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εijk and cross products in 3-D
Euclidean space

These are some notes on the use of the antisymmetric symbol εijk for ex-
pressing cross products. This is an extremely powerful tool for manipulating
cross products and their generalizations in higher dimensions, and although
many low level courses avoid the use of ε, I think this is a mistake and I want
you to become proficient with it.

In a cartesian coordinate system a vector ~V has components Vi along each
of the three orthonormal basis vectors êi, or ~V =

∑
i Viêi. The dot product

of two vectors, ~A · ~B, is bilinear and can therefore be written as

~A · ~B = (
∑

i

Aiêi) ·
∑

j

Bj êj (1)

=
∑

i

∑

j

AiBj êi · êj (2)

=
∑

i

∑

j

AiBjδij , (3)

where the Kronecker delta δij is defined to be 1 if i = j and 0 otherwise.
As the basis vectors êk are orthonormal, i.e. orthogonal to each other and of
unit length, we have êi · êj = δij.

Doing a sum over an index j of an expression involving a δij is very simple,
because the only term in the sum which contributes is the one with j = i.
Thus

∑
j F (i, j)δij = F (i, i), which is to say, one just replaces j with i in all

the other factors, and drops the δij and the summation over j. So we have
~A · ~B =

∑
i AiBi, the standard expression for the dot product1

We now consider the cross product of two vectors, ~A × ~B, which is also
a bilinear expression, so we must have ~A × ~B = (

∑
i Aiêi) × (

∑
j Bj êj) =∑

i

∑
j AiBj(êi× êj). The cross product êi× êj is a vector, which can therefore

be written as ~V =
∑

k Vkêk. But the vector result depends also on the two
input vectors, so the coefficients Vk really depend on i and j as well. Define
them to be εijk, so

êi × êj =
∑

k

εkij êk.

1Note that this only holds because we have expressed our vectors in terms of orthonor-
mal basis vectors.
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It is easy to evaluate the 27 coefficients εkij , because the cross product of two
orthogonal unit vectors is a unit vector orthogonal to both of them. Thus
ê1 × ê2 = ê3, so ε312 = 1 and εk12 = 0 if k = 1 or 2. Applying the same
argument to ê2 × ê3 and ê3 × ê1, and using the antisymmetry of the cross
product, ~A× ~B = − ~B × ~A, we see that

ε123 = ε231 = ε312 = 1; ε132 = ε213 = ε321 = −1,

and εijk = 0 for all other values of the indices, i.e. εijk = 0 whenever any
two of the indices are equal. Note that ε changes sign not only when the last
two indices are interchanged (a consequence of the antisymmetry of the cross
product), but whenever any two of its indices are interchanged. Thus εijk is
zero unless (1, 2, 3) → (i, j, k) is a permutation, and is equal to the sign of
the permutation if it exists.

Now that we have an expression for êi × êj, we can evaluate

~A× ~B =
∑

i

∑

j

AiBj(êi × êj) =
∑

i

∑

j

∑

k

εkijAiBj êk. (4)

Much of the usefulness of expressing cross products in terms of ε’s comes
from the identity ∑

k

εkijεk`m = δi`δjm − δimδj`, (5)

which can be shown as follows. To get a contribution to the sum, k must be
different from the unequal indices i and j, and also different from ` and m.
Thus we get 0 unless the pair (i, j) and the pair (`, m) are the same pair of
different indices. There are only two ways that can happen, as given by the
two terms, and we only need to verify the coefficients. If i = ` and j = m,
the two ε’s are equal and the square is 1, so the first term has the proper
coefficient of 1. The second term differs by one transposition of two indices
on one epsilon, so it must have the opposite sign.

We now turn to some applications. Let us first evaluate

~A · ( ~B × ~C) =
∑

i

Ai

∑

jk

εijkBjCk =
∑

ijk

εijkAiBjCk. (6)

Note that ~A · ( ~B× ~C) is, up to sign, the volume of the parallelopiped formed

by the vectors ~A, ~B, and ~C. From the fact that the ε changes sign under
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transpositions of any two indices, we see that the same is true for transposing
the vectors, so that

~A · ( ~B × ~C) = − ~A · ( ~C × ~B) = ~B · ( ~C × ~A) = − ~B · ( ~A× ~C)

= ~C · ( ~A× ~B) = −~C · ( ~B × ~A).

Now consider ~V = ~A× ( ~B × ~C). Using our formulas,

~V =
∑

ijk

εkij êkAi( ~B × ~C)j =
∑

ijk

εkij êkAi

∑

lm

εjlmBlCm.

Notice that the sum on j involves only the two epsilons, and we can use
∑

j

εkijεjlm =
∑

j

εjkiεjlm = δklδim − δkmδil.

Thus

Vk =
∑

ilm

(
∑

j

εkijεjlm)AiBlCm =
∑

ilm

(δklδim − δkmδil)AiBlCm

=
∑

ilm

δklδimAiBlCm −
∑

ilm

δkmδilAiBlCm

=
∑

i

AiBkCi −
∑

i

AiBiCk = ~A · ~C Bk − ~A · ~B Ck,

so
~A× ( ~B × ~C) = ~B ~A · ~C − ~C ~A · ~B. (7)

This is sometimes known as the bac-cab formula.
Exercise: Using (5) for the manipulation of cross products, show

that
( ~A× ~B) · ( ~C × ~D) = ~A · ~C ~B · ~D − ~A · ~D ~B · ~C.

The determinant of a matrix can be defined using the ε symbol. For a
3× 3 matrix A,

det A =
∑

ijk

εijkA1iA2jA3k =
∑

ijk

εijkAi1Aj2Ak3.

From the second definition, we see that the determinant is the volume of the
parallelopiped formed from the images under the linear map A of the three
unit vectors êi, as

(Aê1) · ((Aê2)× (Aê3)) = det A.

Last Latexed: September 8, 2005 at 10:14 4

In higher dimensions, the cross product is not a vector, but there is a gen-
eralization of ε which remains very useful. In an n-dimensional space, εi1i2...in

has n indices and is defined as the sign of the permutation (1, 2, . . . , n) →
(i1i2 . . . in), if the indices are all unequal, and zero otherwise. The analog of
(5) has (n−1)! terms from all the permutations of the unsummed indices on
the second ε. The determinant of an n× n matrix is defined as

det A =
∑

i1,...,in

εi1i2...in

n∏

p=1

Ap,ip.


