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1 Introduction

According to the catalogue, this course is “Overview of Quantum Field The-
ory”.  Why “Overview”? When we teach Classical Mechanics or Quantum
Mechanics, we teach the groundwork of those subjects, at least up to some
point, and thus we call the courses “Introductions to” rather than “Overviews
of”. Giving an overview is an unusual way to start teaching one of the broad
conceptual frameworks to Physicists. We know that these theoretical frame-
works need to built on a firm conceptual basis. All physicists need that
understanding and so we don’t try to include a preview of time dependant
perturbation theory in freshman physics courses.

Quantum Field theory is also a broad conceptual framework underlying
much of how physicists understand their field. It is, except possibly for
the much more abstract string theory, the only framework for understanding
elementary particle physics at energies high enough for relativity to matter.
In ordinary Quantum Mechanics, the basic operators are the degrees of free-
dom, usually the positions and momenta of each particle. With sufficient
energy available, particles can be created, so the coordinates describing the
positions or spins of a list of individual particles cannot suffice to describe
the state of a system, and thus the quantum mechanical framework used in
nonrelativistic physics is inadequate.

Quantum field theory is also extensively used in condensed matter physics,
even though here there is not enough energy for electrons and positrons to
be created. In condensed matter physics one often describes the system
not in terms of fundamental particles or even nuclei or atoms, but in terms
of effective particles such as holes, phonons or excitons, and these are not
conserved.

Even in atomic physics, because intermediate states in perturbation the-
ory may not conserve energy, the possibility of particle creation has effects,
such as the Lamb shift in hydrogenic atoms, and larger effects in the inner
shells of heavy atoms, for which the potential energies may be comparable
to the rest masses of the electrons.

So, if field theory is the language of so much of modern physics, why
an overview rather than a careful solid foundation-laying introduction? The
motivation is that right from the beginning, QFT raises a host of issues
which are quite complex. Unlike in classical mechanics or nonrelativistic
quantum mechanics, there are no nontrivial problems which can be solved
exactly. For example, even though we can write a “complete” theory of
electrodynamics, complete in the sense that it would be if there were not
other interactions, which is quite adequate for understanding a great deal of
observed physics, we still cannot do any exact calculations with that theory,
except if we assume there are no interactions at all. What we can do, very
successfully, are calculations in perturbation theory, treating the interaction
parameter, which is the charge of the electron, as a small parameter in terms
of which we can calculate scattering amplitudes as power series expansions.
But these calculations are both complicated and raise some very difficult
issues, with which you should be acquainted, even though you may not be
prepared to study these ideas in detail. Some examples:

e Renormalization is required to make sense of all but the lowest level
approximation to scattering amplitudes. The renormalization group is
important in understanding critical phenomena and also for the running
coupling constants one must use even in low order calculations of high
energy scattering experiments.

e Gauged symmetry groups are responsible for the standard model of
high energy physics and also provide models in CM, but a full discussion
of their quantization is very involved.

e Spontaneous symmetry breaking plays a crucial role in the standard
model, as well as in condensed matter (e.g. ferromagnetism), and is
probably responsible for the inflation that set up the initial conditions
for cosmology.

e The Higgs model is an elaboration on spontaneous symmetry breaking
in theories with gauged symmetry groups. Higgs models are essential in
both high energy (the standard model) and condensed matter physics.

The text, Peskin and Schroeder’s “Introduction to Quantum Field The-
ory”, does indeed give a good introduction laying out these ideas, but it is
far too much to teach in one semester. So this course will be a compromise,



a fairly solid foundation to the beginning of quantum field theory, together
with a more qualitative or sketchy overview of the more advanced ideas that
I have just mentioned. We will learn how to use Feynman graphs to de-
scribe scattering amplitudes in perturbation theory, at least at the level that
experimentalists need for most purposes.

For today, we will have a brief review of Classical Mechanics in which we
make sure we learn to deal with fields. Then we will discuss the limitations
of particle quantum mechanics and begin to develop the quantum mechan-
ics of fields. This process has been called second quantization. In the
first quantization, in the 1920’s, we learned to replace the phase space vari-
ables, i.e. the positions and momenta of individual particles which describe
the classical mechanics of the system, by operators operating on the wave
function, an ordinary function of the positions. In Quantum mechanics it is
the wave function, rather than the coordinates, that describes the state of
the system. But in quantum field theory this wavefunction becomes a field
which is then quantized, and we will treat the degrees of freedom of this
field as operators.

I think this name, second quantization, is losing its appeal, and in a
sense it is misleading anyway. After all, historically the first thing to be
quantized was the electromagnetic field inside a black box. Here we were
used to the idea that light was described by fields, which could be considered
classical, while it was the particle nature of photons that was considered
quantum mechanical. For electrons, the particle nature was classical and
the wave function, a field ¥ (&, t) was considered quantum mechanical. But
the de Broglie relationship between momentum and wavelength is the same
for photons and electrons, and the Schrédinger Equation can be derived by
applying de Broglie to the Newtonian equations just as Maxwell’s equations
relates to electromagnetic waves.

