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Having discussed the various particles of the standard model and the
symmetries which classify them, it is time to turn to the question of how
they behave, that is, what equations govern their motion.

We are dealing with quantum mechanics here, so of course the states in
which the system can exist live in a large Hilbert space on which physical
quantities act as linear operators. But unlike non-relativistic quantum me-
chanics, these states are not just configurations of a fixed number of particles,
because in relativity particles can be created and destroyed. But even though
the states can represent amorphous configurations, they can be decomposed
into irreducible representations of any symmetry of the physics.

Because we assume physics is invariant under spatial and time trans-
lations, the total 4-momentum of the state is conserved, and because the
generators P̂ µ of these translations commute and can be simultaneously di-
agonalized as operators in the space of all states of the system, we can de-
compose the states into states with definite values pµ of P̂ µ. That is, these
states are eigenvectors of the operators P̂ µ. But when we consider the big-
ger Poincaré symmetry group, including rotations and Lorentz boosts, the
momentum operator does not commute with rotations or boosts, so the in-
dividual momentum states must be combined into bigger representations.
But

∑

µ P̂µP̂
µ does commute with all these symmetries, so an irreducible

representation will have a definite (single) value for p2 = m2.
[Note: We are using relativistic (4-D) notation, which requires vectors

to be either contravariant (xµ = (x0, x1, · · · , x3) = (t, x, y, z)) or covariant
(pµ = (p0, · · · p3) = (E,−~p ). We recall that the (Minkowski) square of a
vector or the dot product of two vectors is defined as the Lorentz scalar

W · V = W 0V 0 − ~W · ~V =
∑

µν

gµνW
µV ν ,

where the metric tensor gµν is defined by g00 = 1, g11 = g22 = g33 = −1, with
gµν = 0 for µ 6= ν. Minkowsky sums of the form

∑

µWµV
µ occur so often that

we adopt the Einstein convention, that whenever we see a term with an index
occurring once covariantly and once contravariantly (once down and once up)
we understand that index to be summed (from 0 to 3) over without needing
a summation sign. Einstein said of this “I have made a great discovery in
mathematics”.]
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P̂ 2 is a Casimir operator of the Poincaré group. That is, it is made from
the generators and commutes with all of them (and hence with every element
of the group). This is why we can label representations with a definite value
of p2. Besides the momentum generators P̂ µ, we have the generators of the
Lorentz group, the group which transforms vectors V µ as observed by an
inertial observer O to the vector V ′µ describing the same physics by another
inertial observer O′. This is given by a matrix Λµ

ν with

V ′µ = Λµ
νV

ν .

The infinitesimal generators for these finite transformations are linear com-
binations of a basis set of six matrices, as you will show for homework. They
can be labelled with a pair (αβ) of indices which each go from 0 to 3, but
with L̂(αβ) = −L̂(βα). Note each of these can be considered a abstract gener-
ator of a symmetry of the whole physics, but when acting on a vector, each
L(αβ) is a 4 × 4 matrix, really L(αβ)µ

ν .
In the first homework assignment, you will show that the space of in-

finitesimal Lorentz transformations is in fact six dimensional, and you will
verify

L(αβ)µ

ν = igαµδβν − igβµδαν ,

and find the Lie algebra of these generators. In the next homework, you will
also see how L̂(0j) generates boosts in the j direction and ǫjkℓL̂

(jk) generates
rotations about the ℓ axis.

What other properties should be fixed for what constitutes a particle?
That is, what commutes with the Poincaré group? From the generators we
can form the Pauli-Lubanski vector

Ŵµ =
1

2
ǫµνρσP̂

νL̂(ρσ).

One can show that the square, Ŵ µŴµ commutes with all the generators of
the Poincaré group, so it is also a Casimir operator and irreducible repre-
sentations will have a definite value. Here ǫµνρσ is the totally antisymmetric
Levi-Civita symbol1, with ǫ0123 = 1. We can understand the W 2 invariant
for states of positive mass by going to the rest frame, so pµ = (m, 0, 0, 0)

1If you are not familiar with these antisymmetric symbols and how they are used, both
in three dimensions, in four and in general, see the notes on “Using ǫ’s and determinants”
on the “Supplementary Notes” page from the web site.
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and Wj = 1
2
mǫjkℓL

(kℓ), which is just m times the angular momentum in the
j direction, or the spin.

