Lecture 23 Nov. 21, 2013

Photon Propagator, Renormalization of e Copyright©2006 by Joel A. Shapiro

Read pages 219–222 (top).

In section 7.1, we find (7.31):

$$\delta Z_2 = \frac{\alpha}{2\pi} \int_0^1 dz \left[-z \ln \frac{z\Lambda^2}{(1-z)^2 m^2 + z\mu^2} + 2(1-z) \frac{z(2-z)m^2}{(1-z)^2 m^2 + z\mu^2} \right].$$

In the last lecture, we found

$$\delta F_1(0) = \frac{\alpha}{2\pi} \int_0^1 dz (1-z) \left[\ln \frac{z\Lambda^2}{(1-z)^2 m^2 + z\mu^2} + \frac{(1-4z+z^2)m^2}{(1-z)^2 m^2 + z\mu^2} \right],$$

SO

$$\delta F_1(0) + \delta Z_2 = \frac{\alpha}{2\pi} \int_0^1 dz (1 - 2z) \ln \frac{z\Lambda^2}{(1 - z)^2 m^2 + z\mu^2} + m^2 \frac{(1 - z)(1 - z^2)}{(1 - z)^2 m^2 + z\mu^2}.$$

In the first term integrate by parts, with u = z(1-z), $v = \ln ...$, with uv = 0 at both endpoints, and

$$dv = \frac{1}{z} + \frac{2(1-z)m^2 - \mu^2}{(1-z)^2m^2 + z\mu^2},$$

SO

$$\begin{split} -\int u dv &= -\int_0^1 \left[(1-z) + z(1-z) \frac{2(1-z)m^2 - \mu^2}{(1-z)^2 m^2 + z\mu^2} \right] \\ &= -\int_0^1 (1-z) \left[1 - 1 + m^2 \frac{1-z^2}{(1-z)^2 m^2 + z\mu^2} \right], \end{split}$$

which cancels the second term, and

$$\delta F_1(0) + \delta Z_2 = 0.$$

We are going to skip sections 7.2–7.4, but we need to make use of the main result of section 2, which is that the invariant amplitude \mathcal{M} for any

process is correctly given by the sum of amputated connected diagrams, but with a factor of \sqrt{Z} for each external line.

A handwaving sketch of the derivation of this fact, given in section 2, is to ask how the fourier transform in x of a time ordered product involving $\phi(x)$ behaves near $p^2 = m^2$, where for simplicity I am taking a scalar field of physical mass m. On the one hand, we know that the time ordered product is given by the sum over *all* diagrams, so we have

$$\langle 0| T\phi(x) \dots |0\rangle = \int dy D(x-y) f(y),$$

where

$$f(y) = \sum_{n=0}^{\infty} \left(\sum_{n=0}^{\infty} \left(\sum_{n=0}$$

with f(y) the sum of all diagrams (with the line to x removed) and g(y) is the sum of diagrams with amputation on that leg.

$$\begin{split} \langle 0 | \, T\phi(x) \dots | 0 \rangle &= \int dy D(x-y) f(y) \\ &= \int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m_0^2 + i\epsilon} e^{-ipx} \tilde{f}(p) \\ &= \int \frac{d^4p}{(2\pi)^4} e^{-ipx} \frac{i}{p^2 - m_0^2 + i\epsilon} \sum_{n=0}^{\infty} \left(-i\Sigma(p^2) \frac{i}{p^2 - m_0^2 + i\epsilon} \right)^n \tilde{g}(p) \\ &= \int \frac{d^4p}{(2\pi)^4} e^{-ipx} \frac{i}{p^2 - m_0^2 - \Sigma(p^2) + i\epsilon} \tilde{g}(p) \end{split}$$

The fourier transform will have a pole at $p^2 = m^2 = m_0^2 + \Sigma(p^2)$ and in the vicinity of that pole, we have

$$\langle 0 | T\phi(x) \dots | 0 \rangle = \int \frac{d^4p}{(2\pi)^4} e^{-ipx} \frac{i}{p^2 - m^2 - (p^2 - m^2) \frac{d\Sigma(p^2)}{dp^2} + i\epsilon} \tilde{g}(p)$$
$$= \int \frac{d^4p}{(2\pi)^4} e^{-ipx} \frac{iZ}{p^2 - m^2 + i\epsilon} \tilde{g}(p),$$

4

where

$$Z^{-1} = 1 - \left. \frac{d\Sigma(p^2)}{dp^2} \right|_{p^2 = m^2}.$$

On the other hand, the time ordered product should be

$$\langle 0 | \phi(x) | p \rangle \frac{i}{p^2 - m^2 + i\epsilon} \mathcal{M},$$

and $\langle 0 | \phi(0) | p \rangle = \sqrt{Z}$, so the invariant amplitude is given by $\sqrt{Z}\tilde{g}$, that is, the sum of all amputated diagrams with a factor of \sqrt{Z} for each external leg.