Even in classical mechanics, relativity does not get along very well with
a particle description. There is no problem for free point particles, or for
describing collisions at a point. But for interesting particle mechanics we
need potential energies which are functions of the separation of the particles
T) — Ty, and not just delta functions §3(Z; — 7). But such a potential
describes action at a distance, the force on particle 1 at time ¢ depending
on the position of particle 2 at the same time ¢, which is impossible for
particle 1 to know in relativity. The only relativistic interactions between
separated particles known to classical mechanics are electromagnetic (and,
in a sense, general relativistic gravity), and these interactions cannot be

understood in general without the introduction of fields.

[I am not going to cover Chapter 1 of the book — read it if you like. I
will be covering, in the first four lectures, the material of Chapter 2, though
somewhat differently.]

2 Review of Classical Mechanics

Let us very briefly review the fundamentals of mechanics. In describing a
physical situation, the first thing one must do is decide what the coordinates
are. In classical mechanics of a discrete set of degrees of freedom, we will
have coordinates ¢;(t) which can depend on time. For the systems we wish
to deal with, the physics can be described by a Lagrangian

L(t) = LHg; (0}, {0}, 1)

which is a function of the coordinates and their first time derivatives at a
moment of time. The dynamics of the system tells how g; develops in time.
That is, it gives the path T': ¢ € [t1,t5] — ¢;(t) that the physical system
will actually take through coordinate space as a function of time. This is
determined by a functional called the action

to
Se= [ Loy (600 d
where the integral is to be done with ¢ and ¢ evaluated along an arbitrary
path I'. Hamilton’s principle tells us the actual physical path will be one
which is stationary under small variations in the path, keeping the endpoints
¢;(t1) and g;(t2) fixed. Considering an arbitrary infinitesimal variation of
the path, dg;(t), (with dg;(¢t1) = 0¢;(t2) = 0), and asking that 0.5 = 0, gives

the Lagrange equations,
d (0L oL 0
dt aqj 8%’ e

We should note here that the space in which q lives is not necessarily
ordinary three dimensional Euclidean space, or even a Euclidean space of
any number of dimensions, though for single particle motion it is ordinary
space. For example, for a pendulum swinging about a fixed axis, the sole



coordinate may be 6, the angle with respect to the downward direction, which
lives on a circle (with # = 0 and 6 = 27 the same point). If it is swinging
from a fixed point rather than a fixed axis, its coordinates are the polar angle
6 and the azimuthal angle ¢, which together live on a two-sphere S2, that is,
the surface of a three dimensional ball.

Classical mechanics of a conservative system can also be described in
terms of a Hamiltonian, which depends on momenta p; as well as the coor-
dinates, but does not depend on the time derivatives of the coordinates:

H({g;(0)}, {p;(0)},1).

The canonical momentum p; conjugate to g; is given in the Lagrangian

formulation by
oL
_ oL 1

Eq. (1) is known as the constitutive equation. Note that these canonical
momenta, one for each degree of freedom, are to be distinguished from the
3 (or 4) components of the total momentum, except for a single particle
problem described by cartesian coordinates. Usually this expression for the
canonical momenta p; in terms of {¢;} and {¢;} can be inverted to give ¢;(¢)
in terms of {gx(¢t)} and {px(¢)}, in which case one can define the Hamiltonian
from the Lagrangian by

H({g;(0)}, Ap;(0)} 1) = > au®)pe(t) — LHg; (O} {a;(D)}, 1),

where it is understood that on the right hand side the ¢;’s are to be replaced
by their values in terms of ¢ and p. When Eq. (1) is not solvable for ¢, we
have a complicated situation related to gauge invariance. We will see that
this situation does arise for the electromagnetic field.

The equations of motion in Hamiltonian form are

. _oH - O0H
q]_ 8p]7 p] - 8q]7

which determine the classical path the system takes through phase space,

(q(t), p(t)).

We can also relate any explicit time dependences of L and H by

_OL _oH
ot ot

The Hamiltonian is a function on extended phase space, {g;, p;, t} while
the Lagrangian is not quite a function on coordinate space, because it de-
pends of ¢; as well as ¢;. The Hamiltonian equations of motion can be derived
from a variational principle in which one varies a path I' through phase space
[t (q(t),p(t)), varying ¢(t) and p(t) independently to extremize the ac-
tion

S = / (ijdj - H(q,p,t)> dt,

where ¢ is evaluated from the path ¢(t) and is unrelated to p(t).

At the beginning of a course on classical or quantum mechanics we deal
with a system of discrete degrees of freedom, g;. For electromagnetism,
however, the degrees of freedom are not only the positions of the discrete
charged particles, but also the electric and magnetic fields at each point
in space, as a function of time. As we shall argue shortly, even for ordinary
particles we are going to need to deal with fields, where there is one (or
perhaps several) degree(s) of freedom for each point in space, at each time.

