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Lecture 23 Nov. 21, 2013

Photon Propagator, Renormalization of e
Copyright(©2006 by Joel A. Shapiro

Read pages 219-222 (top).

In section 7.1, we find (7.31):

a [l zA\? 2(2 — z)m?
Z= o | dz |21 2(1 — .
02, 27 Jo dz[ : n(l—z)2m2+zu2+ ( Z)(l—z)2m2+z,u2

In the last lecture, we found

«

SF,(0) = 2—/01 d=(1 — 2) lln =

™

Z\? (1—4z + 2%)m?
22+ 2 (1= 22m? + 22|
S0

zA? s (1—2)(1—2%
(1 —2)2m2 + zp? " (1 —2)2m? + zu?

a 1
0F1(0)+02Z, = %/0 dz(1—-22)In

In the first term integrate by parts, with u = z(1 —z), v = In ..., with uv =0
at both endpoints, and

1 2(1-— 2P
dy =L 2l=—gm —p |
z (1 =2)?m?+ zp?

SO

_/udv = _/01 l(1—2)+z(1—z)2(1_2)”‘2_#2]

(1 —2)2m? 4 zp?

- —/01(1—z)[1—1+m2 -2 ]

(1 —2)2m? + zp?

which cancels the second term, and

We are going to skip sections 7.2-7.4, but we need to make use of the
main result of section 2, which is that the invariant amplitude M for any
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process is correctly given by the sum of amputated connected diagrams, but
with a factor of v/Z for each external line.

A handwaving sketch of the derivation of this fact, given in section 2, is
to ask how the fourier transform in z of a time ordered product involving
¢(x) behaves near p> = m?, where for simplicity I am taking a scalar field of
physical mass m. On the one hand, we know that the time ordered product
is given by the sum over all diagrams, so we have

(0| Té(z /dyD z— ) f ),

=4 C:Zjo <@—~>n
o) =

with f(y) the sum of all diagrams (with the line to z removed) and g(y) is
the sum of diagrams with amputation on that leg.

where

(0| Té(z /dyD z—y)f(y)
_/ 4 p? —m +ze mf()
= / e~ 7;% — z::O <—i2(p2)m> 9(p)

[ r, Z 3(»)

= e

Cr P —s() e

The fourier transform will have a pole at p> = m? = m3 + X(p?) and in the
vicinity of that pole, we have

0o 10y = [ S i )
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where
dX(p?)

dp?
On the other hand, the time ordered product should be

Z'=1-

p2=m?2

0

(0l o() )

p2—m?+ie

and (0] ¢(0) |p) = VZ, so the invariant amplitude is given by v/Z§, that is,
the sum of all amputated diagrams with a factor of v/Z for each external leg.

Notice that now when we evalutate F3(0) = 1+ 0F;(0) we get
ZIM(0) = Z2F1(0) = (1 + 622 + 6F3(0)) v = .

Read pages 244-248 (top).

=

We turn to calculating II, but in arbitrary space-
v time dimension d:

q
TTUY o . 2;1,1/ oV 2
i (q) = i(¢°™ —q"¢") (g")

= —462/01d:£/(;i;§d

20107 — gt 0?2 — 22(1 — x)g"q” + g (m? + (1 — 2)¢?)
(P +z(l—2x)¢>— m2)2

where we have shifted the integration variable and dropped terms linear in
(. As the book explains, this is not valid in four dimensions, because the
integrals don’t converge, but for small enough d this would be okay. We need
to reexamine our treatment of ¢4¢¥ ~ BgHv(? for arbitrary d. As before, the
integral vanishes for p # v by antisymmetry in ¢#, and is proportional to
g, but to get the proportionality constant 3, note

gluyg,ugu = 62 = ﬂguyg“"ﬁz = ﬂd£2,

so = 1/d. Had we had factors like v*T'y,, we would have had to reevaluate
those as well, replacing A.29 by A.55.
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Thus, using Lecture 20 page 3, which says

A ()
I(d,p,n,A) = / (2m)d (£2 — A(a) + ie)n
i(=1)"PT(3d + p)T'(n — p — d/2)

- (Am) 7T (d/2)T () (8()

we can write
() = —4¢? /01 @ (% 1) T (41,2, A(2))
+ [—Qx(l —xz)¢"q" + g (m2 + (1l — z)qQ)} I(d,0,2, A(z))}
= 4ie? /01 dm{ (2 — 1) QWF(EC(ZZ;;Z:I(‘E%;)??Q?(%)

+ {Qx(l—x)q”q” — g (m2 + x(l—x)q2)}

2 2

D(d)D(2 — Ld)
(4m)4/2T (3d)1(2) }

(A))>?

with A(z) = m? — 2(1 — z)¢?. Thus

il (q) = die? /01 dx{ (% — 1) g (m2 - x)qz) g
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Notice that a number of “miracles” have occurred. First, while the integral
converges for d < 2, the I'(1 — %d) blows up first at d = 2, when the % term
first diverges. But the factor of (2/d — 1) which multiples that, coming from
200 — (2g | Kkills the divergence. Then the two terms combine in such a
way that the separate ¢#¢” and —q¢?g"” terms develop the same coefficient,
so that 1" (q) has the correct prefactor, and we can write

H(¢?) = —=T (2 ~ g) /01 dz 22(1 — ) <%>

Of course this expression still has a problem as d — 4. Writing d = 4 — e,
we have

d—2

=

T 47

(¢*) = —Q—QF (%) /01 drz(l —x) (1 — %ln A(I)> :

2

Using T (5) — — 7, where v = 0.57721... is the Euler (or Euler-
€

Mascheroni) constant, and recalling that A(x) = m?

M) — —2?@{2—7—111(?—;)}/01@::6(1—:6)

2a0 1 q°
—l-?/o drx(l—z)ln <1—a:(1—x)ﬁ>

a2 o (m
N 3 \ e " 47

2a0 [1 q>
+7/0 drx(l—z)ln <1—a:(1—x)w>

€

Q

— (1 — x)¢* we have

Read pp 252253, if we get that far.



