
Feynman Path Integral Formulation of Quantum Mechanics
[This is based on my 1980 lecture notes for 616]

If your introduction to quantum mechanics was like mine, the thing that
convinced you that classical ideas couldn’t work was an experiment in which
a particle is given a choice ot two holes to go through before hitting a screen.
We are told that the intensity observed
at C is the square of the amplitude
A, which is a sum of amplitudes for
S → B → C and S → D → C.
Each of these amplitudes is a product
of an amplitude for S → hole and
an amplitude for hole → C. The
astounding thing about this double
slit experiment is that the amplitudes
for the different holes is what gets
added, rather than the probabilities.
In wave terms, the amplitudes are
added, complete with phases, and the
intensity shows interference.
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If there were more than two slits, the amplitude would be the sum over
all of them. Now consider a system of many screens, i = 1 . . . n, each with

many slits, j = 1 . . .mi. Clearly the
amplitude S → C is just

A(C, S) =
m1
∑

y1=1

· · ·
mn
∑

yn=1

n
∏

i=0

A(yi+1, yi),

where y0 = S and yn+1 = C. One term
in the sum corresponds to the path
shown. This is just the mathematical
statement that the total amplitude is
the sum of the amplitudes for each
possible path.
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If the screens were so completely filled with slits that nothing was left of
them, the sum over slits would now be over all possible y values, and the
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sums would become integrals over each y,

A(C, S) =
∫

dynA(yn+1, yn)
∫

dyn−1A(yn, yn−1) · · ·
∫

dy1A(y2, y1)A(y1, y0)

In this example we were able to think that the particle is always moving
forward, so that the different screens at x1 . . . xn also represent different times,
and we might also consider that A(yi+1, yi) represents the amplitude for a
particle at position yi at time ti to wind up at yi+1 at time ti+1. Such an
amplitude, for a particle with a time-invariant Hamiltonian, is given in the
operator formulation of quantum mechanics by the unitary time-evolution
operator, with coordinate-space matrix elements

U(yf , yi; tf , ti) = 〈yf |e
−iH [tf−ti]/h̄|yi〉.

This operator evolves the wave-function in time

ψ(yf , tf) =
∫

dy U(yf , y, tf , ti)ψ(y, ti), (1)

and therefore is unitary and has the property

U(yf , yi, tf , ti) =
∫

dy U(yf , y, tf , t
′)U(y, yi, t

′, ti)

which expresses the fact that evolving from ti → t′ and then from t′ → tf is
evolving from ti → tf .

In particular,

d

dt
U(y, yi; t, ti) = lim

∆t→0

U(y, yi; t+ ∆t, ti) − U(y, yi; t, ti)

∆t

=
1

∆t

∫

dy′ (U(y, y′; t+ ∆t, t) − δ(y − y′))U(y′, yi; t, ti).

But to first order in ∆t,

U(y, y′; t+ ∆t, t) = 〈y|1− iH∆t/h̄|y′〉 = δ(y − y′) − i(∆t/h̄)〈y|H|y′〉,

so

ih̄
d

dt
U(y, yi; t+ ∆t, ti) =

∫

dy′〈y|H|y′〉U(y′, yi; t, ti),

which is to say, from Eq. 1,

ih̄
dψ

dt
= Hψ,
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the Schrödinger equation.
Now we need to examine the time-evolution over infinitesimal time inter-

vals. The Hamiltonian is, in general, a function of the generalized coordinates
~q and the momentum ~p, so we wish to evaluate

〈~q ′| e−iH∆t/h̄ |~q 〉 ≈ 〈~q ′| ~q〉 −
i∆t

h̄
〈~q ′|H(~q, ~p) |~q 〉

The Hamiltonian will have some terms depending on ~p and others on ~q.
For a standard non-relativistic potential, these terms are separate, H =
~p2/2m + V (~q). The ~q operators can act on the q-eigenstates, for which we
have

〈~q ′| ~q 〉 = δ(~q ′ − ~q), 〈~q ′|V (~q) |q〉 = δ(~q ′ − ~q)V (~q ).

For the momentum-dependent pieces we introduce a complete set of momen-
tum eigenstates,

1 =
∫

d~p |~p 〉 〈~p | .

The normalization is such that

〈~q | ~p 〉 =
ei~p·~q/h̄

(2πh̄)D/2
,

where D is the number of degrees of freedom (number of q’s). Then, for
example,

〈~q ′| ~p 2 |~q 〉 =
∫

d~p 〈~q ′| ~p 2 |~p 〉 〈~p || ~q 〉 =
∫

d~p ~p 2 〈~q ′ || ~p 〉〈~p || ~q 〉

=
∫

d~p

(2π)D
~p 2ei~p·(~q ′

−~q).

By introducing the integral over ~p, we are able to express the Hamiltonian
in terms of c-numbers rather than operators. If the Hamiltonian has terms
involving both q’s and p’s, there are questions of operator ordering. We will
assume we get the right value if we replace ~q by (~q ′ + ~q)/2 and ~p by ~p. The
exact conditions are in Peskin.

Thus we see that we may replace the time-evolution operator matrix
element

〈~q ′| e−iH∆t/h̄ |~q 〉 →
∫ d~p

(2π)D
ei~p·(~q ′

−~q)/h̄ exp

[

−iH

(

~q ′ + ~q

2
, ~p

)

∆t

h̄

]

.
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If we also use ~q ′ ≈ ~q + ~̇q∆t, we have

∫ d~p

(2π)D
exp

(

i

h̄

[

~p · ~̇q −H

(

~q ′ + ~q

2
, ~p

)]

∆t

)

.

This certainly looks like the exponential is i∆t/h̄ times the Lagrangian,
and if we put all the slices together and combine the exponentials, the expo-
nential becomes

i

h̄

∫ tf

ti
dt
(

~p(t) · ~̇q(t) −H(~q(t), ~p(t))
)

.

Then the integral looks like the action, and we can intepret the quantum
mechanical time evolution operator

U(~qf , ~qi; tf , ti) =
n−1
∏

i=1

d~qi
n
∏

i=1

d~pi

(2πh̄)D
exp

i

h̄

∫ tf

ti

[

~p · ~̇q −H(~q, ~p)
]

dt

as a sum over all paths of the phases exp iS/h̄, where S =
∫

Ldt is the
action evaluated on that path. There is one objection, however: we need to
integrate over the momenta, so that in ~p(t) · ~̇q(t) − H(~q(t), ~p(t)), the usual
constraint between the momenta and the coordinate time derivatives is not
to be imposed. In the case were the Hamiltonian involves momenta only in
the form

∑

p2
i /2mi, the integral over the momenta is Gaussian and can be

explicitly evaluated. When this is done, the momenta in the Hamiltonian
do get replaced by the appropriate expression in ~̇q, defined as [~q(t + ∆t) −
~q(t)]/∆t, and the integral in the phase is actually the action.

The combination of integral measures above is given a pretty abbrevia-
tion:

Dq(t)Dp(t) ≡
n−1
∏

i=1

d~qi
n
∏

i=1

d~pi

(2πh̄)D
,

and when the momenta integrals are done, the resulting measure is called,
somewhat inconsistently,

Dq(t).

Note that in this form, each integral over q(t) has a factor (C−1(ǫ) in Peskin)
which blows up as the spacing between integration times goes to zero.
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