To make sure we understand formally how to deal with fields, let’s begin
with the simple example of the continuum limit of a one dimensional lattice
of masses on springs. Each lattice point z; = j a (for integer j, that is j € Z)
has a mass m which may be displaced from its equilibrium position z; by an
amount 7;(t). Between neighboring points there are springs of equilibrium
length a and spring constant k, so the kinetic and potential energies of the
system are

T = %mZnJZ V({n;}) = %kz (1 = m5)"

In the continuum limit, it is more appropriate to use the linear mass density
1= m/a, Young’s modulus Y and the Lagrangian density. Young’s modulus
is the force required to produce a unit extension per unit length, and as the
force required to stretch one spring, of length a, is F' = k(7,41 —1;), we have
F =Y (nj;1 —nj)/a, so k=Y /a. Thus we may write the lagrangian as

1 1 =\ 2
J J

a

The Lagrangian density in the continuum limit is

e 1o, 1 (o)
E(x)_(ll%Lx/a—§Mn _§Y (8_:1:> .



and L = [ L(z)dx

This Lagrangian, however, will not be of much use until we figure out what
is meant by varying it with respect to each dynamical degree of freedom or its
corresponding velocity. In the discrete case we have the canonical momenta
pj = OL/0n;, where the derivative requires holding all 7); fixed, for j # i, as
well as all ny, fixed. This extracts one term from the sum % wy aﬁf, and this
would appear to vanish in the limit @ — 0. Instead, we define the canonical
momentum as a density, p; — ap(z = ja), so

p(r = ja) = hm——ZaE(n

liy - (), )],y

We may think of the last part of this limit,

hmZaﬁ n(z),n | = aj /dxﬁ (), ),

if we also define a limiting operation
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and similarly for %%, which act on functionals of n(z) and 7(z) by

(@) _ dn(@) _ o di(@)
on(zg)  on(xe) 7 on(w)

= 0(x1 — x9).
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for any function f(z), provided z is contained in the interval (x,z2). Thus

o) = g [ om0 = [ de il 050"~ a) = i,

We also need to evaluate

577((513)L:577(2x) f g (gn)

For this we need

The generalized function ¢'(z’ — x) is also defined by its integral,

/:2 f(2)d' (2 — x)dx’ /;2 f(a:')%d(x’ —z)da’

1 1

= f(2)o(z' —2) / dx—5x—x)
of
~ 5 &)

where after integration by parts the surface term is dropped because
d(x —2’') =0 for x # 2/, which it is for 2’ = x, z9 if x € (21, 22). Thus

oM 0%
—/deY%(x)cS(x—z)—Y@,

and Lagrange’s equations give the wave equation

0n
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2.1 Higher dimensions

Now let us generalize to more than one spatial dimension, say D — 1, reserv-
ing D to represent the dimension of space-time. Of course we are usually
interested in D = 4, to describe the apparent real world, but other dimen-
sions will come up in condensed matter, in dimensional regularization, and
in string theory. We will use relativistic notation, with coordinates z*, with
iw=0,1,...D — 1, and with 2° = ¢t = ¢, because we use units where the
speed of light is 1. Thus times and distances are both measured in meters.
We are distinguishing contravariant vectors x* from covariant vectors z,,
related by a metric tensor
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and z, = g, 2”. We are also using the “Einstein summation convention”,
that an index repeated up and down is automatically summed. The momenta
are naturally covariant, for in quantum mechanics

pu ~ Zh—a

though if we write it in nonrelativistic notation,

' = (E,p) ~ (i0/0t, —iV).
Note
1 000
) |0 100
2t =%w=10 01 0
000 1

The spatial part of a contravariant vector will be represented by Z (boldface
in the book, whose notation we otherwise follow). The dot product of two D-
vectors is understood to use the Minkowski metric, p? := g"p,p, = pi—p* =
E? — p2, which for a particle is m?2, classically at least.

Let us consider a scalar field ¢(Z, t). As for the chain of masses on springs,
the Lagrangian will be a spatial integral of the Lagrangian density,

L(t) = /EdD’lx.

As for the chain, the Lagrangian density will depend on spatial as well as
temporal first derivatives of ¢, and may also depend on ¢ itself:

‘C = ‘C (¢7 8l~b¢7 xﬂ) )

where we are switching to relativistic notation, with

P R
Ot = 5 b=(0.V9).
The canonical momentum density we will® call 7(Z,t):

oL
5(7,t)

1Peskin defines 7(Z, t) := OL/OH(F) which I agree with, but with some explanation.

(%, t) :=

and the hamiltonian is
H o= [t
= [d" [w(aa DO, 1) — £ (6(7,0), 6(7,1), Vo(@, 1), 7,1)]

Before we give an example, let us note that we have not taken a very
relativistic attitude towards our Lagrangian density, for the momentum den-
sity m(Z,t) is its variation with respect to the time derivative of ¢, but we
haven’t varied with respect to the spatial derivatives. We might consider the
canonical momentum 7(Z) as one component of a four vector

1) B D1,/ 5£(:U , 1)
oae = g oy

Our procedures do not fully treat 6/6(0,¢(Z,t)) covariantly, however, for we
have been treating ¢ and ¢ as completely independant variables, while ¢ and
V¢ are not. Thus the 0 variation above is not well defined.

As for the mass chain, we have

o a¢(f/7t)_ 8 D—1/..1
so@n) oo o’ Y

where 6P~1(#' — Z) is the D — 1 dimensional version of the Dirac delta, zero
unless 7’ = ¥ with [ dP~12'f(Z')6P~1(Z' — Z) = f(Z). So we are not treating
0;¢ as independent of ¢.

