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Lecture 23 Nov. 21, 2013

Photon Propagator, Renormalization of e
Copyright(©)2006 by Joel A. Shapiro

Read pages 219-222 (top).
In section 7.1, we find (7.31):

a [t zA? 2(2 — 2)m?
0% = 5= [ dz |21 2(1 - ‘
2o [ = (1 —2)2m? + zp? +21-2) (1 —2)?m? + zp?

In the last lecture, we found

a [! zA? (1 — 4z + 2%)m?
OF(0) = 5= [ dz(1-2) 1
1(0) 2 Jo Al=2) {n (1 —2)2m?2 + zp? * (1 —2)2m?2 + zp?

SO

zA? , (1—2)(1—2%
m :
(1 —2)2m? + zp? (1 —2)?m? + zpu?

1
SF(0) 462, = 3/ d2(1—22)In
21 Jo

In the first term integrate by parts, with u = z(1 —z), v = In ..., with uv = 0

at both endpoints, and

2(1 — z)m? — 2
(1 —2)2m?+ zp?’

1
dv = —+
2

SO

(1 —2)2m? + zp?

2(1 — 2)m? — p? }

—/udv = — 1[(l—z)—kz(l—z)

1
= — [ (1-2) [1—1+m2
0

1-=2
(1—2)2m2+ zp?|’
which cancels the second term, and

5F)(0) + 62, = 0.

We are going to skip sections 7.2-7.4, but we need to make use of the
main result of section 2, which is that the invariant amplitude M for any
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process is correctly given by the sum of amputated connected diagrams, but
with a factor of V/Z for each external line.

A handwaving sketch of the derivation of this fact, given in section 2, is
to ask how the fourier transform in z of a time ordered product involving
#(x) behaves near p*> = m?, where for simplicity I am taking a scalar field of
physical mass m. On the one hand, we know that the time ordered product
is given by the sum over all diagrams, so we have

(0| To(x /dyD z— ) f (),

where

o) =

with f(y) the sum of all diagrams (with the line to x removed) and ¢(y) is
the sum of diagrams with amputation on that leg.

(0| T (x /dyD z—y)f(y)
e
7'me i = . ; n~
—/ m%+z‘e,;)< zz(pQ)pg_mgHE) 3(p)

i
— —ipx ~
/ (27r)46 p?—md—3(p?) + ieg(p)

The fourier transform will have a pole at p? = m? = m2 + X(p?) and in the
vicinity of that pole, we have

0| Tp(z)...|0) = / (%46_% — i 507 —9(p)

/ d4p —ipx ZZ ~< )
(27T)46 p? —m? + i\
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where

dp® |
On the other hand, the time ordered product should be

1

(0l o(2) |p)

p2—m?+ie

and (0] ¢(0) |p) = V/Z, so the invariant amplitude is given by v/Z§, that is,
the sum of all amputated diagrams with a factor of v/Z for each external leg.

Notice that now when we evalutate F;(0) = 1+ dF;(0) we get
ZoTH(0) = ZoFy(0) = (1 + 675 + F1(0)) 4 = .

Read pages 244-248 (top).

. v
q é

i (q) = i(q*"™ — q"¢") TI(g?)

d
= —4e/dx/d€

2010 — g (% — 2x(1 — ) q” + g (m?
(2421 —2x)¢® — m2)2

We turn to calculating II, but in arbitrary space-
time dimension d:

=

+ (1 —2)¢%)

where we have shifted the integration variable and dropped terms linear in
£. As the book explains, this is not valid in four dimensions, because the
integrals don’t converge, but for small enough d this would be okay. We need
to reexamine our treatment of (#¢V ~ B3g"*(? for arbitrary d. As before, the
integral vanishes for p # v by antisymmetry in ¢#, and is proportional to
g, but to get the proportionality constant 3, note

Gl = 0 = B g™ = Bd *,

so = 1/d. Had we had factors like y*I'7y,, we would have had to reevaluate
those as well, replacing A.29 by A.55.
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Thus, using Lecture 20 page 3, which says

. e ()P
I{dp,n &) = / 2m) (2 — Ala) + o)
i (=1)"PD(3d + p)T'(n —p — d/2) d+p—n
= Gmraprm @)

we can write

() = —de? /01 dz{(% 1) (01,2, A)

+[22(1 - 2)q"q” + ¢ (m? + 2(1 - 2)q )]J(d,o,zA(x))}

Wl (Gd+ DI — 5d)A(x)
(4m)4°T (5d )F(2)

+ [Zx(l—x)q“q”

(Aw)r*?

g" <m +2(1- qu)]

(47 d/2F2 T _?))}

with A(z) = m? — z(1 — 2)¢*. Thus

710 = w0 {320}
+ [Qx(l—x)q“q” — g (m2 + z(l—z)qQ)] (1 — g)}




615: Lecture 23 Last Latexed: November 19, 2013 at 14:14 )

Notice that a number of “miracles” have occurred. First, while the integral
converges for d < 2, the I'(1 — %d) blows up first at d = 2, when the ¢? term
first diverges. But the factor of (2/d — 1) which multiples that, coming from
200Y — (g kills the divergence. Then the two terms combine in such a
way that the separate ¢q¢” and —¢%¢g"” terms develop the same coefficient,
so that II*”(q) has the correct prefactor, and we can write

() = —2r (2 - g) ./01 dz 2z(1 — ) (#) %H.

s ™

Of course this expression still has a problem as d — 4. Writing d = 4 — ¢,

we have
(¢?) = —27&F (g) /01 drz(l — x) (1 - gln %) :

2
Using T (%) ~ — — 7, where v = 0.57721... is the Euler (or Euler-
€
Mascheroni) constant, and recalling that A(x) = m?

(¢?) = —2?0‘{2—7—111(?—;)}/01@;1:(1—:(:)

T Jo
_ a2 (M
N 3m \ ¢ i 4

2a0 1 q
+7/0 drz(l —z)ln <1 —z(l— x)m>

— z(1 — x)¢* we have

Read pp 252-253, if we get that far.