Notice that now when we evaluate $F_1(0) = 1 + \delta F_1(0)$ we get

$$Z_2\Gamma^{\mu}(0) = Z_2F_1(0) = (1 + \delta Z_2 + \delta F_1(0)) \gamma^{\mu} = \gamma^{\mu}.$$

Read pages 244–248 (top).

$$\underbrace{\mu}_{q} \underbrace{k+q}_{k}$$

We turn to calculating Π , but in arbitrary spacetime dimension d:

$$i\Pi_{2}^{\mu\nu}(q) = i\left(q^{2}g^{\mu\nu} - q^{\mu}q^{\nu}\right)\Pi(q^{2})$$

$$= -4e^{2}\int_{0}^{1}dx\int\frac{d^{d}\ell}{(2\pi)^{d}}$$

$$\frac{2\ell^{\mu}\ell^{\nu} - g^{\mu\nu}\ell^{2} - 2x(1-x)q^{\mu}q^{\nu} + g^{\mu\nu}\left(m^{2} + x(1-x)q^{2}\right)}{(\ell^{2} + x(1-x)q^{2} - m^{2})^{2}}$$

where we have shifted the integration variable and dropped terms linear in ℓ . As the book explains, this is not valid in four dimensions, because the integrals don't converge, but for small enough d this would be okay. We need to reexamine our treatment of $\ell^{\mu}\ell^{\nu} \sim \beta g^{\mu\nu}\ell^2$ for arbitrary d. As before, the integral vanishes for $\mu \neq \nu$ by antisymmetry in ℓ^{μ} , and is proportional to $g^{\mu\nu}$, but to get the proportionality constant β , note

$$q_{\mu\nu}\ell^{\mu}\ell^{\nu} = \ell^2 = \beta q_{\mu\nu}q^{\mu\nu}\ell^2 = \beta d\ell^2,$$

so $\beta = 1/d$. Had we had factors like $\gamma^{\alpha} \Gamma \gamma_{\alpha}$, we would have had to reevaluate those as well, replacing A.29 by A.55.

Thus, using Lecture 20 page 3, which says

$$\begin{split} I(d,p,n,\Delta) &:= \int \frac{d^d\ell}{(2\pi)^d} \frac{(\ell^2)^p}{(\ell^2 - \Delta(\alpha) + i\epsilon)^n} \\ &= \frac{i \left(-1\right)^{n+p} \Gamma\left(\frac{1}{2}d + p\right) \Gamma(n-p-d/2)}{(4\pi)^{d/2} \Gamma(d/2) \Gamma(n)} \left(\Delta(\alpha)\right)^{\frac{1}{2}d + p - n} \end{split}$$

we can write

$$i\Pi_{2}^{\mu\nu}(q) = -4e^{2} \int_{0}^{1} dx \left\{ \left(\frac{2}{d} - 1\right) g^{\mu\nu} I\left(d, 1, 2, \Delta(x)\right) + \left[-2x(1-x)q^{\mu}q^{\nu} + g^{\mu\nu}\left(m^{2} + x(1-x)q^{2}\right) \right] I\left(d, 0, 2, \Delta(x)\right) \right\}$$

$$= 4ie^{2} \int_{0}^{1} dx \left\{ \left(\frac{2}{d} - 1 \right) g^{\mu\nu} \frac{\Gamma(\frac{1}{2}d + 1)\Gamma(1 - \frac{1}{2}d)\Delta(x)}{(4\pi)^{d/2}\Gamma(\frac{1}{2}d)\Gamma(2)} + \left[2x(1-x)q^{\mu}q^{\nu} - g^{\mu\nu} \left(m^{2} + x(1-x)q^{2} \right) \right] \frac{\Gamma(\frac{1}{2}d)\Gamma(2 - \frac{1}{2}d)}{(4\pi)^{d/2}\Gamma(\frac{1}{2}d)\Gamma(2)} \right\}$$