If we considered a different form of variation, &, in which ¢ and ﬁgb are
considered independent and the Lagrangian density is £ = L(¢, giﬁ, ﬁgb), then
our original ¢ variation can be expressed in terms of §, with

oL 0 D—1_1 R =/
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Let us define
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Thus we have

oL _ 9L(6.6,90) o D [aﬁwww@]
6¢(7) 99 oxi | 0(0;9)
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= 09(7) 0w

Thus in writing out the Lagrange equations,

i( L >_ L iﬂo(f) oL %) ()
Sb(x))  Odp(x) — dt oo(x) ' Oa
= ﬂﬂu(f)_ oL =
Ot 0¢(x)

Thus we see that, despite a rather non-covariant formulation of the laws of
Lagrangian mechanics, the results are covariant equations of motion.
The covariant equations of motion are

0 0L($,0,0) OL _
ozt 0(du0) 09

Our first important example will be the Klein-Gordon field, in three spa-
tial dimensions, with a lagrangian density

1. 1 1 1 1
L =50" =5 (Vo) — om’¢" = S (0,0)(9"9) — ym’¢”

This is the generalization of the mass chain to three dimensions, with an
added term that depends on ¢ itself, if the parameter m # 0. The choice
of setting the coefficient of ¢? to % may be viewed as setting the scale of ¢,
while the coefficient of (V¢)? is then fixed if we are to have a relativistic

theory. Now
oL

™= % = ¢7
and more generally ~
oL
oo _ — e
e 50,0 0"e,

the equations of motion are
9,0" ¢ +m*p = 0.
and the Hamiltionian density is

H=nd—L=2n+ L (VO + o’

We have several more things to discuss about classical field theory:
e Symmetries and conserved currents and charges (Noether’s theorem).

e Maxwell’s equations and electromagnetism, including £ and H, and
four dimensional F,, .

This will be postponed until the end of this chapter. First let’s take a step
into Quantum Mechanics.

3 Quantum Mechanics

In quantum mechanics the question of what path a system takes through
coordinate space is no longer meaningful, nor can a system be at a point in
phase space, for the Heisenburg uncertainty principle says the most localized
a state can be still requires a given volume in phase space. The possible
states of a system can be described in terms of wave functions on coordinate
space, and quantum mechanics (Schrodinger’s equation, for example) tells
us how those functions evolve with time. Thus we have a unitary operator,



the time-evolution operator, which gives the amplitude for a state [¢;) at
one time to be in the state |t) a time t later, (vp|e /" b)), where we
have assumed the Hamiltonian is time-independent. In fact, this transition
amplitude can be understood in a functional integral formulation of quantum
mechanics as a sum over all possible paths I' of €t/ for the system to go
from one configuration to another at a later time, rather than, as in classical
mechanics, choosing the one path that extremizes the action.

Actually, as we are going to be dealing only with quantum systems, it is
convenient to use units with 7 = 1, thereby measuring energies and (ordi-
nary) momenta in units of inverse meters, as we have already set ¢ = 1.

Let us look at a simple transition amplitude for a free nonrelativistic
particle, to move from a definite position @y at time 0 to a point Z at time ¢.
Here H = p?/2m, so the amplitude is

(@M To) = (T]e P |T) (2)
ddp | —ip? m | = od [Pwg
= [ (o {1 15) B150) (3)
3
_ /(d])) 672p2t/2m+1p (Z—2o) (4)
2m)3
3/2
i
Here? we are using states normalized so that (Z'|Z) = &(Z' — ¥), with
momentum eigenstates normalized so that (p'|p) = (27)36*(p’ — p), and
completeness is
Ep s
1= [ Gy P 1.

and (7| p') = e”. This explains the second and third lines above. To get to
the last line, it is useful to know the Gaussian integral?
/deeff-Aerl?f _ P e%B A" B
det A ’

2Later we will change that normalization to be consistent with Peskin and Schroeder,
[P)es =V 2VP2 +m? D). -

3See http://en.wikipedia.org/wiki/Gaussian integral.

if A is a diagonalizable matrix with all eigenvalues having a positive real part.
In our case we are at the boundary of this condition, but the expression still
holds.

Note there is a nonzero probability that the particle will be found at
any distance |¥ — Zo| even after an arbitarily short time ¢. This is not sur-
prising, for an eigenstate of position Zy contains arbitrarily high momenta,
and for nonrelativistic mechanics this means arbitrarily high velocities. But
what might be surprising is that the same thing happens even if we use the
relativistic form for the energy, E = /p* + m?2.

(@ i) = (@] VI i) 0
— [ a eV ) i) @

— o 2 —iy/p2+m2t
(%)3/0 pidpe™'V (8)

x/ sin 6 d ¢'P1F= ””O‘COSO/ do
—iy/p%+m? t/ sin edeez\pllx Zo| cos (9)
2 —iy/p? +m2t/ du eilPllE—Folu (10)

_ 7/ dppe~ VP tsin(plz — B) (1)

22| — X

In terms of the dimensionless variables 7 = mt and r = m|¥ — %y, and a
dimensionless integration variable v = p/m, we have

(Z] e ™ |Z,) = 52y / dv v sin(vr)eTVIH? (12)
— 2m2 o / dv cos(vr)e TVIH? (13)
w2rdr

Gradshtein and Ryzhik 3.914 tells us that the last integral is on the border
Y K2 _ 2
’7/’12 K1< r T )
It is pleasing to find that, except for the non-covariant normalization fac-
tor, the dependence is on the invariant m?((Z — Z)? — t?) but it is not so

of the valid region and should be



pleasant to see that the function does not vanish for positive, spacelike, argu-
ments. Evaluation by steepest descent? shows that for r > 7 the propagator
goes like eV~ s0 it falls exponentially but is not identically zero, as rela-
tivity should have it. Thus we have a finite probability that the particle has
moved to a position it only could have gotten to by moving faster than the
speed of light!