The rotational invariance of the physical laws tells us that single particle
states must behave under rotations as a representation of the rotation group,
labelled by that spin, half of a natural number2. As we have seen, the three
historic particles e, p and n, and many of the hadronic resonances, have spin
1/2, though the photon has spin 1 and the pion spin 0. We will need to
develop equations describing particles with each of these spins.

In non-relativistic quantum mechanics, the behavior of particles is deter-
mined by the Schrödinger equation, which can be understood as a deBroglie
interpretation of the classical hamiltonian

E = H =
p2

2m
+ V (~r ) (1)

where E → ih̄
∂

∂t
and ~p → −ih̄~∇, and this differential operator is supposed

to act on the wave function. Thus

ih̄
∂ψ

∂t
= −

h̄2

2m
∇2ψ + V (~r )ψ, (2)

which is the Schrödinger equation.
Of course this relation is inappropriate for relativistic physics. In the

first place, the very idea of a potential V (~r1, ~r2), which gives the force on
one particle at time t in terms of the position of another particle at the
same time, violates the relativistic concept that information cannot travel
faster than light. The only exception is a delta function potential. If we
ignore interactions, we can take the relativistic connection between energy
and momentum

E2 = c2~p 2 +m2c4, (3)

which gives the differential operator equation

h̄2 ∂
2

∂t2
− c2h̄2~∇ 2 +m2c4 ≡ 0

when acting on some function, sort of the wave function but now we will call
it the particle’s field.

2A natural number is 0 or a positive integer.
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As we will be dealing exclusively with relativistic physics it is absurd to
use different units for time (x0) and for space (~x), so we will set c = 1 and
measure time in meters. Also, as we will be strictly quantum-mechanical, we
might as well set h̄ = 1 and measure energy in inverse meters or vice versa.
In fact, we will generally use eV for units (or MeV or GeV, etc.)

Finally, we use the differential operator notation

∂µ :=
∂

∂xµ
.

Note the relative positions of the µ’s, which gives us

∂µx
ν = δνµ.

Okay, now that we have simplified our notation, the differential equa-
tion which emerges from the correct kinematical connection of energy and
momentum (3) is the Klein-Gordon equation:

(

∂µ∂
µ +m2

)

Φ = 0.

Klein and Gordon proposed this equation in 1926.
Notice that the Klein-Gordon equation acts on a single scalar field, and

has solutions Φ ∝ ei
~k·~x−iωt = e−ikµx

µ

, with definite values P̂ µ = kµ, and
furthermore that P̂ µP̂µ = m2 has a definite value. Under a Poincaré trans-
formation Φ will be transformed to have a different, Lorentz transformed, k′µ

and will also pick up a phase from translation, but still have the same mass.
In general, whenever we have a symmetry to the underlying physics, states
of a system which obey the equations of motion must be transformed by the
symmetry into other states which evolve according to the same equations of
motion. As a consequence, the possible states of a system form representa-
tions of the symmetry group. Now we have rotational symmetry as part of
Poincaré invariance. We are used to this idea from atomic physics, where
rotational symmetry tells us that, in the absence of external fields, the states
belong to multiplets of fixed angular momentum L2. Such a multiplet can
have several states |ℓ,m〉 of different Lz = h̄m, which are transformed into
each other by rotations (other than along z). Because L2 is invariant under
the rotations, the states can be decomposed into separate irreducible repre-
sentations with L2 = h̄2ℓ(ℓ+1) for integer ℓ. If we consider spin as well, it is
J2 which describes the multiplets, and the j in J2 = h̄2j(j + 1) may be inte-
ger or half-integer. For our states of relativistic physics, this idea pertains to
the spin. The Φ of our Klein-Gordon equation is spin 0, but there are other
possibilities.
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0.1 The Dirac Equation

For a scalar (spin 0) particle there is just one state with each value of ~p, and
the Klein-Gordon equation gives all the constraint needed. But for particles
with higher spin, there is a multiplet of states for each ~p. Each component will
satisfy the Klein-Gordon equation, but the full equations of motion provide
constraints between the components, which the Klein-Gordon equation does
not do. This should be familiar from the Dirac equation for spin 1/2. You
will recall that Dirac, trying to find an equation first order in ∂/∂t so as to
avoid negative energy solutions, postulated

i
∂ψ(~x, t)

∂t
=
(

−i~α · ~∇ + βm
)

ψ(~x, t) (4)

and found that for the solutions to be covariant under Lorentz transforma-
tions, we must have the three components of ~α anticommute with each other
and with β, and the square of each one to be 1. That is,

