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Dirac and Weyl Fields

Copyright(©)2005 by Joel A. Shapiro

Lecture 7: Sept. 26, 2013

We have seen that we expect to construct our field theory from fields
which transform “simply” under Poincaré transformations, with

U(A)¢a(x)U™(A) = Dan(A™")y(Ax), (1)

where D is a finite dimensional representation of the Lorentz group. We also
saw that such representations are in fact products of representations of two
SO(3) groups generated by L. = %(j +iK). Thus in general there are two
spins, s+ and the field has two indices, the eigenvalues of Ly, respectively.
The derivative terms of (L6 Eq. 10) can be simplified

- 1 o -
g-J" "0, = +§ei]—k9i (Ljp)", 270, =16 - (¥ x V),

R-K"a2"0, = ry(Loj), 270, = —iR - 70y — itk - V.
Then the operators J and K have commutators with fields given by

[g'j,¢m+7m,($)} = _Dréz+,m

1

[E . K, ¢m+,m7 (m)] = +7;D71741+7m

= iR Zhm, m (X) — RNV, m (2).

In particular, we considered a field (whose name I will now change to ¥g,
which transforms with A = %, B =0, and we saw that

1

13, rm(x)] = 5 GV () + iF X Virm().
We will consider this field further, but before we do, let us also note that the
Poincaré algebra [L,s, P,] = —iga,Ps + 195, P, means

1 )
[Jij] = §€mb[Lab,Pﬂ = ZfijkPky
K;,P,] = [Lo;, P;] = —id;; Py,

3, Po] = 0. (2)
[K;, Po] = [Lo;, Po] = —iP;. (3)
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The (},0) Field ¢p

We are going to look for scalar combinations of fields, in order to construct
a Lagrangian density £. The coordinate derivative terms will work out as
they should for any representation, so in what follows I am going to drop the
derivative terms, with just a warning (4d.t.) that I have done so.

First suppose that 9g transforms with A = %, B=0,so

(Ji, vr] = —EUiZ/JR, K, ¢¥r] = —H'%UWR

2

Hermitean conjugate gives, as J and K are hermitean operators on the hilbert
space, but the 2 x 2 representation of K is not,
$ 1
[Kiv ’IZJR} = 41—

1
[J’mq/}}r%} = §¢;{Ui7 2

What can we make that is quadratic in ¢ and its hermitian conjugate,
and how do these terms transform?

[Ji, bhtom] = %wkme - %wkme =0  (+d.t.)
[Ji, vhojr] = %M}[Oi, olvr = iepthor  (+d.t.)
K, Vhtr] = WLUWR (+d.t.)
(K, vho;vr] %l/)iz{% oiYr = i0ibkvr  (+dt.)

(+d.t.).

Yhoy, (4+d.t.)

Combining with (2) we see that ¥h¢r, ¥ho; Pjtor and ¢}, Pybr commute
with J;. We seek a combination which commutes with K; as well.

(K, bhvnPo| = [Ki,vlton] Po+ dhvn K, R
= WhownPy — ibhtrP; (4)

= [Ki,z?ﬁ%ajlbz% Pj+iz1/);0ﬂ/}}z (K, P

= WhvrP — ivhoirPy (5)

[Ki, Zlﬁszﬂ/}RPj

SO

!Kiv @/J}L#ﬁRPo + Zqﬁ};(f‘ijf)j =0 (+dt)
J
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The (0, }) Field ¢y,
On the other hand, suppose ¥, transforms with A =0, B = %, SO
. 1 ) 1 1
D(Jl - ZKi) = 501‘7 D(JZ +ZKZ') =0 - D(JZ> = 50_2'7 D(KZ) = —|—Z§0'i,

The commutations with J; are therefore all the same, while the one of the
fields with K; are reversed, but not those of K with P. So now the first
terms in the final expressions in (4) and (5) have their signs reversed, and
the combination which is a scalar is

LT AT T 8

7

Notice there is no invariant we can make from just g without a momen-
tum, or from just ¢, without a momentum, but if we mix ¥g with v, we
see w},@ﬁL commutes with J as before, and also

1 1
(K, Yhr] = Ziwﬂﬂ/& - Z§¢I%Ui'¢L =0,

SO wkwL is an invariant. Similarly ¢ is invariant..