We will see that the resolution of this contains
the creation of particle — antiparticle pairs, and
the probability of finding a particle at a distance
x > ct from where one particle was is due to cre-
ation of another particle from the vacuum, fol-
lowed by the antiparticle member of the pair later
annihilating our original particle.

So we see that the quantum mechanics of a single particle gives unphysical
results in a relativistic theory, and we need to consider rather quantizing the
field.

4 Field Quantization

Now consider again the Klein Gordon field described by the “coordinates”
¢(7,t) and the canonical momenta 7 (7, t), with the Hamiltonian density

1 1 1
H=-r+= (V) + §m2¢2.

2 2
How do we quantize this? If we go back to the lattice, we would say
(B, q5] = —idy;.

Our momenta 7, however, are momentum densities, so the normalization we
should expect is [d3z[n(Z), #(Z')] = —i provided Z’ is in the integration
region, and 0 otherwise. This is what a Dirac delta was invented for, so

(%), 6(&")] = —i0*(7 — 7).
Of course the coordinates commute with each other, as do the momenta:

[0(2), (2] =0,  [7(Z),n(2")] =0.

4See, for example, Arfken, “Mathematical Methods for Physicists”, 2nd Ed., pp 373-
376.

The classical mechanics of the wave equation is very simple, with solutions
corresponding to all 3-momenta k, with

d)(f? t) x 6iﬁf—iwt’ with w = :t\/m’

so more generally the field can be expanded in terms of coefficients for each
momentum,

1) = [ e ).

Note that as ¢(Z) is real (or, in quantum mechanics, hermitean), ¢ is not
real but rather satisfies the condition ¢f(p) = ¢(—p). Thus we would do
better to write

d3 1 L L
¢(f7 t) _ / p (aﬁezp-zfzwﬁt + a;;efzpm%»zwﬁt) 7

CrY oy

which is automatically Hermitean. The factor 1//2wy is introduced to set
the scale of @ and a' conveniently, as we will explain in a minute. From 7 = ¢
we gather that

3 —
W(fa t) = _i/ (;l ];3\/ % <a56iﬁ'f_i“ﬁt — a;e—iﬁ'f+iwﬁt) ’
™

At time ¢t = 0 it may be more convenient, by changing the dummy variable
7 into —p'in the a' terms, to write these as

dp 1

A0 = [ G oy )

- . Pp  [T5 ipZ
7(Z,0) = —i (27r)3’/7p (aﬁ— a1p~> e

Then
(7)., 6(3") : o
0@ w0 | = |- | = [ G [ R e
[w(@), m(2")] 0 2, fwpp
[aﬁ + G]L_ﬁ, agr + aJr_ﬁ ]
X —iwﬁ/[aﬁ + a%ﬁ agr — a%ﬁ,]

—wﬁwﬁ/[aﬁ — afﬁ, aﬁ/ — afp»,]



From the double Fourier transform of this, we see that

[ap—i—a Lag +al s = 0

[+ al 7 @t — al s = —2(2m)°0°(p+p')
laz — atﬁ, agr — aiﬁ,] =0
or
lag,ap] =0, lagal] = 2n)°*(F—p"),  lafal]=0.

Thus we have commuting operators for different p, and for each p we have a
set, of ordinary harmonic oscillator raising and lowering operators, or at least
we would have if we were dealing with momenta discretized by working in a
finite box.

The Hamiltonian (at ¢ = 0) can be written

0= [@e {50+ 5 (V67 @)+ ;mie))

- s / : / f A ) o)

27)3 2

—l-m (aﬁ-l— aiI;) (aﬁl + aT_q/) }ei(ﬁ’_o_ﬁ)@

2 2
L (gl (ot )}
= 1 d3p ~{aﬁa; + aﬁaﬁ}

Notice that the Hamiltonian separates, each spatial momentum component
p’ decoupling from the others and entering as a simple harmonic oscillator.
However it is a bit disconcerting to have the zero point energy, %wﬁ, for all of
the infinite number of normal modes. As long as we avoid general relativity,

and the coupling of this energy to gravitation, we can ignore this constant,
though infinite, contribution to the energy of every state in the system —
only energy differences have any effect. So we will drop this constant and

write P
_ p t
H = / (QW)Swﬁaﬁaﬁ'

We can find the possible states of the field theory by examining the com-
mution relations of 4 with a; and a;;. As

lal, agr, a5 = [al, ag] ag = —(27)%6° (B — F) ap,

7 ]
and
b,y al] = al oy al] = (2mP6F — )l
we have B
[H,az] = / ﬁ%' o, az/, a5) = —wyag,
[H, a;;] = / (62127)/5 Wy [ai sagr,al ] :wﬁa;;.

