['(N/2) and the Volume of SP~1

Joel Shapiro

Here we evaluate the “area” of the surface of a ball of radius 1 in D
dimensions, that is, the (hyper) volume of a D — 1 dimensional sphere SP~!.
To do so we also need to evaluate the Euler Gamma function
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for Re z > 0. We can evaluate I' for half-integer arguments and simul-
taneously the volume of a D — 1 sphere by evaluating this integral in D
dimensional Euclidean space:
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If we do the integral using cartesian coordinates,
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The integral in the last expression is

2 1
/ due“—?/ due — [ dtt 2et:F(§),

t=u?

so [ = (F(%))



On the other hand e~ is hyperspherically symmetric, so
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where Sp = [ dS)p is the surface area of a unit ball in D dimensions. Thus
we have

%SDF(D/2) - (r(%))D.

For D = 2 we know, of course, that the surface of a 2-ball, that is a circle of
radius 1, has “volume” 27, so!
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From I'(3) = /7 and I'(1) = 1, and from the recursion relation I'(z + 1) =
2I'(z), we can evaluate
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I'(D/2) = V.1,

and thus )
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Not —+/7 as the integrand is clearly positive definite.
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