1 Invariant Lagrangians

The momentum transforms the same way a derivative does, so we see that
the Hermitean quadratic invariants we can form from g and ¥, are

iWhO0tr + iUk - Vg
iWLO0dr, — i - Vi
VRt + L or
and ik — iR
The only one which involves only g is the first, and if we vary with respect

to %27 we get the equation of motion

iO0r + i - Vibr = 0.
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Multiplying by —i(8y — & - V) gives'
0 = (80 — 6 6)(80 + 5 . ﬁ)wR ES (68 — UiaiO'jaj)wR
1
= (% - o101, 05}10:0;) YR = (95 — 6:50:0;) ¢
= (82— V?)r = 0"k

In the second line we have used the fact that 0;0; = 0;0; to replace o;0; by
half the anticommutator, which we then evaluate to a Kronecker delta. We
see the result is that ¢¥r obeys the Klein-Gordon equation, but with zero
mass. The same is true for the second lagrangian, with only ;. Only by
including a term with a mixture of ¥ and ¢, can we create a mass.

Let’s define?

ol =(1,0;), and of = (1,—0y).

Then we can write the first two lagrangian densities as izp;%aﬁauwpc and

w}agam, and the equations of motion from them individually as 0,0, ¥ r =
0 and o}0,¢ = 0.
If, however, we take a combination to form the lagrangian,

L = Whohdur + Lol Oub, — m(lvr +vitn).
we get the equations of motion

10RO, VR — mipy, =0 or ( —-m iaﬁaﬂ) (lbL) _0
070, — mipp =0 iop 0y —m ) \Yg '
Because we are mostly interested in massive fields, we will prefer to con-
sider ¢, and ¥R as parts of a four component field. Define

R C

Properties of &: o; = aj; 00 = 0;j+i€;j10k, s0 {0;,0;} = 20;5 and [0y, 0] = 2i€;j,0%.

The usual representation, which we will assume, is

(01 (0 —i (1 0
9%@=\1 0) @T\i o) 7 \o 1)

2The book, and indeed everyone else who defines these, uses o* for what I call ol and
o for what I call of. But that notation is not ideal.
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which means

N ( 0 ]I2x2) _
Ly O
Then the equation above becomes

(iv"9, —m)y = 0.

This is known as the Dirac equation.
A good part of learning how to calculate scattering amplitudes for fermions
is becoming agile with the algebra of the v matrices. From

B v
HAV URUL 0)
—

oot

o~ oo
— o oo
oo o
oo~ o
)
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Il
/N
\
o
N
o9
N—

we see that
{77} = 29" X My, (6)

which of course means 702 =1, ’in =—1.
Premultiplying the equation of motion 0 = (iy*d, —m)v¥ by —(iv*0, +m)
we see that

0 = ("D, +m)(in#0u — ) = (30,9} 8.0, + m?) v
= (90,0, +m*) v = (0"0, + m*) ¥,

so the Dirac equation implies the Klein-Gordon equation with mass m, but
has additional information in it.

The ~ matrices will prove to be much more often used than our ¢} and
ol, so we need to reexpress our Lagrangian in terms of them. Notice that

AOH = (UOL ) so our lagrangian can be written

OR
L = ipTy 8,0 — mapiy 4.

That looks very strange, not even covariant, but the reason for this is that
YT does not transform as we might expect, because v transforms under a
representation D(A) = Ay (or (,0) + (0, %)), which is not a unitary repre-
sentation of the Lorentz group, because L. involves iK. Under Y — A 1 P,
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we have 9ty — 1/)TAEA%1/), and if A% were unitary we would have ATl = A7
2 2 2
and 1T would be invariant, as it appears. But this is not the case.

What is A%? It turns out there is a simple expression for its generators

in terms of ,
i

4

From the anticommutation relations of the gammas (6) simple algebraic ma-
nipulations show that D(L*) = S* obeys the Lorentz algebra commutation
relations, and thus is a representation. In fact, from

. 1 O 0 04 ) (o] 0
i e R
S _2E”k<0 O’k)7 S 2(0 _Uj),

we see that this is exactly how v transforms, or rather that

SHv v, ~"].

i i
_7wﬂ;VLl/“/ _7w;LVSMD
e 2 =e 2 )

A

1
2

Now notice that 75 '7*y9 = 7, = (v*)!, which means that ~; 18;,70 =
S, and ’yo_lATl’yO = A7'. Thus if we define ) := 1y, under a Lorentz
2 2
transformation

Y — WA*%% = va&ll\%% = 1/_)/\;,

so 1) is invariant, and so is @Ewaﬂw. Thus we can rewrite the free Dirac
lagrangian density as

£Dirac = w(i'_}/pa,u - m)1/1