If |¢) is a state with energy E, (H |¢) = E|¢)), then az|¢) is a state
with energy E — wy, unless az|)) = 0. Thus the lowest energy state of the
system must be the [¢)) for which az|)) = 0 for all p. This is called the
vacuum state, and has energy zero (after having dropped the constant term
from H). Thus we will describe this state as |0), with H |[0) = 0, az|0) = 0
for all p.

We can create other states from the vacuum state by applying raising
operators a;, repeatedly, to the vacuum state. From their commutator with
H we see that the energy is

Hal ol [0) = [H, aﬁl]aﬂ |0) + al, [H,al,]|0) + al, al, 7 |0)

= wpaf,al, |0) +afwpal] [0) +0

p1 P2
= (wp +wp)afal, [0)
so the state agla;% |0) has energy (is an eigenstate of H with eigenvalue)
wp, + wp,. This is what a state of two noninteracting particles, each of mass
m, with momenta p; and py respectively, should have.



This is surely a hint that

i)

is a state of N particles of momenta pi,..., Py, and we can get further ev-
idence by asking for the total momentum P of this state. The momentum
operator may be derived from translation invariance, as any continuous sym-
metry of a theory corresponds to a conserved quantity, which for translations
is the total momentum. We will discuss this relationship, called Noether’s
theorem, after we make a few more observations about the quantum mechan-
ics of a free scalar field. For the moment, let’s just accept that

P(t) = — [ &3z §(Z,t) Vo(Z, t). Expanding that in terms of a and af,

P(0) = —/d5 (—i /<d3 ), \/W@ﬁ/ _ aiﬁ/) (B
g o

. d3 .
S L O

where the integral over x has given us a (27)3§%(p+p’) which we have used to

do the d®p’ integral, and in the last line we have dropped from the integrand

terms which are antisymmetric under p’ < —p (including [ dp p53(0).)
Notice that as az|0) = 0 for all 7, P |0) = 0. Also, because

P = [ 22, o) - ) =
7 p (27'(')5 D p?

when P acts on the state ay, L al 10) we get

P1 P2
Papl% 0) = [P,al]al, 0) +af; [P, al,] |o>+ap1a;2p\o>
= Prapaf, 0+ afyFaj,]0) +0
= (7 + P2)af al, |0)

SO ap1 a‘,ﬁ2 |0) is an eigenstate of P with total momentum p1 + pa, and of
H with total energy wy, + wp,, just as one would expect for a state of two
noninteracting particles with momenta p; and ps respectively. Thus it is clear
that we can construct multiparticle states by applying a!’s to the vacuum
state.

The normalization, however, is not what Peskin and Schroeder use, which

is instead
|ﬁ> =\ 2("“]17 a:?|0> ) |ﬁ17p2 \/ 2w}01 \/ 2wp2 a‘pl p2

for reasons they explain, which I will not repeat. (I will also switch from wjy
to Ez to be consistent with them, though I don’t see why.) For 1-particle
states, this means
(P7) = 2E5(27)*6° (9 — q)

and B 1

Tpart = [ (35 ) 01
is the projection operator onto single particle states. This normalization is
Lorentz invariant, for the obviously (orthochronous® ) Lorentz invariant

d'p d’p [~
502 — m2)O(p° :/ /do(; 02 _ 2
/<27T)3 (p” —m?)Oe(p") o h ((p ) p)
Pp = d@®)?
— : 5((p°)2 — E2
/ (2#)3/0 2p° ((p ) p>
_ /f_pi
(27’[‘)3 2E;,7.

Now that we understand azy and a; as operators which annihilate or create
one particle of momentum p, we see that the field operator ¢(Z) can
either create or annihilate a particle at 7.

So far we have only considered these operators at a given time, as we
generally do in Hamiltonian mechanics, or the Schrodinger picture, where

the operators are fixed but the states transform with H = i0/0t. In the
Heisenberg picture, the operators are time dependent, with

Pa’) = o(1,t) = e G(T, 0)e ™",

5Proper orthochronous Lorentz transformations are those which preserve the future
direction of time (orthochronous) and which do not reverse right and left hands (proper).
That is, A% > 0 and det A*, > 0.




and similarly for all other operators O(t), with

2
ot
This gives the equations of motion for the field operators
% (@ t) = w(&t),
0
i
or (9,0" +m?) ¢(x) = 0.

There are two worthy things to noteS:

o = 20 ]

RN

d(ah) = eth—iﬁ~9?¢(6, O)e—th-‘riﬁf _ eiP,,J:”(ﬁ((‘i O)e—iprp.

Let us return to the question of causality which led us to question the
idea of using quantum mechanics for a fixed set of particles and argue that
field theory was necessary. To do things a little differently than the book,
let’s consider the two component free Klein-Gordon field, which, as problem
1 of homework 1 shows, is equivalent to a complex field ¢ satisfying (9,0" +
m?)¢ = 0. As there is no reality condition on ¢, the coefficients of the
negative frequency modes are independent of the positive frequency ones,
and we write

0 =0, H].

Tt) = —(=V24m?)e(i,1),

—ip, H in ot
(aﬁe Pt +a;elpﬂx)

)
p°=Ej;

and

(bﬁe—i(Et—ﬁ:Z) + aﬁei(Et—p“f)) 7

dp 1
=4 —
and ¢' is, of course
dp 1
T 7 1) = s

STf q; and a} satisfy [a;, a;f-] = d;5, M;; is any c-number matrix, and O any function of

(aﬁ e UBt=PT) | b; ei(Et—ﬁf)) )

a and af,
eaml“O(a,aT)e—am[“ = O(e_Ma, aTeM).