$$(\Delta(x))^{\frac{1}{2}d-2}$$

with
$$\Delta(x) = m^2 - x(1-x)q^2$$
. Thus

$$\begin{split} i\Pi_2^{\mu\nu}(q) &= 4ie^2 \int_0^1 dx \Big\{ \Big(\frac{2}{d} - 1\Big) \frac{d}{2} \left(m^2 - x(1-x)q^2\right) g^{\mu\nu} \\ &\quad + \Big[2x(1-x)q^\mu q^\nu - g^{\mu\nu} \left(m^2 + x(1-x)q^2\right) \Big] \left(1 - \frac{d}{2}\right) \Big\} \\ &\quad \frac{\Gamma\left(1 - \frac{d}{2}\right)}{(4\pi)^2} \left(\frac{\Delta(x)}{4\pi}\right)^{\frac{1}{2}d - 2} \\ &= \frac{i\alpha}{\pi} \Gamma\left(1 - \frac{d}{2}\right) \left(1 - \frac{d}{2}\right) \\ &\quad \int_0^1 dx \left\{ 2x(1-x)(q^\mu q^\nu - q^2 g^{\mu\nu}\right\} \left(\frac{\Delta(x)}{4\pi}\right)^{\frac{1}{2}d - 2} \\ &= \frac{i\alpha}{\pi} \Gamma\left(2 - \frac{d}{2}\right) \int_0^1 dx \left\{ 2x(1-x)(q^\mu q^\nu - q^2 g^{\mu\nu}\right\} \left(\frac{\Delta(x)}{4\pi}\right)^{\frac{1}{2}d - 2}. \end{split}$$

Notice that a number of "miracles" have occurred. First, while the integral converges for d<2, the $\Gamma(1-\frac{1}{2}d)$ blows up first at d=2, when the ℓ^2 term first diverges. But the factor of (2/d-1) which multiples that, coming from $2\ell^{\mu}\ell^{\nu}-\ell^2g^{\mu\nu}$, kills the divergence. Then the two terms combine in such a way that the separate $q^{\mu}q^{\nu}$ and $-q^2g^{\mu\nu}$ terms develop the same coefficient, so that $\Pi^{\mu\nu}(q)$ has the correct prefactor, and we can write

$$\Pi(q^{2}) = -\frac{\alpha}{\pi} \Gamma\left(2 - \frac{d}{2}\right) \int_{0}^{1} dx \, 2x (1 - x) \left(\frac{\Delta(x)}{4\pi}\right)^{\frac{1}{2}d - 2}.$$

Of course this expression still has a problem as $d \to 4$. Writing $d = 4 - \epsilon$, we have

$$\Pi(q^2) = -\frac{2\alpha}{\pi} \Gamma\left(\frac{\epsilon}{2}\right) \int_0^1 dx \, x(1-x) \left(1 - \frac{\epsilon}{2} \ln \frac{\Delta(x)}{4\pi}\right).$$

Using $\Gamma\left(\frac{\epsilon}{2}\right) \approx \frac{2}{\epsilon} - \gamma$, where $\gamma = 0.57721...$ is the Euler (or Euler-Mascheroni) constant, and recalling that $\Delta(x) = m^2 - x(1-x)q^2$ we have

$$\Pi(q^2) = -\frac{2\alpha}{\pi} \left\{ \frac{2}{\epsilon} - \gamma - \ln\left(\frac{m^2}{4\pi}\right) \right\} \int_0^1 dx \, x(1-x)$$

$$+ \frac{2\alpha}{\pi} \int_0^1 dx \, x(1-x) \ln\left(1 - x(1-x)\frac{q^2}{m^2}\right)$$

$$= -\frac{\alpha}{3\pi} \left(\frac{2}{\epsilon} - \gamma - \ln\left(\frac{m^2}{4\pi}\right)\right)$$

$$+ \frac{2\alpha}{\pi} \int_0^1 dx \, x(1-x) \ln\left(1 - x(1-x)\frac{q^2}{m^2}\right)$$

Read pp 252–253, if we get that far.