{αj , αk} := αjαk + αkαj = 2δjk, {αj, β} = 0, β2 = 1. (5)

This, of course, means that αj and β can’t be ordinary numbers, but can be
matrices. The minimum dimension for these matrices is 4, and one conven-
tional choice for these 4 × 4 matrices is

αj =
(

0 σj
σj 0

)

, β =
(

1 0

0 −1

)

, Dirac rep. (6)

where each of the entries is a 2 × 2 matrix, and the σj are the usual Pauli
spin matrices

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

. (7)

It is important to keep in mind that the particular solution (6) is not unique.
The function ψ is a four-dimensional representation of the Lorentz group,
and the values of each component depend on the basis vectors we use to
expand objects in this four-dimensional space. Had we used a different basis,
in which ψa →

∑

b Uabψb, with U a unitary matrix, the equation would be
satisfied with transformed ~α ′ = U~αU−1, β ′ = U~βU−1. The new α′ and
β ′ would automatically satisfy (5). The representation (6) is particularly
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useful if we are dealing with particles of low energy, while for ultrarelativistic
particles it is often more useful to use the Weyl representation

αj =
(

−σj 0

0 σj

)

, β =
(

0 1

1 0

)

, Weyl rep. (8)

This is a course in relativistic physics, so we ought to convert our equa-
tion, written in three dimensional language distinguishing t from ~x, into four
dimensional language. If we multiply (4) on the left with β, we get

(

iγµ
∂

∂xµ
−m

)

φ(xν) = 0, (9)

where γ0 = β, and γj = βαj for j = 1, 2, 3. In the Dirac representation,

γ0 =
(

1 0

0 −1

)

, γj =
(

0 σj
−σj 0

)

, Dirac rep.

From (5) and observing that
{βαj, βαk} = β{αj, β}αk + β{αk, β}αj − β2{αj, αk} = −2δjk, we have

{γµ, γν} = 2gµν . (10)

Also note that the ~α and β are hermitian, but γj is antihermitian due to the
reversal of the β and α, while of course γ0 = β is still hermitean.

If ψ is representing a state of definite momentum, ψ(xµ) ∝ e−ipνx
ν

=
e−ip·x, then ∂

∂xµ → −ipµ, and the Dirac equation becomes (γµpµ−m)ψ̃(pν) =
0. If we distinguish the upper two components as φ and the lower two as χ,
so

ψ =
(

φ
χ

)

, 0 = (γµpµ −m)ψ =
(

(E −m)1 −~σ · ~p
~σ · ~p −(E +m)1

)(

φ
χ

)

,

or (E −m)φ = ~σ · ~p χ, (E +m)χ = ~σ · ~p φ. Plugging one into the other, we
find, of course,

(E +m)(E −m)φ = (E +m)~σ · ~p χ = ~σ · ~p (E +m)χ = ~σ · ~p~σ · ~p φ = ~p 2 φ,

because3 for any 3-vector ~V ,

(~V · ~σ )2 =
∑

jk

VjVkσjσk =
1

2

∑

jk

VjVk{σj , σk} =
∑

jk

VjVkδjk = V 2.

3More generally, as σjσk = δjk +iǫjkℓσℓ, we have (~V ·~σ)( ~W ·~σ) = VjWk(δjk +iǫjkℓσℓ) =
~V · ~W + i(~V × ~W ) · ~σ.
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But then (E2−~p 2−m2)φ = (pµp
µ−m2)φ = 0, and φ obeys the Klein-Gordon

equation. So does χ.
In non-relativistic physics we are used to considering the probability den-

sity as ρ(~x) = ψ†(~x)ψ(~x). If we ask how that changes with time,

∂ρ

∂t
(~x) =

∂ψ†

∂t
ψ + ψ†∂ψ

∂t
.

From (4) ∂ψ
∂t

= −~α · ~∇ψ − iβmψ, and the hermitian conjugate gives ∂ψ†

∂t
=

−~∇ψ† ·~α†+ iψ†β†m. Both ~α and β are hermitian, so we can drop the daggers
on them, and we have

∂ρ

∂t
(~x) =

(

−~∇ψ† · ~α + imψ†β
)

ψ + ψ†
(

−~α · ~∇ψ − imβψ
)

= −~∇ ·
(

ψ†~αψ
)

.

Thus if we define

jµ = (ψ†ψ, ψ†~αψ) we see
∂jµ

∂xµ
= 0

or jµ is a conserved current.