As ¢'(Z,t)|0) is, up to normalization, a one-“b” particle state localized
at & at time ¢, we may ask what the probability of finding a one-“b” particle
state at 7’ at time ¢’ by evaluating

D(a™,a") = (0] ¢(Z",#)$"(%,1) [0) (14)
_ / ddp/ 1 e—i(Eﬁ/tl—ﬁ/'f/)
(2m)* | 25
dp 1 Eyt — - & 363 /=t
X/(Qﬂ)s \/273562( P-E) (an) s — )

_ Ep 1 By —t) iy (& - &
— /(27r)3 TR (' — 1) i~ ( ). (15)

As we saw earlier, the integration measure is invariant under proper or-
thochronous Lorentz transformations, and clearly it is invariant under
translations. So we may write D(a'", 2") = D(2’" — 2*) and recognize that
it is actually a function only of s* = (¢ —t)? — (' — Z)? and the sign of ¢’ — ¢
in the case that s> > 0. If s> > 0, with ¢ > ¢, we may choose to work in a
frame with 2’ =7, ¢/ —t =s > 0,

dp 1 ,
D ZL'/H —h — / e—zEﬁs
( ) (27T)3 2Eﬁ
A2 ptdp i,
(2m)3 Jo  2E,
1 o .
= —/ dEVE? —m?e E?,
471'2 m
For large time, that is for large values of s, the integral is dominated” by the
lowest value of E, and behaves like e~ as we might expect because the
lowest energy component of the state has energy m.
On the other hand, if 2’* — z# is spacelike, we can choose to work in a
frame with t' = t, ' — ¥ = ré,, in the z direction®, and

/ d3p 1 —ipzT
e z
(27T)3 2Eﬁ

D(z'" — a#)

7Actually, for real s the integral doesn’t actually converge. See footnote 9 for a discus-
sion.

8Notation: Although it is p* rather than P, whose spatial components are the usual
vector p, when I use z, y and z as in p,, I will write them as subscripts as is customary in
Euclidean space. Thus p, = p3. I hope this dubious notation doesn’t cause any difficulty.
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[e'] p2 T . 0 2m

= o | dp— [ sinfdfe s / d

(277)3/0 szp ; Sin e A qﬁ i
1 oo ’

B /. d p2 eipr_e—ipr
o (2m)2 o pQEp ipr

—1 - ,

. dp——t ¢l ; ‘
8m2r /—oo p\/pQ T ; p '

To evaluate this integral® we note that for 7 > 0 we may add a semicircle in
the upper half complex p plane at |p| = oo to close the contour. Then we
may deform the contour to surround the cut along p = iy for

y > m. Thus 2

;i /Oo —idy iy e YT A
8121 Jm —i\/y2 - m2 D

- dy——Z YT
+87r2r/m ! yi [y _m2€ Y
e P o m
A2 Jm iJy? — m?
While this does decrease exponentially (roughly as e=™" for large r), it is

certainly not zero (the integrand is positive everywhere), so we do not have
a zero probability of finding an “b” particle at a space-like separated point.

D" —at) =

9Again we see that the integral doesn’t quite converge. The oscillations which cause
this are thrown away in this argument at the ends of the arc at infinity. The justification
for treating these propagators as if they were well defined is to expect them to be convolved
with some wave packet which will smear out the oscillations. Another way to say this is
that the oscillations are an indication of delta functions which are irrelevant for nonzero
distance separations.

We see that (0| ¢(Z',t)¢'(Z,t)|0) cannot repre-
sent the amplitude for creating a particle from the
vacuum at (Z,t) and have it propagate to (Z',t'),
but rather something more complicated, including
virtual pair creation and annihilations between ¢
and t'. In fact, we don’t even get zero if ¢’ is ear-
lier than ¢t. As we will see later, causality in field
theory is related to the commutator of operators.
So we will now ask if the commutator of two fields
vanishes for spacelike separations.

For free fields it is clear that the commutator of two fields at any two times
is a c-number, and so we can evalate it by taking its vacuum-expectation value

(VEV):

[0'(2), ()] = (0] &' (2)6(y) [0) — (0] 6(y)¢' () |0) = D(z — y) — D(y — x),

were I have used the fact that the calculation of (0] ¢(y)¢f(z) |0) is identical
to that for (0| ¢'(y)p(x)|0), only replacing a and a' with b and bf. For
spacelike separations, however, x — y and y — x can be rotated into each
other, and as D is invariant under orthochronous Lorentz transformations,
which include rotations, the difference must vanish. Thus [¢'(z), ¢(y)] = 0
for spacelike # — y. Of course for the complex field [¢(x), ¢(y)] = 0 for all
x and vy, as the a’s commute with both b and b'. We do, however, need to
be careful about [¢f(x),¢(y)] = 0 near z# = y*. For from the lagrangian
derived in your homework (with ¢ := (¢ + i¢s)/v/2)

L=08,0'0"0 — ',

we see that

oL
=5

and as we know that at equal times

[ﬂ-(f’ t)? Qb(?j? t)] = _i63(?j_ f)

we see that 5
o5 0@ 0,07, 1))| = —id"(F - 7).
t'=t
So we see that we have singular behavior for x# — y*.



