaluating the energy density
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Note that we can write H in the strange fashion
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where I have explicitly given the 3°,, because we don’t have a summation
convention on two upper indices, but the 3, is left implicit.
From the expression for AL  (z) we have
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We can use [ d3zd®k e’"E)-F = (27)3 with Fk substituted for k' in the rest
of the expression. As all £° and £’° are positive, it would be better to say
k' — —k in the first case.
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Thus we have
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where we have used k% = 0 and k - A(k) = 0. Thus we have
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in agreement with 6.13.

On getting 6.17:
The last two of the three terms in the integral 6.15 for Z (¢, 9’) can be done
by aligning the spherical coordinates along the relevant velocity. The first
term can also be done that way if we first combine the denominators using
the Feynman parameter trick,
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which gives
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This is worked out in Lecture 21 notes.