Lorentz symmetry

We see that the Dirac equation has, for each 3-momentum ~p, positive
energy solutions with an arbitrary two component φ, so two particle states,
which are of course the two spin states. There are also two negative energy
states. For ~p = 0 these are particularly simple, as χ = 0 for the positive
energy states and φ = 0 for the negative energy ones.

To find the more general form and better understand the spins, we ask
how Lorentz transformations act on the wave functions. First lets review
what it means for a field to be a scalar, vector, or other representation of
rotations. Considering rotations is a passive sense, as a change of coordinates,
we have that a rotation R changes the coordinates ~x→ ~x ′ with x′j = Rjkxk.
When we say that a field ψj transforms according to a representation Mjk(R),
ψ′
j(~x

′) = Mjk(R)ψk(~x). Notice the functions ψ and ψ′ are evaluated for
different arguments. For a scalar field M = 1, the new field at the point ~x ′

is the same as the old field at the point ~x, unchanged at the same physical
point, but the functions ψ′ and ψ are different. Considered actively, by which
I mean that the rotation is not a change of coordinate systems but a real
rotation of the physics, we see that the rotation does change the field.
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The same considerations apply to Lorentz transformations on fields which
are functions on space-time, xµ. A Lorentz transformation Λ acts as a linear
transformation on the coordinates, xµ → Λµ

νx
ν , and a field ψa(x

µ) which
transforms according to an irreducible representation Dab(Λ) is transformed
into ψ′, with

ψ′
a(x

′µ) = Dab(Λ)ψb(x
µ).

For the Dirac equation, if Lorentz invariance of the physics is to hold, the
Lorentz transform of a field ψ(xµ) which obeys the Dirac equation must also
obey the Dirac equation, with the same m. Thus

γα
∂ψ′

∂x′α

∣

∣

∣

∣

∣

x′µ

= −im ψ′|x′µ

γα
∂xβ

∂x′α

∣

∣

∣

∣

∣

xν

∂

∂xβ
ψ′(x′(x))

∣

∣

∣

∣

∣

xν

= −im ψ′|x′ν

γα
∂xβ

∂x′α

∣

∣

∣

∣

∣

xν

D(Λ)
∂

∂xβ
ψ

∣

∣

∣

∣

∣

xν

= −im D(Λ)ψ|xν

Multiplying on the left by D−1(Λ) and using the Dirac equation on the right,

D−1(Λ)γα
∂xβ

∂x′α
D(Λ)∂βψ = γβ∂βψ

so D−1(Λ)γα
∂xβ

∂x′α
D(Λ) = γβ.

Multiply
∂x′ρ

∂xβ
= Λρ

β to get

D−1(Λ)γρD(Λ) = Λρ
βγ

β. (11)

This tells us what it means for γρ to act like a contravariant vector, even
though its matrix elements are fixed numbers. It tells us as well what the rep-
resentation D(Λ) must be. Consider an infinitesimal Lorentz transformation
Λµ

ν = δµν − iǫL(αβ)µ

ν and Dab = δab − iǫSab(L
(αβ)), and we see

[

δab + iǫSab(L
(αβ))

]

γρbc
[

δcd − iǫScd(L
(αβ))

]

=
[

δρσ − iǫL(αβ)ρ

σ

]

γσad

which gives, to first order in ǫ,
[

S(L(αβ)), γρ
]

= −L(αβ)ρ

σγ
σ = −igαργβ + igβργα.
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Then what is S? If ρ is neither α nor β, it commutes, and if it is one of
these, we get the other. So try

S(L(αβ)) =
i

4

[

γα, γβ
]

,

and indeed

[

S(L(αβ)), γρ
]

=
i

4

[[

γα, γβ
]

, γρ
]

=
i

2

(

γα
{

γβ, γρ
}

− γβ {γα, γρ}
)

= iγαgβρ − iγβgαρ

in agreement with what is needed.
Now, in particular, consider a rotation about the z axis, which takes

t → t′ = t, z → z′ = z, and
(

x
y

)

→
(

x′

y′

)

=
(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

,

with Λ = e−iθJz with the generator Jz =











0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0











when acting on a

contravariant vector. In our four dimensional language Jz = L(12), and so it

acts as 1
2
Σz = i

4
[γ1, γ2] = 1

2

(

σz 0
0 σz

)

where we define

Σj =
(

σj 0
0 σj

)

We see that spin is just what we expect.