More generally, for timelike separations we cannot map x—y to y—x with
an orthochronous Lorentz transformation, and in fact D(z —y) = D*(y — x).
The commutator is

0116/ (@) 60110) = [ Gyt e (770 =" -

eipu (z — y)”)

pO:Ep

g_ipll(x - y)#

- / 27r 3 2E5 ( ey po—Ep> 16)

(T =V 52 — m?)e(p”) (17)

po=Ep

I used the fact that the integration is symmetric under p to change the sign
of Z — ¢ in writing (16), and the property of the delta function that

()= 3 o)

233 f(z:)=0 |f/ ()]

to write (17). e(x) = +1 for x > 0 and —1 for x < 0.
We can think of the py integral

/dpof(po)5(p3 — E*)e(p")

(with E = \/p? + m?) as the integral around the poles of —

If 2° > ¢ the integral [ dp, distorted
as in contour I'y, may be closed in the lower
half plane with an infinite semicircle, and the
delta function contributions can be considered
as residues of poles of (p? — m?)~!. That is,
because

1 1 1 1
Res ———=-—, Res —— =———,
po=E p> —m 2E’  po=—E p* —m? 2F
we can write the commutator as

(0] 16/ (), 6w 0) = | (ig;g dpy 1

e_ip/l(x - y)M

for 2% > ¢/°

To 270 p? —m?

The minus sign is because our contour runs clockwise rather than counter-
clockwise.

For 2° < °, we can close the contour I'y with a semicircle I'_ in the upper
half plane. This closed contour contains no poles or other singularities, so the
integral over I'g |JI'_ vanishes. Our function, integrated over 'y, is known as
the retarded Green’s function

Dr(z—y) = 0(z"—3") (0] [¢'(2), &(y)]]0)

3 _ .
-/ dp [dp T —ip(e—y)"
(2m)3 Jry 2mi p? —m?

As implied by the “Green’s function” part of the name,
(02 +m®)Dp(x —y) = —id*(z — y),

where 92 = 9,0" involves differentiation with respect to z only, holding
y fixed. In the derivation in the book, one needs that the derivative of
the heaviside function ©(t) is d(¢), and the derivative of d(¢) can only be
evaluated by differentiating whatever multiplies it,

0'(x) f () ~ =6(x) [ (x).

Dg(x — y) may also be written as the Fourier transform of Dg(p),

Data—) = [ ouDutmye =l ="

with the contour I'y indicating the contour for p° for each fixed value of p.

As with any Green’s function, there is an am-
biguity due to adding in solutions of the ho-
mogeneous equation. In terms of the Fourier
transforms, this ambiguity corresponds to
choices of how the p° contour deviates around
the poles. An important choice is called the
Feynman propagator, defined the same way
Dp is in (18), except that the contour is de-
fined to pass below the pole at p° = —E,, and
above the one at p° = —F,,, as I" shown.

This choice is sometimes indicated by taking the Fourier transform to be
i/(p* — m* + i€), which has the poles at py = 4/ E2 — ie = £(Ey — i€’) for



some infinitesimal but positive values of € and €. This places the poles just
above the negative real axis and just below the positive one, so dpy can run
exactly on the real axis and pass to the sides of the poles Feynman requested.
Closing the contour with I'y in the lower half plane for 2° > 3° or with I'_
in the upper half plane for z° < y°, we see that only the pole at p° = Ej
contributes for 2° > ¢°, and that at p® = —Ej for 2° < y°. The residues of
(p*—m?)~! are +1/2E, and —1/2E, respectively, but the clockwise direction
of the contour I'JT'; gives an extra — sign in the 2° > 3% case. Then we
have

Dp(z—y) = 0" —y")D(x—y)+0(y" —2°)D(y — x)
= 0(z" = ") (0] ¢ (2)e(y) 0) + O(y" — 2°) (0] H(y) &' () |0)
(0] T (z)o(y) |0) - (19)

In the last expression, T is a kind of meta “time-ordering” operator, which
tells us to rewrite the operators following it in chronological sequence (right
to left increasing).

Thus far we have discussed only a free field — that is, as we have seen,
the solution to the equations of motion are all of the form that we have some
bunch of particles of various momenta, but each one has constant momentum,
and the number of particles is unchanged in time. This is elegant but not
very interesting — we need to include interactions to have interesting physics.
Unfortunately, interactions make the theory much more difficult to solve. The
simplest interaction our Klein-Gordon particles can have is with an external
classical source. In electromagnetism, this classical source is a 4-current j#
as you considered for homework, which enters as an additional term —A,,j*
in the lagrangian. There are complications here, but for a real scalar field
the source is simpler, so that

1 1
L= §(au¢)2 3

Thus the field ¢(x) can be found using the retarded Green function
olw) = do+i [ d'y Drlw - y)j(y)

The last section of Chapter 2 shows that the source creates particles of mo-
mentum p’ with a number expectation value given by the square of the fourier

transform .
W+ mp) = [diyeriiy)

m?¢? + j(x)o(z) = (0°+m®)¢ = j(x).

You should read through this section, but I will not lecture on it.



